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Abstract: We report the characteristics of a diode-end-pumped, high-repetition-rate, acoustic-optic
(AO) Q-switched Tm:YLF laser operating from 5 kHz to 10 kHz. In the continuous-wave (CW)
regime, a maximum average output power of 8.5 W was obtained with a slope efficiency of 30.7%.
Under the AO Q-switching regime, a maximum output power of 7.32 W was obtained at a repetition
frequency of 5 kHz with a pulse width of 68 ns and a pulse energy of 1.4 mJ, corresponding to a
peak power of 21.5 kW. A time-dependent rate equation model is introduced to theoretically analyze
the results obtained in the experiment, in which the cross-relaxation phenomenon, upconversion
losses and ground-state depletion are taken into account. Additionally, the evolution processes of
population inversion density and intracavity photon number density with time are also presented.
The theoretical results well predict the dependence of laser output characteristics of Tm:YLF crystal
on the incident pump powers.

Keywords: actively Q-switched; Tm:YLF laser; rate equation model

1. Introduction

Recently, 2-micrometer lasers have attracted much attention in the fields of laser
medicine, material processing, laser communication, atmospheric pollution monitoring
and mid-infrared optical parametric oscillator. In particular, the high-repetition-rate and
short-pulse-width laser source plays an increasingly important role in these fields. As is
known to all, the trivalent rare earth ion thulium (Tm3+) is a common active ion emitting
at 2 µm with the advantages of long fluorescence lifetime and high quantum efficiency,
and its pump source is a commercially available laser diode (LD) [1]. Up to now, various
Tm3+ion-doped crystals (YAP, YAG, LuAG, YLF, etc.) have been widely investigated to
achieve a 2-micrometer pulsed laser based on the Q-switching technique [2–4]. As a typical
representative, Tm:YLF, a natural birefringent crystal with a linearly polarized output, has
been used to achieve as high as 87.5 W of CW laser output power at 1907.8 nm [5]. Under
the Q-switching regime, Jabczyński et al. reported an acoustic-optic (AO) Q-switched
Tm:YLF laser with a pulse width of 20 ns and a pulse energy of 10.5 mJ at a repetition
frequency of 10 Hz, corresponding to the peak power of nearly 0.5 MW [6]. In 2015,
Korenfeld et al. demonstrated a passively Q-switched diode-pumped Tm:YLF laser based
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on a Cr:ZnSe saturable absorber with a maximum pulse energy of 4.22 mJ and a pulse
duration of 26 ns at the repetition rate of 400 Hz, corresponding to the peak power of
162.3 kW [7]. In 2018, Sheintop et al. demonstrated a high-energy and narrow-bandwidth
tunable Tm:YLF laser using a pair of Etalon plates. At a repetition rate of 1 kHz, a pulse
energy of 1.97 mJ and a pulse duration of 37 ns were achieved at 1879 nm with a full width
at half-maximum (FWHM) of 0.15 nm, corresponding to a peak power of 53.2 kW [8].
However, these studies focus on high-energy lasers and not the research of high-power
and high-repetition-rate laser sources.

On the other hand, with the development of the energy level transition mechanism
of the Tm3+-doped quasi-three-level laser, the rate equation model has been established
to analyze laser operating characteristics theoretically, which reveals a good agreement
with the experimental results under the CW and passively Q-switched regimes [9,10].
However, there are few numerical simulation studies on actively Q-switched Tm lasers. In
the existing models, the laser performances are theoretically investigated by solving the
steady-state rate equations to reduce computational complexity, which makes it difficult
to simulate the time evolution of photon number and population inversion. Additionally,
some key details cannot be presented, such as the pulse build-up time and the evolution of
pulse at the initial stage.

In this paper, we demonstrated a high-repetition-rate AO Q-switched Tm:YLF laser.
Under CW operation, a maximum average output power of 8.5 W was obtained with a
slope efficiency of 30.7%. In the Q-switching regime, a maximum output power of 7.32 W
was realized with the shortest pulse width of 68 ns and a maximum pulse energy of 1.4 mJ
under a repetition rate of 5 kHz, corresponding to a peak power of 21.5 kW. Besides, we
also built a rate equation theoretical model of the diode-end-pumped Tm:YLF laser to
theoretically analyze the results obtained in the experiment.

2. Experimental Setup

Figure 1 shows the experimental setup of the diode-end-pumped AO Q-switched
Tm:YLF laser. The a-cut Tm:YLF crystal had a doping concentration of 3.5 at.% with a
dimension of 3 mm × 3 mm × 10 mm. The crystal was wrapped in indium foil and
mounted in a copper block cooled by water to 18 ◦C. Both surfaces were antireflection (AR)-
coated from 750 nm to 850 nm and 1800 nm to 2150 nm. A 35 W fiber-coupled LD emitting
at 790 nm with a core diameter of 200 µm and a numerical aperture of 0.22 was used as
the pump source. The pump light was focused into the laser crystal through a 1:2 imaging
module with a spot diameter of 400 µm. The used two-dimensional AO Q-switch (The
26th Electronics Institute of Chinese Ministry of Information Industry) which was made of
fused quartz with a physical length of 50 mm and an acoustic aperture of 3 mm × 3 mm,
had a diffraction efficiency of 90%. To reduce the insertion losses, both surfaces of the
fused quartz were AR-coated at 2 µm. The flat–concave cavity was designed with a length
of 80 mm. M1 was a flat input mirror and high reflectivity (HR)-coated from 1850 nm to
2150 nm (reflectivity > 99.5%) and AR-coated from 750 nm to 850 nm (reflectivity < 0.5%).
M2 was a plane–concave output mirror (R = −200 mm) with the transmission of 20% from
1850 nm to 2150 nm. The laser pulse trains were recorded by a fast InGaAs photodetector
(EOT, ET-5000) with a rise time of 35 ps and monitored by a digital oscilloscope (1 GHZ
bandwidth, Tektronix DPO 7102). The average output power was measured by a laser
power meter (PM100, Thorlabs).
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3. Experimental Results 
Firstly, the CW running performance of the Tm:YLF laser can be seen in Figure 2. 

Under the pump power of 32 W, the maximum average output power was 8.5 W for the 
experiment, corresponding to the slope efficiency of 30.7%. 

Subsequently, when the AO Q-switch was turned on, stable high-repetition-rate 
pulse operation was realized with the repetition frequency varying from 5 kHz to 10 
kHz. As shown in Figure 2, similar output powers and slope efficiencies were obtained 
under different repetition frequencies. Because when the pulse period is much shorter 
than the upper-level lifetime of the laser crystal, the spontaneous radiation loss can be 
ignored. Under the incident pump power of 32 W, the maximum average output powers 
were 7.32 W, 7.36 W and 7.28 W under the repetition rates of 5 kHz, 8 kHz and 10 kHz, 
corresponding to the slope efficiencies of 25.5%, 25.7%, and 25.5%. In the inset of Figure 
2, the output spectrum was recorded by a spectrometer (AvaSpec-NIR-S-350-2080) at a 
center wavelength around 1914 nm with an FWHM of 7 nm. The ONSR (optical signal to 
noise ratio) for the obtained laser emission was 34.4:1 based on Gaussian fitting. Consid-
ering that the resolution of the spectrometer is only 4 nm, the measured spectral width is 
not accurate. 

 
Figure 2. The average output power of diode-pumped CW and AO Q-switched Tm:YLF laser. In-
set: output spectrum. 

The dependences of pulse durations, pulse energies and peak powers on incident 
pump powers at different repetition frequencies are recorded in Figure 3. When the 
pump power was 32 W, the narrowest pulse durations were 68 ns, 114 ns and 140 ns, 
and the maximum pulse energies were 1.46 mJ, 0.92 mJ and 0.73 mJ, corresponding to 
the maximum peak powers of 21.5 kW, 8.1 kW and 5.2 kW for the repetition frequencies 
of 5 kHz, 8 kHz and 10 kHz, respectively. However, the repetition frequency would be 
reduced by half of the set frequency of the AO Q-switch if the incident pump power was 
lower than 10 W for frequencies between 8 kHz and 10 kHz. The small stimulated emis-

Figure 1. Experimental setup of diode-end-pumped AO Q-switched Tm:YLF laser.

3. Experimental Results

Firstly, the CW running performance of the Tm:YLF laser can be seen in Figure 2.
Under the pump power of 32 W, the maximum average output power was 8.5 W for the
experiment, corresponding to the slope efficiency of 30.7%.
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Figure 2. The average output power of diode-pumped CW and AO Q-switched Tm:YLF laser. Inset:
output spectrum.

Subsequently, when the AO Q-switch was turned on, stable high-repetition-rate pulse
operation was realized with the repetition frequency varying from 5 kHz to 10 kHz. As
shown in Figure 2, similar output powers and slope efficiencies were obtained under
different repetition frequencies. Because when the pulse period is much shorter than the
upper-level lifetime of the laser crystal, the spontaneous radiation loss can be ignored.
Under the incident pump power of 32 W, the maximum average output powers were
7.32 W, 7.36 W and 7.28 W under the repetition rates of 5 kHz, 8 kHz and 10 kHz, corre-
sponding to the slope efficiencies of 25.5%, 25.7%, and 25.5%. In the inset of Figure 2, the
output spectrum was recorded by a spectrometer (AvaSpec-NIR-S-350-2080) at a center
wavelength around 1914 nm with an FWHM of 7 nm. The ONSR (optical signal to noise
ratio) for the obtained laser emission was 34.4:1 based on Gaussian fitting. Considering that
the resolution of the spectrometer is only 4 nm, the measured spectral width is not accurate.

The dependences of pulse durations, pulse energies and peak powers on incident
pump powers at different repetition frequencies are recorded in Figure 3. When the pump
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power was 32 W, the narrowest pulse durations were 68 ns, 114 ns and 140 ns, and the
maximum pulse energies were 1.46 mJ, 0.92 mJ and 0.73 mJ, corresponding to the maximum
peak powers of 21.5 kW, 8.1 kW and 5.2 kW for the repetition frequencies of 5 kHz, 8 kHz
and 10 kHz, respectively. However, the repetition frequency would be reduced by half of
the set frequency of the AO Q-switch if the incident pump power was lower than 10 W
for frequencies between 8 kHz and 10 kHz. The small stimulated emission cross-section
of Tm:YLF means that a considerable fraction of Tm ions need be exited during laser
operation [11]. Therefore, this phenomenon will occur if the pump intensity is too low
or the accumulation time of population inversion is too short, which was also verified
in theoretical simulation. Under the maximum pump power, the temporal pulse train at
a repetition frequency of 5 kHz is shown in Figure 4. The bottom of Figure 4 shows the
temporal pulse shape with the shortest pulse duration of 68 ns.
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4. Theoretical Analysis

To better understand the pulse output characteristics, the quasi-three-level scheme
of the Tm3+ ion with energy transfer processes is described in Figure 5. Based on 790 nm
pump sources, the population of the 3H6 ground state (N1) is excited to the 3H4 energy level
(N4). Due to the short lifetimes of the excited states 3H4 and 3H5 (N3), the population jumps
down to the 3F4 energy level (N2) through two non-radiative relaxation (NR) transitions.
Finally, the laser emits around 2 µm during the transition from 3F4 to 3H6. However, unlike
the ordinary quasi-three-level structure, there is a strong cross-relaxation (CR) mechanism
between the two Tm3+ ions for the 3H4 + 3H6 → 3F4 + 3F4 level transition processes, which
results in a high Stokes efficiency of 0.82, in theory [10].
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Then, the coupled rate equation model of an actively Q-switched laser, considering
the cross-relaxation phenomenon, upconversion losses and ground-state depletion, is
introduced to simulate the characteristics of the emitted pulses as follows Equations (1)–(8):

dN4/dt = Rp − KCRN4N1 + KETU1N2
2 − N4/τ4 (1)

dN3/dt = KETU2N2
2 + β43N4/τ4 − N3/τ3 (2)

dN2/dt = 2KCRN4N1 − 2(KETU1 + KETU2)N2
2 + β32N3/τ3 + β42N4/τ4 − N2/τ2 − σec(ƒuN2 − ƒlN1)Φ (3)

N1 = NTm − N2 − N3 − N4 (4)

dΦ/dt = σecΦ(ƒuN2 − ƒlN1)l/l’ − Φ/τc (5)

τc = tr/ε (6)

tr = 2l’/c (7)

ε = −ln(R) + L + ζ(t) (8)

where Ni (i = 1, 2, 3 and 4) is the population concentration of the Tm level and NTm is the Tm
ion concentration. KCR is the cross-relaxation coefficient. KETU1 and KETU2 are the energy
transfer upconversion coefficients. The non-radiative lifetime for each level is given by τi
(i = 2, 3, 4), and the branching ratios for levels m-n are given by βnm. σe is the stimulated
emission cross-section for the 2 µm laser transition. ƒu and ƒl are the Boltzmann fractions
for the Stark state of 3F4 and 3H6 levels. l’ = lc + (n − 1)l + (n1 − 1)l1 is the optical length of
the resonator (here, l and n are the length and the refractive index of the Tm crystal. l1 and
n1 are the length and the refractive index of the AO crystal). c is the speed of light. Φ is
the photon density in the cavity. τc is the cavity lifetime. tr is the cavity round-trip transit
time. ε is the cavity round-trip loss. R is the reflectivity of the output mirror. L is the loss in
cavity. ζ(t) is the loss introduced during the operation of Q-switch, which is regarded as a
step function (0 or ζmax). Rp is the pumping rate and is given by Equation (9):

Rp = ηPin/(πrp
2lhνp) (9)
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where Pin is the incident pump power, rp is the pump spot radius, l is the crystal length, h
is the Planck’s constant and νp is the pump light frequency. Because of the low stimulated
emission cross-section of the Tm:YLF crystal, a considerable fraction of the Tm ions need
be excited during laser operation. Therefore, considering the ground-state depletion, the
absorption coefficient is reduced according to Equation (10):

η = η0N1/NTm (10)

where η0 = 80% is the small-signal pump absorption coefficient. The related parameters
are shown in Table 1.

Table 1. Related parameters used in the numerical model [12–16].

Parameter Value Parameter Value

h 6.625 × 10−34 J·s lc 70 mm
NTm 4.89 × 1020 cm−3 σe 3 × 10−21 cm2

n, n1 1.46, 1.44 KCR 8 × 10−18 cm3s−1

ƒu, ƒl 0.2916, 0.0322 KETU1 and KETU2 1 × 10−19 cm3s−1

τi (i = 2, 3, 4) 15, 2.258, 0.715 ms R 80%
β43, β42, β32 0.1, 0.03, 0.03 L 1.5%

l, l1 10 mm, 5 mm A 0.1256 mm2

Firstly, the CW running performance of the Tm:YLF laser is numerically simulated
by setting the loss ζ(t) to 0 over the entire time interval. The rate Equations (1)–(10) are
solved numerically by a computer based on the four-order Runge–Kutta algorithm. As
shown in Figure 6, the numerically calculated output powers increase almost linearly with
incident pump powers. Under the pump power of 32 W, the maximum average output
power is 8.6 W for the numerical simulation, corresponding to the slope efficiency of 36.9%.
On the whole, the theoretical and experimental results are generally consistent, although
the theoretical simulation has higher threshold power.
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Figure 6. Numerically calculated output power versus the incident pump power for the CW and AO
Q-switched Tm:YLF laser.

Then, in order to predict the pulse characteristics of the Tm:YLF laser, we assume that
intracavity photon density changes to 0 instantaneously when the AO switch is turned
on, and ζ(t) is 0 when the AO switch is off. In the numerical simulation, the maximum
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average output powers are 7.27 W, 7.39 W and 7.41 W with the slope efficiencies of 31%,
31.3% and 31% at 5 kHz, 8 kHz and 10 kHz in Figure 6. The dependences of pulse
durations, pulse energies and peak powers on incident pump powers at different repetition
frequencies are recorded in Figure 7 for the numerical simulation. When the pump power
is 32 W, the experimental and simulated values are as shown in Table 2 under the repetition
frequencies of 5 kHz, 8 kHz, and 10 kHz. The simulated pulse energies are consistent
with the experimental results, but the experimentally measured pulse widths were about
3~4 times larger than the theoretically simulated values, and the peak powers were about
3~4 times smaller than the simulated values. Considering that the spatial distribution
of the beam is ignored in the theoretical simulation, the decrease in pump density has
an adverse impact on the pulse width and the peak power compared with the Gaussian
transverse profile. In addition, the approximate substitution of some parameters based on
the reported literature also has an adverse impact on accurate simulation.
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Table 2. Comparison of experiment and simulation results (in brackets).

Repetition Frequencies
(kHz)

Pulse Durations
(ns)

Pulse Energies
(mJ)

Peak Power
(kW)

5 68 (239) 1.46 (1.45) 21.5 (6.1)
8 114 (390) 0.92 (0.92) 8.1 (2.4)
10 140 (491) 0.73 (0.74) 5.2 (1.5)

Figure 8 clearly shows the temporal evolutions of the population inversion density
(gray line) and the intracavity photon density (red line) in 0.01 s under the maximum output
power of 32 W. As time increases, the population inversion density increases rapidly and
reaches saturation near 0.002 s. Then, the laser pulse transitions from an unstable state to a
stable state, and the population inversion density also changes with the sawtooth shape.
The corresponding expanded picture of the single Q-switched pulse near 0.083 s is shown
in the inset of Figure 8.
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5. Conclusions

In conclusion, a high-repetition-rate AO Q-switched Tm:YLF laser was experimentally
studied at repetition rates of 5 kHz, 8 kHz and 10 kHz. Under CW operation, a maximum
average output power of 8.5 W was obtained with a slope efficiency of 30.7%. Under
the AO Q-switching regime, a maximum output power of 7.32 W was obtained at the
repetition rate of 5 kHz with the shortest duration of 68 ns and the maximum pulse energy
of 1.4 mJ, corresponding to a maximum peak power of 21.5 kW. In order to further analyze
the experimental results, we built a quasi-three-level rate equation theoretical model of an
LD-pumped AO Q-switched Tm:YLF laser, and the evolution of the pulse with time was
simulated based on the four-order Runge–Kutta algorithm. However, the experimentally
measured pulse widths were about 3~4 times larger than the theoretically simulated values,
which may be caused by the neglect of the Gaussian distribution of the pump and laser
beams and the approximate processing of parameters in the theory. On the whole, this
model can effectively predict the dependence of the pulse characteristics on the pump
power, especially the average output power and the pulse energy.
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