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Abstract: Protein N-linked glycosylation is a post-translational modification that plays an important
role in a myriad of biological processes. Computational prediction approaches serve as comple-
mentary methods for the characterization of glycosylation sites. Most of the existing predictors for
N-linked glycosylation utilize the information that the glycosylation site occurs at the N-X-[S/T] se-
quon, where X is any amino acid except proline. Not all N-X-[S/T] sequons are glycosylated, thus the
N-X-[S/T] sequon is a necessary but not sufficient determinant for protein glycosylation. In that
regard, computational prediction of N-linked glycosylation sites confined to N-X-[S/T] sequons is an
important problem. Here, we report DeepNGlyPred a deep learning-based approach that encodes the
positive and negative sequences in the human proteome dataset (extracted from N-GlycositeAtlas)
using sequence-based features (gapped-dipeptide), predicted structural features, and evolutionary
information. DeepNGlyPred produces SN, SP, MCC, and ACC of 88.62%, 73.92%, 0.60, and 79.41%,
respectively on N-GlyDE independent test set, which is better than the compared approaches. These
results demonstrate that DeepNGlyPred is a robust computational technique to predict N-Linked
glycosylation sites confined to N-X-[S/T] sequon. DeepNGlyPred will be a useful resource for the
glycobiology community.

Keywords: post-translation modification; sequon; deep neural network; N-linked glycosylation

1. Introduction

Protein N-linked glycosylation is one of the most important post-translational modifi-
cations (PTM) that play essential roles in many vital biological processes like protein folding,
protein stability, cell adhesion, molecular trafficking and clearance, receptor binding and
activation, signal transduction, immune response, antigenicity, and apoptosis [1–11] in
eukaryotes, archaea, and Gram-negative bacteria. Aberrant glycosylation is associated with
the pathological progression of diseases such as SARS-CoV-2, Gaucher’s, Niemann-Pick
type C, Sandhoff’s, congenital disorders of glycosylation (CDG), and Tay-Sachs [1,12–14].
N-linked glycosylation is a common feature shared by a significant fraction of transmem-
brane proteins, cell surface proteins, and proteins secreted in body fluids [1,15].

N-linked glycosylation involves the attachment of N-glycans (oligosaccharide) to
the amine group (NH2) of asparagine (Asn(N)) and often occurs at the conserved motifs
N-X-S or N-X-T sequons where X can be any amino acid except proline [6,16]. However,
the presence of such sequon in the peptide does not sufficiently confirm that it is N-linked
glycosylated because about one-third to half sequons are buried deep inside the proteins
that are not accessible to glycosylation enzymes [17–20]. In addition, various factors like
sequences surrounding a potential glycosylation site, distance to the next glycosylation, etc.
site can impact whether the sequon is N-glycosylated or not. In that regard, the presence of
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sequon is necessary but not sufficient for N-linked glycosylation in both prokaryotes and
eukaryotes [6,17,20,21].

Experimental techniques like mass spectrometry (MS) [22,23] and radioactive chemical
labeling [24] are used to detect N-linked glycosylation. However, these techniques are
time-consuming and labor-intensive. In this regard, several computational approaches to
predict N-glycosylation sites have been developed. Some of the N-linked glycosylation
site prediction approaches that use sequence-based features are: NetNGlyc [25] which
uses an artificial neural network (ANN), EnsembleGly [26] uses an ensemble of support
vector machines (SVM), GlycoPP uses a random forest (RF) [27], N-GlycoGo [28] uses
XGBoost, Nglyc [29] uses RF, GlycoMine [30] also uses RF, SPRINT-Gly [31] uses Deep
Neural Network (DNN) and others.

In addition to various sequence-based features, some approaches use predicted struc-
tural features like secondary structure (SS), accessible surface area (ASA), disordered
regions, that are predicted by software like SABLE [32], PSIPRED [33], NetSurfP [34],
SPIDER 3.0 [35], DISOPRED2 [36,37], SPOT-Disorder [38,39], etc. GlycoMinestruct [39] and
SPRINT-Gly [31] are some of the approaches that use structure-based features in addition to
sequence-based features. More recently, an SVM-based method to predict N-glycosylation
site called N-GlyDE [40] that uses sequence features and predicted structural features was
proposed.

It has to be noted here that with the exception of NetNGlyc and N-GlyDE all these
approaches are evaluated on each N without being confined to N-X-[S/T] sequon although
it was known for some time that the presence of this consensus sequon does not always
lead to glycosylation [6]. Perhaps, this is the reason why the predictive performances of
various approaches for predicting N-linked glycosylation site tend to be so high as the task
here is to just predict each N in the N-X-[S/T] sequon as a glycosylation site. NetNGlyc and
N-GlyDE are two seminal works in the field that exploit the fact that N-X-[S/T] sequon is
necessary but not sufficient condition for glycosylation. More specifically, these approaches
define the glycosylation site prediction problem as a classification problem to classify
whether the given N-X-[S/T] sequon is likely to be glycosylated or not. Since N-GlyDE,
a few predictors like N-GlycoGo [28], Nglyc [29] have confined their positive and negative
datasets to N-X-[S/T] sequon. However, these predictors are trained on much smaller data
sets and have not used other structural features.

Although N-GlyDE (a two-stage method) performs quite well, the predictive perfor-
mance of N-GlyDE is not to the par as it can be used for high-throughput screening of
computational glycosylation sites. Additionally, we have more N-Glycosylation sites due
to advances in proteomics technologies, e.g., N-GlycositeAtlas database [41] contains more
than 14,000 N-glycosylation sites from humans. Additionally, there exist no approaches for
N-glycosylation (confined to the sequon) that have leveraged the modern Deep Learning
algorithms. Recently, various DL-based approaches have been proposed in the field of
bioinformatics [42–45].

Hence, we report DeepNGlyPred, a Deep Neural Network (DNN)-based approach
to predict N-linked glycosylation site confined to N-X-[S/T] sequon. DeepNGlyPred uses
various sequence-based features (e.g., Gapped-Dipeptide), predicted structural features
(e.g., Secondary Structures, Accessible Surface Area, relative solvent accessibility (RSA),
torsion angle (Φ, Ψ), disordered regions (calculated using NetSurfP-2.0 [46]), and PSSM
(obtained using PSI-BLAST [47]).

DeepNGlyPred when trained using N-GlyDE training dataset and tested on N-GlyDE
independent test set produces SN, SP, MCC, and ACC of 72.40%, 81.00%, 0.531, and 77.80%,
respectively. In addition, it produces SN, SP, MCC, and ACC of 88.62%, 73.92%, 0.60,
and 79.41%, respectively when trained on N-GlycositeAtlas training data and tested on
N-GlyDE independent test set. These results demonstrate that DeepNGlyPred is a robust
computational technique to predict N-linked glycosylation sites confined to N-X-[S/T]
sequon.
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2. Results and Discussion

In this section, we describe the results of DeepNGlyPred on the N-GlyDE dataset and
N-GlycositeAtlas dataset. The datasets are described in details in Section 3.1 (Table 4).

2.1. Performance of DeepNGlyPred on N-GlyDE Dataset

Here, we describe the results of training DeepNGlyPred on the N-GlyDE training set
and testing on N-GlyDE independent test dataset.

2.1.1. Optimal Feature Set

An optimal feature set can improve the performance of classifiers. In that regard,
we performed an analysis to determine the optimal set of features for the classification of
N-linked glycosylation sites. The results of this analysis are presented in Figure 1.
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Figure 1. Individual and combined feature importance, Net represents features from NetSurfP-2.0,
GD represents features from Gapped Dipeptide.

Among the group of features (NetSurfP-2.0, GD, and PSSM), the features obtained
from NetSurfP-2.0 have the highest MCC (=0.41) in the independent dataset compared
to PSSM and GD. Based on this, it can be seen that the feature combination of Accessible
Surface Area (ASA), Relative Surface Area (RSA), Secondary Structure (SS), torsion angle
(Φ, Ψ), disorder regions (obtained from NetSurfP-2.0) was the most important feature. Inter-
estingly, Gapped Dipeptide was able to classify all the negative datasets as True Negative.
The feature group was combined incrementally and as seen in Figure 1, the combination of
features generated from NetSurfP-2.0, Gapped Dipeptide, PSI-BLAST (position-specific
scoring matrix) provided the best MCC (0.57) from our model trained on the N-GlyDE
dataset. Moreover, PSSM and Gapped Dipeptide (GD) performed similarly as shown in
Supplementary Table S3.

Therefore, we can conclude that the feature combination of the Gapped Dipeptide,
PSI-BLAST, and NetSurfP-2.0 is the best feature for prediction.

2.1.2. Selection of Window Size

As NetSurfP-2.0 feature group was the most important among individual feature
groups, we extracted the features generated from NetSurfP-2.0 for various window sizes
such as 21, 23, 25, 27, and 29 (chosen based on the results from N-GlyDE) in an increment
of 2 for the N-GlyDE dataset. The N-GlyDE training dataset was divided into 80% training,
10% validation, and 10% testing. The results of the performance of various window sizes for
the 10% testing dataset are shown in Supplementary Figure S1. For the N-GlyDE dataset,
the window size of 25 (as in N-GlyDE) (MCC: 0.336) resulted in the best performance
which is elaborated in Supplementary Figure S1.
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Based on these results, for the subsequent analysis for the N-GlyDE dataset, a peptide
of window size 25 centered around the site of interest (N (Asn)) confined to sequon was
created for both positive and negative N-linked glycosylation sites. Essentially, 12 amino
acids upstream and downstream of central Asparagine (N) residue were extracted from
the glycoprotein. When the site of interest was near the N-terminal or C-terminal of the
protein, a virtual amino acid “-” was added to make the window sizes to be of the correct
length.

2.1.3. DNN Architecture

To determine the best performing Deep Neural Network architecture and parameters,
a grid search was performed on a model with the N-GlyDE training dataset with three-fold
cross-validation. This was done against 1, 2, 3, and 4 hidden layers, sigmoid and relu
activation function, 30, 60, 90, 120, 150, and 240 neurons in each layer, RMSprop, and Adam
optimizers, and 0.2, 0.3, 0.4, and 0.5 dropout rate, whereas default learning rate 0.001 was
used. The optimized parameters using grid search are shown in Table 1.

Table 1. Parameters used in DNN for N-GlyDE dataset.

Name of the Parameters Parameters Used

No. of layers 4
No. of neuron in three layers 150

No. neuron in the output layer 2
Activation Function sigmoid

Activation Function at output layer softmax
Optimizer Adam

Learning rate 0.001
Objective/loss function Binary_crossentropy

Model Checkpoint Monitor = ‘val_accuracy’
Reduce learning rate on plateau Factor = 0.001

Early stopping patience = 5
Dropout 0.3

Batch_size 256
Epochs 400

2.1.4. Cross-Validation Results

Ten-fold cross-validation was performed for the N-GlyDE dataset (3080 training ex-
amples). The mean MCC, mean Accuracy, mean Sensitivity, and mean Specificity for
the ten-fold cross-validation were 0.4440 ± 0.0499, 0.7662 ± 0.0202, 0.9272 ± 0.0338,
0.4449 ± 0.1020, respectively. The detailed results of the 10-fold cross-validation are pre-
sented in Supplementary Table S1.

2.1.5. Independent Test Results

When the trained model was applied on N-GlyDE independent test set, we obtained
MCC, Accuracy, Sensitivity, and Specificity of 0.531, 77.80%, 72.40%, and 81.00% respec-
tively. These results are slightly better than the performance of the N-GlyDE predictor.
Additionally, while observing the confusion matrix of the DNN classifier the predictor was
able to classify 227 as True Negative, 121 as True Positive. However, it falsely classified
53 as False Positive, and 46 as False Negative. All the individual and combined feature
statistics are elaborated in Supplementary Table S3.

In addition, we also experimented with the dimension reduction technique based
upon feature importance from XGBoost on the N-GlyDE dataset. The XGBoost algorithm
was trained on the training set and then the threshold which is an important parameter
was calculated. XGBoost resulted in the reduction of features from 3028 to 1188, and when
those features were used to train the Deep Neural Network, we obtained efficiency score,
MCC, Accuracy, Sensitivity, and Specificity, of 0.5059, 76.28%, 73.65%, 77.85%, respectively.
The results of XGBoost are shown in Supplementary Table S2.
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2.2. Performance of DeepNGlyPred on N-GlycositeAtlas Dataset

Here, we describe the results of training DeepNGlyPred on the N-GlycositeAtlas dataset.

2.2.1. Optimal Feature Set

Three feature groups which are generated by NetSurfP-2.0, PSI-BLAST (PSSM),
and Gapped Dipeptide performed the best in the N-GlyDE N-linked glycosylation dataset.
Hence, the same feature groups were used to encode the positive and negative window
sequence of the N-GlycositeAtlas dataset.

2.2.2. Selection of Window Size

NetSurfP-2.0 feature group was the pivotal feature hence, we experimented with
various window sizes such as 21, 23, 25, 27, 29, . . . , 41, 43, 45, 47, 49, and 51 in an increment
of two for the N-GlycositeAtlas dataset. The N-GlycositeAtlas dataset was divided into
80% training, 10% validation, and 10% testing. We observed that the performing window
size was 41 (highest MCC, 0.395) for the N-GlycositeAtlas test dataset. Hence, we utilize
window size 41 for N-GlycositeAtlas dataset for subsequent experiments. We present
the results of the performance of various window sizes in Supplementary Figure S2 and
Supplementary Table S7.

For the N-GlycositeAtlas dataset, a peptide of window size 41 centered around the
site of interest (N (Asn)) was created for both positive and negative N-linked glycosylation
sites. Essentially, 20 amino acids upstream and downstream of the central Asparagine
(N) residue constrained to sequon were extracted. When the site of interest was near the
N-terminal or C-terminal of the protein, a virtual amino acid “-” was added to make the
window sizes of the correct length.

2.2.3. DNN Architecture

To obtain the best performing architecture and parameters, as in the case of the N-
GlyDE dataset, we performed a grid search over Deep Neural Network Architecture.
This was done against 3, 4, 5, and 6 hidden layers, sigmoid and relu activation function,
30, 60, 90, 120, 150, 240, 256, 512, and 1024 neurons in each layer, RMSprop, and Adam
optimizers, and 0.2, 0.3, 0.4, and 0.5 dropout rate, whereas default learning rate 0.001 was
used. The 3-fold cross-validation grid search produced an input layer with 1024 neurons,
three hidden layers each with 1024 neurons, output layer consisting of two neurons with
softmax activation function, dropout of 0.2, sigmoid activation function for input and
hidden layers, and Adam optimizer with a learning rate of 0.001 as the best performing
parameter for N-GlycositeAtlas dataset. The optimized parameters of DNN for the N-
GlycositeAtlas dataset are elaborated in Table 2.

2.2.4. Cross-Validation Results

Ten-fold cross-validation was performed on the N-GlycositeAtlas training dataset.
We obtained MCC, SN, SP, and ACC of 0.5197 ± 0.0305, 0.6819 ± 0.0858, 0.8231 ± 0.00963,
and 0.7532 ± 0.0127 for the 10-fold cross-validation. The results of 10-fold cross-validation
are shown in Supplementary Table S1. The independent N-GlyDE test set result (elaborated
in Section 2.2.5) produced by DeepNGlyPred when trained with N-GlycositeAtlas and
10-fold cross-validation results are similar which demonstrates that this model can be used
for N-linked glycosylation prediction purposes.
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Table 2. Parameters used in DNN for N-GlycositeAtlas dataset.

Name of the Parameters Parameters Used

No. of layers 5
No. neuron in four layers 1024

No. of neuron in the output layer 2
Activation Function sigmoid

Activation Function at output layer softmax
Optimizer Adam

Learning rate 0.001
Objective/loss function Binary_crossentropy

Model Checkpoint Monitor = ‘val_accuracy’
Reduce learning rate on plateau Factor = 0.001

Early stopping patience = 5
Dropout 0.3

Batch_size 256
Epochs 400

2.2.5. Independent Test Results

When the DeepNGlyPred trained on the N-GlycositeAtlas dataset was tested on
N-GlyDE independent test set, we achieved MCC, SN, SP, ACC of 0.605, 88.62%, 73.92%,
and 79.41% respectively. The DeepNGlyPred was able to classify 207 samples as True
Negative, 148 samples as True Positive, 73 as False Positive, and 19 as False Negative.

2.3. Comparison of DeepNGlyPred with Other Machine Learning Models

In addition, we performed a comparison of DNN-based DeepNGlyPred with other op-
timized machine learning models like SVM, RF, Gaussian Naïve Bayes, logistic regression,
and XGBoost. Figure 2 shows the receiver operating characteristic (ROC) curves for these
models and our DNN-based model. All these models were trained on the N-GlycositeAtlas
dataset and tested on N-GlyDE N-linked independent glycosylation datasets. Other per-
formance metrics for these models are shown in Supplementary Table S5. Since the DNN
model has the highest area under the curve (0.907) hence, DNN performs better than
the other ML-based approaches. Precision and recall are used to assess the performance
of a classifier on the positive class. So, we plotted the precision-recall curve of various
machine learning models that are used to classify the N-GlyDE independent dataset.
Figure 3 illustrates DNN has the highest precision-recall area under the curve (0.857),
so, DNN can correctly classify the positive N-linked glycosylated sites better than other
machine learning models.
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2.4. Comparison of DeepNGlyPred with Other Deep Learning Models

In order, to compare DeepNGlyPred with other emerging deep learning models,
we also implemented various other DL-architectures like Conv_1D, Conv_2D, LSTM,
BiLSTM, ResNet, and UNet. The performance of these various DL-architectures is shown
in Supplementary Table S6, and the ROC curve is shown in Figure 4. It can be observed
from Figure 4 that DeepNGlyPred (based on MLP) has the highest area under the ROC.
Figure 5 elucidates that DeepNGlyPred has the highest precision-recall area under the
curve compared to other deep learning models, so DeepNGlyPred is a robust model for
the prediction of N-linked Glycosylation PTM.
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2.5. Comparison with Other Widely Available N-Linked Glycosylation Predictors

We further compared the performance of DeepNGlyPred with the publicly available
predictors N-GlyDE, GlycoMine, NetNGlyc, and GlycoEP_Std_PPP and the results are
shown in Table 3. Here, we trained DeepNGlyPred on the N-GlyDE and N-GlycositeAtlas
dataset using the best set of features (obtained from NetSurfP-2.0, PSI-BLAST (PSSM),
Gapped Dipeptide) and then tested on the N-GlyDE independent test set. The results for
GlycoMine, N-GlyDE, NetNGlyc, and GlycoEP_Std_PPP were adapted from N-GlyDE [40].
It can be observed from Table 3 that DeepNGlyPred trained on N-GlyDE produced an MCC
of 0.531, DeepNGlyPred trained on N-GlycositeAtlas produced an MCC of 0.605 compared
to MCC of 0.499 for N-GlyDE. Furthermore, the independent test dataset was fed to
SPRINT-Gly N- and O-linked glycosylation prediction webserver and the results are shown
in Supplementary Table S8. As expected, the server classified all the positive and negative
sequons as positive N-linked glycosylated sites. This result is evident because of differences
in N-linked glycosylation site definition of SPRINT-Gly where sequon is defined as positive
and Asparagine (N) other than positive site not confined to sequon are defined as negative.
Additionally, we compared the various predictors using ROC-curve. Figure 6 illustrates,
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DeepNGlyPred has highest area under the curve (0.907) compared to other competitive
predictors. From these results, it can be observed that DeepNGlyPred performs better than
N-GlyDE and other methods compared.

Table 3. Prediction performance of DeepNGlyPred compared to other different predictors on the
independent dataset.

Predictors Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) MCC

DeepNGlyPred
(N-GlycositeAtlas) 79.4 66.9 88.6 73.9 0.605

DeepNGlyPred
(N-GlyDE) 77.8 69.5 72.4 81.0 0.531

N-GlyDE 74.0 61.3 82.6 68.9 0.499
GlycoMine 72.5 61.6 70.0 73.9 0.43
NetNGlyc 57.2 46.0 84.4 41.1 0.265

GlycoEP_Std_PPP 57.4 43.7 51.2 61.0 0.119
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3. Materials and Methods
3.1. Datasets

In this work, we used two benchmark datasets to train DeepNGlyPred. These datasets
are the N-GlyDE dataset and the N-GlycositeAtlas dataset.

3.1.1. N-GlyDE Dataset

This dataset is adapted from N-GlyDE [40]. This dataset consists of 2050 experimen-
tally verified N-glycosylation sites (N-X-[S/T] sequons) from 832 glycoproteins extracted
from human Proteins in UniProt (ver. 201608). This is the set of positive glycosylation sites.
Additionally, 1030 sites that follow the same N-X-[S/T] patterns from the same protein
sequences but are not experimentally verified as N-glycosylation sites are considered as
negative sites. This makes the training dataset.

As the sequons from subcellular compartments such as the nucleus, cytoplasm/cytosol,
mitochondrion do not undergo N-linked glycosylation as reported by Zielinska et al. [18],
in N-GlyDE 33 non-glycoproteins are selected to create non-glycosites. Additionally,
53 glycoproteins are chosen to create the set of glycosites. These 53 glycoproteins and
33 non-glycoproteins (after some filtering) have 447 N-X-[S/T] sequons (167 glycosites and
280 non-glycosites) which make the independent dataset.
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3.1.2. N-GlycositeAtlas Dataset

The other benchmark dataset considered in this work is based on N-GlycositeAtlas. N-
GlycositeAtlas [41] is a recently developed large-scale repository for N-linked glycosylation
that contains 7204 glycoproteins. It must be noted here that all the N-glycosylation sites of
N-GlyDE are included in the N-GlycositeAtlas database. We downloaded the sequences of
these 7204 (19 were obsolete) glycoproteins from the UniProt. Subsequently, we extracted
12,534 annotated positive sites from N-GlycositeAtlas confined to N-X-[S/T] sequons from
these glycoproteins.

For the creation of negative sites, based on the knowledge that proteins from the
nucleus and mitochondria are known not to undergo N-linked glycosylation [18], we ob-
tained 5265 non-glycoproteins (from nucleus and Mitochondrion) using DeepLoc-1.0 [48]
database. The N-X-[S/T] sequons from these proteins were extracted and after redundancy
removal, we obtained 17,110 N-X-[S/T] sequons. Since there is a propensity of machine
learning and deep learning algorithms to exhibit bias towards the majority class, we used
an under-sampling [49] strategy to balance the dataset by randomly selecting negative
sets to match the number of positive sites. This resulted in selecting 12,534 glycosites
and 12,534 non-glycosites. Furthermore, we removed peptides that have more than 30%
sequence identity using CD-HIT [50], we received 9450 positive sites and 10,363 negative
sites. The negative sites were under-sampled to 9450 sites (Table 4). It also must be noted
that none of the N-GlyDE independent test data is present in the N-GlycositeAtlas training
dataset.

Table 4. Positive and negative sites for training and testing.

Name of Dataset Positive Site Negative Site Total

N-GlyDE (training) 1030 2050 3080
N-GlyDE (independent test) 167 280 447

N-GlycositeAtlas (training, CD-HIT) 9450 9450 18,900

Based on the general belief that neighboring residues can influence the glycosylation
status of the site of interest (in this case Asparagine (N) residues), a window centered
around N and symmetrically surrounded by flanking residues on both sides (upstream
and downstream) is generally taken as input. The number of upstream and downstream
residues considered in creating this window is important because too few residues may
omit useful information for making predictions. At the same time, too many residues
may introduce ineluctable redundancy and decrease the signal-to-noise ratio. The most
appropriate window size for each type of PTMs remains elusive, and most researchers test
different fragment sizes and choose the one that produces the best predictive performance.

3.1.3. WebLogo Plot

To visualize the enrichment and depletion of amino acids in the corresponding position
of the 41-window sequence, we create WebLogo [51] plots which are shown in Figure 7a,b.
It can be observed that Asparagine (N) is conserved at the center whereas Serine (S)
and Threonine (T) are conserved at the second position to the downstream of the central
residue Asparagine (N). Furthermore, there were variable amino acids at other positions
which had the lowest information content (bits), hence amino acids were not conserved
at upstream (left) and downstream (right) of conserved Asparagine (N), Serine (S), and
Threonine (T) site.
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3.1.4. t-SNE Plot

To investigate if the network has learned to encode the three combined feature groups
in its representations, we project the feature vector produced by the final hidden layer of
the trained deep neural network into two dimensions latent feature vector with popular
dimensional reduction and visualization technique, t-distributed stochastic neighbor em-
bedding (t-SNE) [52] method. Figure 8 represents the t-SNE plot, of the feature vectors
generated from the final hidden layer of the deep neural network, which indicates that the
deep neural network largely clusters positive and negative samples in R2 space.
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3.2. Features Used in DeepNGlyPred

Here we briefly describe the features used in DeepNGlyPred.

3.2.1. Position-Specific Scoring Matrix (PSSM)

PSSM is one of the features used in DeepNGlyPred. Based on the knowledge that
N-linked glycosylation is more evolutionary conserved than other PTMs, we use PSSM
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features for N-linked glycosylation prediction. PSSM expresses the patterns inherent in a
multiple sequence alignment on a set of homologous sequences. Furthermore, it renders
a set of probability scores for each amino acid (or gap) at each position of the alignment.
The PSSM matrix was generated by PSI-BLAST [47], wherein a full-length protein sequence
was fed into PSI-BLAST for the generation of a PSSM file. The corresponding feature
vector was extracted from the PSSM file based on the window size. For an amino acid,
PSSM has 20 features so, for a window size of 41 (in the case of the N-GlycositeAtlas
benchmark dataset) a feature vector of 820 (=41 × 20) is generated and a feature vector of
500 is generated for the N-GlyDE dataset. The virtual amino acid position is filled with the
median of the column. Finally, the features are min-max scaled with the sklearn module
and fed into the DNN model for training. For example, how the feature vector of sequence
“QTFSISSMSENGYDPQQNLND” (length 21) is extracted is depicted in Figure 9.
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3.2.2. Predicted Structural-Features

Based on the observation that protein structural features provide additional informa-
tion, we also consider the following predicted structural features in DeepNGlyPred.

Predicted Secondary Structure (SS)

We utilize NetSurfP-2.0 to predict three types of secondary structures, E (beta-strand),
H (helix), and C (coil) and assign each amino acid one secondary structure based upon its
propensity towards them. These three-class secondary structures are then one-hot encoded
as E (beta-strand): [0, 1, 0], H (Helix): [0, 0, 1], C (Coil): [1, 0, 0], respectively. The overall
protein sequence is fed to NetSurfP-2.0 and the corresponding features are extracted based
on the window size. The feature vector length of the secondary structure feature for the
N-GlycositeAtlas dataset is 123 (41 × 3) and for the N-GlyDE dataset is 75 (25 × 3).

Predicted Accessible Surface Area (ASA), Relative Solvent Accessibility (RSA)

Additionally, NetSurfP-2.0 also predicts RSA and ASA. The RSA value ranges from
0–1 where 0 means the amino acid is completely buried and 1 means it is completely
accessible. RSA is a normalized version of ASA. We use both features in DeepNGlyPred
and each amino acid gets one value of ASA and one value of RSA. Hence, the length of the
resultant feature vector is 82 for N-GlycositeAtlas and 50 for the N-GlyDE dataset.

Predicted Disordered Region

Intrinsic disorder regions of the proteins do not have rigid three-dimensional struc-
tures and are usually found at loops and turns which are the target of PTMs. We predict
disordered regions for each amino acid using NetSurfP-2.0. The predicted disordered
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region value ranges from 0 to 1 where 0 signifies ordered amino acid and 1 represents
a completely disordered amino acid. The feature vector length based on the predicted
disordered region is equal to the size of the window (41 for N-GlycositeAtlas and 25 for
the N-GlyDE dataset).

Torsion Angles (Φ, Ψ)

The torsion angle between neighboring amino acids provides the local structure
of a polypeptide. Φ and Ψ reveal the torsion angles between the molecules inside one
single amino acid to the neighboring molecules. Torsion angles show structure near the
locality of N-linked glycosylation sites. We predict torsion angles (=2) for each amino
acid using NetSurfP-2.0. The feature vector length based on the torsion angle is 82 for
N-GlycositeAtlas and 50 for the N-GlyDE dataset.

3.2.3. Gapped Dipeptide (GD)

Gapped Dipeptide is one of the features used in N-GlyDE. For simplicity, we describe
Gapped Dipeptide using the best window size for the N-GlycositeAtlas dataset. To compute
Gapped Dipeptide, the integer distance from the N-terminal and C-terminal of the peptide
to the Central residue Asparagine (N) is considered for every amino acid in the positive
and negative 41-residue window. Furthermore, it can be expressed as AkN (0 ≤ k ≤19) for
the N-terminal and NkA (0≤ k ≤19) for the C-terminal 41-residue window, where A is one
of the twenty amino acids or virtual amino acid (“-”). Figure 10 shows the schematic of the
Gapped Dipeptide feature. From the 18,900 41-residue window peptides (N-GlycositeAtlas
training dataset), we obtained 822 gapped dipeptide features. The number of occurrences of
each gapped dipeptide in glycosites and non-glycosites is counted. After that, each gapped
dipeptide odds ratio is calculated by the percentage of its occurrences in glycosites divided
by the percentage of its occurrences in non-glycosites. Normalization of gapped dipeptide
value is performed using a min-max scaling. Finally, gapped dipeptides are assigned the
corresponding value. Figure 10 depicts the sample 41-window motif, gapped dipeptide
from N-terminal and C-terminal position, and corresponding normalized gapped dipeptide
value. Feature vector length from the gapped dipeptide feature is 40 (=41 − 1 (central
residue)). The features and their corresponding feature vector length for N-GlyDE, and
N-GlycositeAtlas dataset are elaborated in Supplementary Table S4.
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3.3. Overall Approach

DeepNGlyPred consists of four main steps (Figure 11). The first step is data collection
and preprocessing in which protein sequences from the N-GlyDE and N-GlycositeAtlas
datasets are downloaded from the UniProt database. The 25-residue window sequence for
the N-GlyDE and 41-residue window sequence for the N-GlycositeAtlas dataset confined
to the N-X-[S/T] sequons are extracted from the corresponding sites. Experimentally
verified sites were considered as positive, whereas those sequons other than positive were
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considered as negative and were extracted from the same glycoproteins (for N-GlyDE).
However, for the N-GlycositeAtlas dataset, positive annotated sites were taken from the
N-GlycositeAtlas dataset and putative negative sites were obtained from the proteins that
reside in the nucleus and mitochondrion. Furthermore, any overlapping motif within
and across positive, negative training, and independent test set were removed. Moreover,
window peptides that have more than 30% sequence identity were removed by CD-HIT.
For the N-GlycositeAtlas dataset, since the number of negatives was higher than positives,
the dataset was balanced using under-sampling.
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In the second step, these window sequences (centered around the site of interest)
are encoded with different encoding schemes as described in Section 3.2. In the third
step (Model evaluation and training), individual feature importance analysis, as well as
the group-wise combination of feature importance are performed. The best performing
DNN architecture was obtained for N-GlyDE, and N-GlycositeAtlas dataset by grid search.
Finally, in the fourth step, the trained model is evaluated using both 10-fold cross-validation
on the training set and an independent test dataset and compared with different competitive
predictors.

3.4. Model Training Using Deep Neural Network (DNN)

We performed our model training using Deep Neural Network (DNN, essentially a
Multi-layer Perceptron (MLP)) as shown in Figure 12. The MLP is represented as a hierar-
chical (layered) organization of neurons (like the neurons in the brain) with connection to
other neurons.
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The DNN architecture is implemented in Python using Keras and Tensorflow modules.
As elaborated in Table 1, and Table 2 the optimized parameters were obtained using a grid
search. To avoid overfitting, we have used overfitting reduction techniques like dropout,
early stopping, Model Checkpoint, and Reduce learning rate on the plateau. The loss and
accuracy curve for training on N-GlyDE and N-GlycositeAtlas are shown in Supplementary
Figures S3 and S4. It can be observed that no signs of underfitting and/or overfitting are
present in the models.

3.5. Performance Evaluation

To evaluate the performance of each model, we use Accuracy, Sensitivity (SN), Speci-
ficity (SP), Matthews Correlation Coefficient (MCC), and Precision. The models were
evaluated using 10-fold cross-validation on the benchmark training dataset and an inde-
pendent test set.

ACC describes the correctly predicted residues out of the total residues (Equation (1)).
Meanwhile, SN defines the model’s ability to distinguish positive residues (Equation (2)),
and SP measures the model’s ability to correctly identify the negative residues (Equation (3)).
Matthews Correlation Coefficient (MCC) is the calculated score that considers the model’s
predictive capability concerning both positive and negative residues (Equation (4)). Like-
wise, precision reveals how many of the correctly predicted cases turned out to be positive
(Equation (5)).

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (1)

Sensitivity =
TP

TP + FN
× 100 (2)

Speci f icity =
TN

TN + FP
× 100 (3)

MCC =
(TP)(TN)− (FP)(FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

Precision =
TP

TP + FP
× 100 (5)

4. Conclusions

In this study, we developed DeepNGlyPred, a Deep Learning-based approach for
accurate prediction of protein glycosylation sites confined to N-X-[S/T] for both posi-
tive and negative sequences. We developed two flavors of DeepNGlyPred based on the
N-GlyDE dataset and N-GlycositeAtlas dataset. DeepNGlyPred uses sequence-based and
structural-based features generated from NetSurfP-2.0, PSI-BLAST, and Gapped Dipep-
tide. Out of the three feature groups the feature from NetSurfP-2.0, i.e., accessible surface
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area, relative solvent accessibility, secondary structures, torsion angles (Φ, Ψ), disordered
regions turned out to be the best discriminative features followed by position-specific
scoring matrix and gapped dipeptide. Compared to other existing tools like N-GlyDE,
GlycoMine, NetNGlyc, GlycoEP_Std_PPP, DeepNGlyPred performs better than these meth-
ods in terms of MCC. The better performance of DeepNGlyPred may be attributed to the
larger training set, optimized Deep Learning architecture as well as the creation of the
negative dataset (negative sites were selected from proteins residing in the nucleus and
mitochondrion). In addition, we also created one of the largest non-redundant datasets to
date for N-linked glycosylation prediction whose positive peptide sequons are extracted
from N-linked glycosylated proteins while negative N-linked glycosylation peptides se-
quon are extracted from non-glycoproteins that reside at Nucleus and Mitochondrion
from DeepLoc-1.0 database. N-linked glycosylation often also occurs as a co-translational
process, in that regard one of the future works is to discriminate N-linked glycosylation
sites from N-linked co-translational sites. Thus, DeepNGlyPred can be used to identify
N-linked glycosylation sites efficiently and accurately.

Finally, all datasets and programs developed during this study have been made freely
available to the bioinformatics community at https://github.com/dukkakc/DeepNGlyPred
to further contribute towards the study of N-linked glycosylation.

Supplementary Materials: The following are available online. Figure S1: Performance based on
NetSurfP-2.0 features on different window sizes on the N-GlyDE dataset, Figure S2: Performance
based on NetSurfP-2.0 features on different window sizes for N-GlycositeAtlas dataset, Figure S3:
Loss and Accuracy curve when features extracted from NetSurfP-2.0, Gapped Dipeptide, PSI-BLAST
(Position Specific Scoring Matrix) was fed into Deep Neural Network for N-GlyDE dataset, Figure S4:
Loss and Accuracy curve when features extracted from NetSurfP-2.0, Gapped Dipeptide, PSI-BLAST
(Position Specific Scoring Matrix) was fed into Deep Neural Network for N-GlycositeAtlas dataset,
Figure S5: Ablation study to see the performance of DeepNGlyPred on various sizes of training data,
Table S1: Ten-fold cross-validation on two training datasets for prediction of N-linked glycosylation
sites by Deep Neural Network, Table S2: Performance measures when Xgboost feature extraction
technique was used on N-GlyDE datasets to train the DNN and test on N-GlyDE independent test
datasets, Table S3: Efficiency scores of individual and combined feature groups when trained on
DNN with N-GlyDE training datasets and N-GlyDE independent test datasets, Table S4: Feature
and Feature vector lengths, Table S5: Efficiency scores obtained from different Machine Learning
models when trained with combination of NetSurfP-2.0, PSSM, and Gapped Dipeptide features at
N-GlycositeAtlas data sets and tested on N-GlyDE independent data sets. We have optimized all
the machine learning models. The Support Vector Machine was tested against two most important
parameters, regularization constraint (C of 1 to 10), kernel (linear, rbf), SVM produced good results
at C = 1 and kernel = ‘rbf’. Random Forest was tested against n_estimators: 50–300 in a delta of
50 and criterion: gini and entropy. Random Forest did best at n_estimators: 100 and criterion: entropy.
Logistic Regression was tested against two important parameters: l1, l2, and solver: newton-cg,
lbfgs, liblinear, sag, saga and it gave best result at penalty: l2 and solver: saga. For XGBoost after
hyperparameter tuning we choose max_depth = 3, subsample = 0.8, n_estimators = 200, learning_rate
= 0.05, random_state = 5. The naive bayes were tested on three variants, Multinomial, Bernoulli,
Gaussian among them Gaussian was the good performer however it was slacking in performance
compared to other machine learning models, Table S6: Efficiency scores obtained from different Deep
Learning models when trained with combination of NetSurfP-2.0, PSSM, and Gapped Dipeptide
features at N-GlycositeAtlas data sets and tested on N-GlyDE independent data sets, Table S7:
Selection of window size for N-GlycositeAtlas dataset. The DNN was trained with 80% Training set,
10% validation set and tested on 10% independent training set, Table S8: Efficiency scores obtained
from SPRINT-Gly when independent dataset is fed into the server.

Author Contributions: D.B.K., D.C., K.F.A.-K. conceived of and designed the experiments; S.C.P. per-
formed the experiments and data analysis. S.C.P., D.B.K., D.C. and K.F.A.-K. revised the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by National Science Foundation (NSF) grant nos. 1901793,
2003019, and 2021734 (to D.B.K.).

https://github.com/dukkakc/DeepNGlyPred


Molecules 2021, 26, 7314 17 of 19

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets and codes for this study can be found at https://github.
com/dukkakc/DeepNGlyPred.

Acknowledgments: We acknowledge the use of the BeoShock High-Performance Computing re-
source at Wichita State University and the N-GlycositeAtlas dataset made freely available for the
researchers. We also acknowledge helpful discussions with Suresh Pokharel, Meenal Chaudhari,
and Niraj Thapa.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

Sample Availability: Not applicable.

References
1. Ohtsubo, K.; Marth, J.D. Glycosylation in Cellular Mechanisms of Health and Disease. Cell 2006, 126, 855–867. [CrossRef]

[PubMed]
2. Aebi, M.; Bernasconi, R.; Clerc, S.; Molinari, M. N-glycan structures: Recognition and processing in the ER. Trends Biochem. Sci.

2010, 35, 74–82. [CrossRef]
3. Lederkremer, G.Z. Glycoprotein folding, quality control and ER-associated degradation. Curr. Opin. Struct. Biol. 2009, 19, 515–523.

[CrossRef] [PubMed]
4. Varki, A.; Lowe, J.B. Biological Roles of Glycans. In Essentials of Glycobiology; Varki, A., Cummings, R.D., Eds.; Cold Spring Harbor

Laboratory Press: Cold Spring Harbor, NY, USA, 2009.
5. Schwarz, F.; Aebi, M. Mechanisms and principles of N-linked protein glycosylation. Curr. Opin. Struct. Biol. 2011, 21, 576–582.

[CrossRef]
6. Gavel, Y.; von Heijne, G.; Creaser, E.; Murali, C.; Britt, K. Sequence differences between glycosylated and non-glycosylated

Asn-X-Thr/Ser acceptor sites: Implications for protein engineering. Protein Eng. 1990, 3, 433–442. [CrossRef]
7. Boscher, C.; Dennis, J.W.; Nabi, I.R. Glycosylation, galectins and cellular signaling. Curr. Opin. Cell Biol. 2011, 23, 383–392.

[CrossRef]
8. van Kooyk, Y.; Rabinovich, G.A. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat.

Immunol. 2008, 9, 593–601. [CrossRef]
9. Pérez-Sala, D.; Mollinedo, F. Inhibition of N-linked glycosylation induces early apoptosis in human promyelocytic HL-60 cells.

J. Cell. Physiol. 1995, 163, 523–531. [CrossRef] [PubMed]
10. Woods, R.J.; Edge, C.J.; Dwek, R.A. Protein surface oligosaccharides and protein function. Nat. Genet. Mol. Biol. 1994, 1, 499–501.

[CrossRef] [PubMed]
11. Wormald, M.R.; Dwek, R.A. Glycoproteins: Glycan presentation and protein-fold stability. Structure 1999, 7, R155–R160.

[CrossRef]
12. Ou, X.; Liu, Y.; Lei, X.; Li, P.; Mi, D.; Ren, L.; Guo, L.; Guo, R.; Chen, T.; Hu, J.; et al. Characterization of spike glycoprotein of

SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 2020, 11, 1620. [CrossRef]
13. Hennet, T. Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochim. Biophys. Acta 2012, 1820,

1306–1317. [CrossRef]
14. Jaeken, J.; Rymen, D.; Matthijs, G. Congenital disorders of glycosylation: Other causes of ichthyosis. Eur. J. Hum. Genet. 2013, 22,

444. [CrossRef]
15. Zhang, H.; Chan, D.W. Cancer Biomarker Discovery in Plasma Using a Tissue-targeted Proteomic Approach. Cancer Epidemiol.

Biomark. Prev. 2007, 16, 1915–1917. [CrossRef]
16. Kowarik, M.; Young, N.M.; Numao, S.; Schulz, B.L.; Hug, I.; Callewaert, N.; Mills, D.C.; Watson, D.C.; Hernandez, M.; Kelly, J.F.;

et al. Definition of the bacterial N-glycosylation site consensus sequence. EMBO J. 2006, 25, 1957–1966. [CrossRef]
17. Petrescu, A.-J.; Milac, A.-L.; Petrescu, S.M.; Dwek, R.A.; Wormald, M.R. Statistical analysis of the protein environment of

N-glycosylation sites: Implications for occupancy, structure, and folding. Glycobiology 2003, 14, 103–114. [CrossRef]
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