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Abstract: Structural and biochemical studies elucidate that PAN may contribute to the host protein
shutdown observed during influenza A infection. Thus, inhibition of the endonuclease activity
of viral RdRP is an attractive approach for novel antiviral therapy. In order to envisage struc-
turally diverse novel compounds with better efficacy as PAN endonuclease inhibitors, a ligand-
based-pharmacophore model was developed using 3D-QSAR pharmacophore generation (HypoGen
algorithm) methodology in Discovery Studio. As the training set, 25 compounds were taken to
generate a significant pharmacophore model. The selected pharmacophore Hypo1 was further
validated by 12 compounds in the test set and was used as a query model for further screening of
1916 compounds containing 71 HIV-1 integrase inhibitors, 37 antibacterial inhibitors, 131 antiviral
inhibitors and other 1677 approved drugs by the FDA. Then, six compounds (Hit01–Hit06) with
estimated activity values less than 10 µM were subjected to ADMET study and toxicity assessment.
Only one potential inhibitory ‘hit’ molecule (Hit01, raltegravir’s derivative) was further scrutinized
by molecular docking analysis on the active site of PAN endonuclease (PDB ID: 6E6W). Hit01 was
utilized for designing novel potential PAN endonuclease inhibitors through lead optimization, and
then compounds were screened by pharmacophore Hypo1 and docking studies. Six raltegravir’s
derivatives with significant estimated activity values and docking scores were obtained. Further,
these results certainly do not confirm or indicate the seven compounds (Hit01, Hit07, Hit08, Hit09,
Hit10, Hit11 and Hit12) have antiviral activity, and extensive wet-laboratory experimentation is
needed to transmute these compounds into clinical drugs.

Keywords: 3D-QSAR; pharmacophore model; PAN endonuclease; PAN endonuclease inhibitors; raltegravir

1. Introduction

Influenza is an infectious disease caused by the influenza virus. It usually affects
the upper respiratory tract and lungs. Seasonal and pandemic influenza viruses can be
transmitted from animals to humans, which makes them particularly dangerous and
leads to global health problems [1–3]. Though vaccines as a prophylactic have been
recommended to reduce infection rate and epidemic possibility, it is not effective for
everyone [4]. This may be due to the designing approaches of vaccines (such as live-
attenuated or inactivated influenza vaccines) or the continual antigenic drift variation of
influenza viruses. Moreover, it is not possible to generate prophylactic options against
potential pandemic virus strains [5]. Three classes of clinical agents approved by the
U.S. Food and Drug Administration (FDA), including agents that targeted the matrix
2 (M2) ion-channel, neuraminidase (NA), and the cap-snatching endonuclease activity
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of the polymerase acidic protein (PA), have been developed for the prophylaxis and
treatment of influenza infection. However, the resistance to the M2 ion-channel inhibiting
drugs makes amantadine and rimantadine invalidated their clinical utility [6,7]. It was
also observed resistance to NA inhibitors (oseltamivir) in some seasonal influenza A
strains [8,9]. Inhibitors of the cap-snatching endonuclease activity of PA have been made
intensive research as a new series of anti-influenza inhibitors. Baloxavir marboxil is the
first drug approved to target the cap-snatching endonuclease with a significant decrease in
viral fitness [10,11]. Therefore, new drugs are essential for the treatment of drug-resistant
and future pandemic flu strains.

Influenza A consisted of eight negative-stranded RNA genomic segments. The viral
RNA-dependent RNA polymerase (RdRP) proteins were encoded by the three largest
genomic RNA segments, the polymerase acidic protein (PA), polymerase basic protein 1
(PB1) and polymerase basic protein 2 (PB2) subunits. The influenza RdRP is essential for
viral transcription and replication. It is also highly conserved among all influenza strains
and subtypes. For the PA subunit, it has three main functions, which include endonuclease
activity, involving in viral RNA (vRNA)/complementary RNA (cRNA) promoter binding
and interacting with the PB1 subunit [12]. N-terminal fragments of PA (PAN, ≈25 kDa
N-terminal domain; residues 1–197) and C-terminal fragments of PA (PAC, ≈55 kDa C-
terminal domain; residues 239–716) are two domains of PA. The crystal structure of PAC
is solved in complexes with N-terminal fragments of PB1 (PB1N) [13]. The crystal struc-
tures of PAN with both various ligands and unliganded have also been elucidated [14–17].
Biochemical and structural studies elucidated that PAN might contribute to the host pro-
tein shutdown observed during influenza A infection [14,18,19]. Thus, inhibition of the
endonuclease activity of influenza RdRP is an attractive target for novel antiviral therapy.

Computer aided drug design (CADD) is an important method of drug discovery,
including virtual screening and pharmacophore design [20]. CADD can overcome certain
difficulties from experiments in the laboratory via a virtual approach with a relatively low
cost [21]. For example, Sourav et al. had built up a typical pharmacophore in the discovery
of potential topoisomerase I inhibitors by ‘Common Features Pharmacophore’ techniques
where the common features were only presented in the active compounds [22]. To gen-
erate the available pharmacophore, mostly active and moderately active compounds are
considered as the training set molecules. In this manuscript, we collected 37 known PAN
endonuclease inhibitors [23–26] with diverse molecular structural patterns and created
the training set and test set. We also constructed 10 pharmacophore models with activity
prediction ability by utilizing the three-dimensional Quantitative Structure-Activity Rela-
tionship (3D-QSAR) Pharmacophore (HypoGen algorithm) technique. Then we screened a
chemical database containing 1916 compounds (71 human immunodeficiency virus type 1
(HIV-1) integrase inhibitors [27], 37 antibacterial inhibitor, 131 antiviral inhibitors and
1677 approved drugs by FDA) based on the best pharmacophore Hypo1. Among the
1916 small-molecule inhibitors, part of them could form a chelate with two divalent metal
ions, such as the HIV-1 integrase inhibitors. We assumed that they could also interact
with the metal-chelating active site of influenza PAN endonuclease well. Subsequently,
we docked 6 selected compounds (Hit01–Hit06) with RNA endonuclease protein. At last,
Hit01 (raltegravir’s derivative) with significant screened results was selected as the ‘hit’
compound to target PAN endonuclease for molecular optimization and transformation to
obtain 197 novel pyrimidinone candidate molecules. According to the screening results
based on the pharmacophore model Hypo1, six compounds with better estimated activity
values than Hit01 were selected. Our study may provide profound theoretical guidance
and practical significance for the design and experimental synthesis of influenza virus
inhibitors in the near future.
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2. Result and Discussion
2.1. Pharmacophore Model Generation

Chemically diverse 25 training set compounds containing active and moderately ac-
tive compounds with corresponding IC50 values ranging from 0.011 µM to 37 µM, were
selected to generate a pharmacophore model (Table 1) by Hypogen algorithm 3D-QSAR
Pharmacophore protocol. The features of training set compounds, such as HBA, HBD, RA,
HYD, PI and NI, were well distributed on the selected molecules (Figure 1). The significant
statistical parameters such as cost, correlation coefficient, and RMSD of generated pharma-
cophore have been enlisted in Table 1. 10 pharmacophore models containing HBA, HBD,
HYD and RA features were generated. The total cost of the generated pharmacophore mod-
els ranged from 130.623 to 172.486, with a null cost of 403.577 and a fixed cost of 71.464 bits.
The difference between the null cost and total cost was used to describe the cost difference.
The best hypothesis usually had the highest cost difference, a good correlation coefficient,
the least RMSD, and a significant total cost value. Thus, the best pharmacophore Hypo1
enlisted in Table 1 was characterized by the lowest total cost value (130.623), the highest
cost difference (272.95), the lowest RMSD (2.16926), and the best correlation coefficient
(0.910618). The low RMSD and large correlation coefficient signified that Hypo1 had a
better ability to predict the experimental activity of training set compounds.

Table 1. Statistical results of the top 10 pharmacophore hypotheses generated by HypoGenalgorithm.

Hypo. No. Total Cost Cost Difference RMSD Correlation Max.Fit Features

1 130.623 272.95 2.16926 0.910618 7.00748 HBA, HBD, HYD, RA
2 156.57 247.01 2.60686 0.867964 7.31818 HBA, HBA, HBD, HYD
3 157.184 246.39 2.5833 0.870548 5.4078 HBD, HBD, HYD, RA
4 160.073 243.50 2.62325 0.866204 5.25001 HBD, HBD, HYD, HYD
5 165.706 237.87 2.74058 0.852888 6.97954 HBA, HBA, HYD, RA
6 168.233 235.34 2.74498 0.852405 5.2546 HBD, HBD, HYD, HYD
7 168.516 235.06 2.77498 0.848851 6.47651 HBA, HBD, HBD, HYD
8 171.636 231.94 2.82585 0.842729 6.98225 HBA, HBD, HYD, RA
9 172.439 231.14 2.81172 0.84447 5.49327 HBA, HBD, HYD, RA
10 172.486 231.09 2.82443 0.842919 6.04898 HBA, HBA, HYD, RA

Null cost = 403.577, Fixed cost = 71.464, Best record in pass = 6, Configuration cost = 11.168. (RA: ring aromatic, HBA: hydrogen bond
acceptor, HBD: hydrogen bond donor, HYD: hydrophobic).
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Figure 1. The best HypoGen Pharmacophore model (Hypo1). Green color represents HBA, purple
color represents HBD, blue color represents HYD, brown color represents RA.

Furthermore, all the molecules selected from previously published research articles
were divided into four groups of magnitude according to their experimental activity value
(IC50) which were categorized in most active (≤0.1 µM, ++++), active (0.1 to 1.0 µM, +++),
moderately active (1.0 to 10.0 µM, ++) and inactive (>10.0 µM, +). The experimental and
estimated activity values of the training set compounds based on pharmacophore Hypo1
were shown in Table 2. In the training set, compound T25 (Figure 2A) was estimated as
the most active molecules as they were nicely mapped with all the essential features of
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the pharmacophore, whereas compound T05 (Figure 2B) was considered as least active
molecules due to the essential features were not mapped with Hypo1.

Table 2. Experimental and Estimate activity of the training set compounds based on pharmacophore Hypo1.

Comp.
No.

IC50 Value (µM)
Errors a Fit

Value b
Activity Scale c

Experimental Estimated Experimental Estimated

T01 0.9 2.4 2.6 4.26 +++ ++
T02 3.5 3.2 −1.1 4.12 ++ ++
T03 5.5 5.3 −1 3.91 ++ ++
T04 17.3 18 1 3.38 + +
T05 15 23 1.5 3.26 + +
T06 21.3 5.4 −4 3.9 + ++
T07 0.43 0.44 1 4.99 +++ +++
T08 0.32 0.56 1.7 4.89 +++ +++
T09 1.1 0.41 −2.7 5.02 ++ +++
T10 0.19 0.6 3.2 4.85 +++ +++
T11 0.5 2.7 5.5 4.19 +++ ++
T12 1.1 5.1 4.7 3.92 ++ ++
T13 0.25 0.25 1 5.22 +++ +++
T14 0.4 0.25 −1.6 5.23 +++ +++
T15 0.041 0.031 −1.3 6.14 ++++ ++++
T16 0.38 0.27 −1.4 5.19 +++ +++
T17 3.23 2.5 −1.3 4.23 ++ ++
T18 5.12 1.2 −4.3 4.55 ++ ++
T19 0.94 1.5 1.6 4.44 +++ ++
T20 8.7 11 1.2 3.6 ++ +
T21 9.7 3.4 −2.9 4.1 ++ ++
T22 8.3 13 1.5 3.53 ++ +
T23 37 5.7 −6.5 3.88 + ++
T24 0.011 0.026 2.3 6.22 ++++ ++++
T25 0.023 0.019 −1.2 6.35 ++++ ++++

a Error factor calculated as the ratio of the measured activity to the estimated activity; positive value indicates that the estimated IC50 is
higher than the experimental IC50; a negative value indicates that the estimated IC50 is lower than the experimental IC50 value. b Fit value
indicates how well the features in the pharmacophore map with the chemical features present in the compound. c Activity scale: ++++,
IC50 ≤ 0.1 µM (most active); +++, IC50 0.1 to 1.0 µM (active); ++, IC50 1.0 to 10.0 µM (moderately active); +, IC50 > 10.0 µM (inactive).
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2.2. Validation of the Pharmacophore Models

The best pharmacophore model (Hypo1) was then validated by three distinct methods:
(a) cost analysis, (b) Fischer’s randomization test and (c) test set analysis.

2.2.1. Cost Analysis

The cost values of the total cost, fixed cost, and null cost were produced by the
HypoGen algorithm in Discovery Studio and were utilized to analyze the ability to predict
the experimental activity of training set compounds. If the cost difference was between
40 and 60 bits, the predicted correlation probability was assumed to be 75–90%. If the
difference was greater than 60 bits, the predicted correlation probability was assumed to be
more than 90%. The highest cost difference value of Hypo1 suggested that it could predict
the experimental IC50 values of training set compounds with >90% statistical significance.
The fixed cost displayed a model that fit all data perfectly. However, the null cost presumed
that there was no relationship between the data and that the experimental activities were
normally distributed around their average value. Thus, the significance of Hypo1 also
depended on the total cost, fixed cost and null cost. In this study, the best hypothesis Hypo1
showed the fixed, total and null cost scores to be 71.464, 130.623 and 403.577, respectively.

2.2.2. Fischer’s Randomization Test

The experimental activity values of training set compounds were scrambled randomly.
With a 95% confidence level, these values were used in pharmacophore generation and put
forth 19 random spreadsheets. Then we compared these results with the originally gener-
ated pharmacophore (Hypo1). Figure 3 revealed the differences of correlations (Figure 3A)
and costs values (Figure 3B) between the HypoGen and Fischer’s randomizations. None of
the randomly generated pharmacophores obtained a better statistical value than Hypo1.
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2.2.3. Test Set Analysis

The reliability of the selected pharmacophore model was determined by its ability to
predict the biological activities of test set compounds. 12 chemically diverse compounds
were selected as test set, and their corresponding IC50 values ranged from 0.047 µM to
22 µM. To test the predictability ability of the pharmacophore model, we used the protocol
in Discovery Studio to map the test set molecules. The estimated activity values were
calculated for individual test set compounds and enlisted in Table 3. The correlation be-
tween experimental and estimated activity values was analyzed by simple regression. The
strongest correlation coefficient between experimental and estimated PAN endonuclease
inhibitory activity values for the training set (r2 = 0.910618) and the test set (r2 = 0.844000)
were shown in Figure 4. It was noticeable that the test set of 12 compounds was mapped
properly with the generated pharmacophore. Among the 12 compounds, the best active
compound T32 was greatly mapped on the four essential features (Figure 5). The least
active molecule T29 did not map with the essential HBD feature, which signified the
robustness of the pharmacophore model (Figure 5).

Table 3. Experimental and estimated activity of the test set compounds based on pharmacophore Hypo1.

Comp.
No.

IC50 Value (µM)
Errors a Fit

Value b
Activity Scale c

Experimental Estimated Experimental Estimated

T26 0.5 0.81 1.6 4.72 +++ +++
T27 0.4 1.8 4.4 4.39 +++ ++
T28 0.6 1.0 1.7 4.62 +++ ++
T29 22 22 1.0 3.28 + +
T30 8.9 19 2.1 3.36 ++ +
T31 2.0 0.91 −2.2 4.67 ++ +++
T32 0.285 0.018 −16 6.37 +++ ++++
T33 0.136 0.029 −4.7 6.17 +++ ++++
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Table 3. Cont.

Comp.
No.

IC50 Value (µM)
Errors a Fit

Value b
Activity Scale c

Experimental Estimated Experimental Estimated

T34 0.054 0.019 −2.8 6.35 ++++ ++++
T35 0.047 0.022 −2.1 6.28 ++++ ++++
T36 7.0 11 1.6 3.58 ++ +
T37 0.8 1.3 1.6 4.51 +++ ++

a Error factor calculated as the ratio of the measured activity to the estimated activity; positive value indicates that the estimated IC50 is
higher than the experimental IC50; a negative value indicates that the estimated IC50 is lower than the experimental IC50 value. b Fit value
indicates how well the features in the pharmacophore map with the chemical features present in the compound. c Activity scale: ++++,
IC50 ≤ 0.1 µM (most active); +++, IC50 0.1 to 1.0 µM (active); ++, IC50 1.0 to 10.0 µM (moderately active); +, IC50 > 10.0 µM (inactive).
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The employed three validation strategies exhibited that the Hypo1 model could be
chosen as a significant pharmacophore model for further screening chemical databases
with diverse structural entities.

2.3. Database Screening

Chemically novel and potential lead compounds could be possibly identified from the
database containing 1916 compounds (71 HIV-1 integrase inhibitors [27], 37 antibacterial
inhibitors, 131 antiviral inhibitors and 1677 other approved drugs by FDA) by virtual
screening based on the generated pharmacophore [10]. Pharmacophore-based virtual
screening was used to initiate the identification of novel scaffolds as PAN endonuclease
inhibitors and the validated pharmacophore Hypo1 was utilized as a 3D query for screen-
ing the database [18]. The diverse chemical databases were selected with the BEST search
option to identify the prospective lead molecules. The potential lead compounds should fit
with all the possible features of the validated pharmacophore Hypo1. Therefore, we ob-
tained 16 molecules mapped on all features present in the Hypo1 model. We assumed that
the most active compounds were estimated by activity value less than 10 µM. Subsequently,
six compounds (Hit01–Hit06) were obtained with estimated activity of less than 10 µM
(Supplementary Materials Table S1). Then we further evaluated them through ADMET
and toxicity prediction.

2.4. ADMET and Toxicity Prediction

It would be beneficial to solve the problem which could cause a lead compound loss in
preclinical and clinical trials, such as poor pharmacokinetic profile and toxic complications.
The application of in-silico methodology for the prediction of the possible pharmacokinetic
parameters and toxicity of the hit compounds would be advisable from an economic
point of view. Then, the six compounds obtained after virtual screening were subjected to
ADMET and various toxicity modules.

Compounds (Hit01–Hit06) were assessed by ADMET studies in Discovery Studio and
the specific results were enlisted in Table 4. The solubility of these six compounds was
accessible according to the results of ADME Solubility Level. The abilities to cross the blood–
brain barrier (BBB) were medium or low, while Hit01, Hit05 and Hit06 were undefined.
In addition, all of these compounds were not CYP2D6 inhibitors as the prediction results.
Furthermore, these six compounds were easily absorbed and showed great plasma protein
binding ability. Among the six compounds, Hit02, Hit04 and Hit05 were likely to be highly
bound to carrier proteins in the blood.

Table 4. ADMET descriptors of the selected candidates.

Comp. No. ADME Solubility
Level

ADME BBB
Level

ADME
Absorption

Level

CYP2D6
Prediction

PPB
Prediction

Hit01 3 4 3 false false
Hit02 3 3 0 false true
Hit03 2 3 0 false false
Hit04 3 2 0 false true
Hit05 2 4 1 false true
Hit06 3 4 0 false false

ADME_Solubility_Level: 0 (Extremely low); 1 (No, very low, but possible); 2 (Yes, low); 3 (Yes, good); 4 (Yes, optimal); 5 (No, too
soluble); 6 (Warning: molecules with one or more unknown AlogP98 types). ADME_BBB_Level: 0 (Very high penetrant); 1 (High);
2 (Medium); 3 (Low); 4 (Undefined). ADME_Absorption_Level: 0 (Good absorption); 1 (Moderate absorption); 2 (Low absorption); 3 (Very
low absorption). EXT_CYP2D6_Prediction: false: non-inhibitor; true: inhibitor. EXT_PPB_Prediction: plasma protein binding ability,
false: ≥90%; true: ≤90%.

The toxicity results of compounds (Hit01–Hit06) were enlisted in Table 5. NTP carcino-
genicity prediction had been carried out on both female and male rats, and no compounds
were found to be carcinogenic in nature on both male and female rats. Toxicity risk
assessment results showed that compounds Hit02, Hit03, Hit04 and Hit05 might have car-
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cinogenic properties against the male mouse while Hit01 and Hit06 are non-carcinogenic
in nature. Non-carcinogen was found on the female mouse. Furthermore, the Ames muta-
genicity and skin irritation tests had been performed against all the six potential hits and
none of these potential hits showed any mutagenicity or skin irritation. Except for Hit02
and Hit06, all the hit compounds did not exhibit developmental reproductive toxicity. Rat
oral maximum lethal dose was also calculated for individual hit compounds and was
enlisted in Table 5.

Table 5. Toxicity Predictions of the lead molecules by TOPKAT.

Comp. No. Hit01 Hit02 Hit03 Hit04 Hit05 Hit06

NTP carcinogenicity male Rat NC NC NC NC NC NC
NTP carcinogenicity female Rat NC NC NC NC NC NC

NTP carcinogenicity Call (Male mouse) NC C C C C NC
NTP carcinogenicity Call (Female mouse) NC NC NC NC NC NC

Ames mutagenicity NM NM NM NM NM NM
Developmental Toxicity Potential (DTP) NT T NT NT NT T

Rat oral LD50 (in g/kg) 0.39282 0.183468 0.627103 0.216087 0.744138 2.43894
Skin irritation None None None None None None

C: Carcinogen; NC: Non-Carcinogen; NM: Non-Mutagen; NT: Non-Toxic; T: Toxic.

Based on the ADME and toxicity profiling, compound Hit01 was regarded as the
potential hit compound and was retained for docking study.

2.5. Molecular Docking Study

The molecular docking calculations were performed using Glide program in 2015
Schrödinger software package. The influenza A virus RNA polymerase complex (PDB ID:
6E6W) with 3-hydroxy-6-(2-methyl-4-(1H-tetrazol-5-yl)phenyl)-4-oxo-1,4-dihydropyridine-
2-carboxylic acid (T38) [28] was chosen as the target protein for molecular docking. It was
obtained from RCSB Protein Date Bank (RCSB PDB, http://www.rcsb.org (accessed on
7 November 2021).) and was prepared by Protein preparation wizard. The default values of
the docking parameters were accepted. The active site was defined based on the co-crystal
structure of T38 bound to PAN endonuclease complex. The docking results in our study
were visualized using the PyMOL Molecular Graphics System (version 1.3).

Some important components, such as the binding modes, molecular interactions with
the active site, binding energy and docking scores, were considered as the criterion in
selecting the best poses of the docked compounds. In this study, docking compounds
were ranked according to their docking scores, hydrogen bond interactions, and estimated
activity. T38 was chosen as the control compound to analyze the docking results and
docked on the same active site of the PAN endonuclease protein (PDB ID: 6E6W).

The specific docking interactions of the two compounds (T38 and Hit01) with 6E6W
were enlisted in Table 6 and Figure 6. The filtered molecule bonded in the binding sites
of PAN endonuclease protein (PDB ID 6E6W) with docking scores of −6.622 kcal/mol.
However, the docking score of T38 with 6E6W was −8.227 kcal/mol. Previous studies
demonstrated that the metal-chelating active site of PAN was a negatively charged pocket,
which consisted of a histidine (His41), a conserved lysine (Lys134), and a cluster of three
acidic residues (Glu80, Asp108, and Glu119), and it could bind two divalent metal ions
(Mn2+) [14,15,29–34]. It was noticeable that compounds T38 and Hit01 were located in
the same pocket and generated hydrogen bonding with the same key amino acids Lys134
(1.9 Å and 2.8 Å). The N atom on tetrazole and oxygen atom on hydroxyl of carboxylic
acid generated salt bridge with amino acids Arg124 and Mn2+, respectively. In addition,
tetrazole ring generated Pi-cation interaction with Lys34. The analysis of the docking results
and binding pattern implied that compound Hit01 formed the same H-bond interaction
with 6E6W compared with T38. The divalent metal ions (Mn2+ cations) present at the
catalytic site were critical for the endonuclease activity. Interestingly, the interactions
between divalent metal ions and two compounds (T38 and Hit01) were similar to the

http://www.rcsb.org
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interaction between diketo acid derivatives and divalent metal ions. The carboxylate of
diketo acid (DKA) moiety chelates the first Mn2+ ion, while the second Mn2+ ion of PAN
interacts with the oxygen atom of its carboxylate moiety and the α-hydroxyl group, or the
two Mn2+ ions simply form a chelate with the β-diketone group. Functional groups that
chelate the Mn2+ ion of PAN were crucial for inhibitors targeting the metal-chelating active
site of PAN. This implied that pyrimidinone was an important moiety for interaction with
divalent metal ions.

Table 6. Docking interactions of T38 and Hit01 with PAN endonuclease protein (PDB ID 6E6W).

Comp. No. H-Bond Interaction H-Bond Distance (Å) Docking Score (kcal/mol)

T38 Lys134 1.9 −8.227
Hit01 Lys134 2.8 −6.622
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As the pyrimidinone derivative, raltegravir was initially approved by FDA in late 2007
as the first available agent targeted HIV integrase [35]. We considered Hit01 (raltegravir’s
derivative) as the hit compound and structured a compound database to detect more
effective PAN endonuclease inhibitors.

2.6. New Designed Compounds

We selected Hit01 for Lead optimization, and 197 molecules were produced as deriva-
tives. Subsequently, these 197 molecules were docked to the influenza PAN endonuclease
protein again to calculate the docking scores, estimate activity values, and fit values. The
pathway to elicit compounds (Hit07–Hit12) from template molecule (Hit01) using side-
chain hopping were shown in Figure 7. The top six PAN inhibitors (Hit07–Hit09 and
Hit10–Hit12) were presented in Table 7 based on the molecular docking results and the
predictable activity results.
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Table 7. Cont.

Comp. No. Structure Estimate Fit Value Docking Scores (kcal/mol)

Hit08
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The docking scores of selected candidate compounds (Hit07–Hit09 and Hit10–Hit12)
were lower than Hit01, except Hit07 and Hit11. Furthermore, the estimated activity values
of all compounds were more declined than Hit01 (estimated activity value was 1.16424 µM)
based on the prediction results. Table 7 enlisted the structures of the six raltegravir’s
derivatives selected after Lead optimization and molecular docking. The functional groups
were circled in blue and pink after Lead optimization and the control compound remained
unchanged. It was noticeable that the six potent compounds which had good results in
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estimated activity could fit the values and docking scores after Lead optimization. The
specific pharmacophore mapping and docking poses of the six compounds were shown in
Supplementary Materials Figures S1 and S2.

Hence, Hit01 and the novel six compounds (Hit07–Hit09 and Hit10–Hit12) could
be further developed and forwarded to be effective drugs for the treatment of influenza
(Figure 7).

3. Materials and Method
3.1. Compound Preparations

The two-dimensional (2D) structures of the 37 known PAN endonuclease inhibitors
were drawn with BIOVIA Draw 2016 [23–26]. Then, the 2D structures were converted into
their corresponding 3D form using Discovery Studio [36]. We used the Generate Training
and Test Data algorithm in Discovery Studio to split 37 objects into a training set and test set.
The split method was set as random. Subsequently, 37 known PAN endonuclease inhibitors
with diverse molecular structural patterns were input into the “Input ligands” item. The
training set percentage was set as 70 [37,38]. Subsequently, we obtained 25 training set
compounds and 12 test set compounds. The structures of these training set compounds and
test set compounds were given in Figures 8 and 9, respectively. The training set was used
to generate the pharmacophore model and the test set was used to evaluate the predictive
ability of the generated pharmacophore model. The activity of training set (0.011 µM to
37 µM) and test set (0.047 µM to 22 µM) spanned over 5 orders.
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Figure 8. Chemical structures of PAN endonuclease inhibitors in the training set together with their biological activity data
(IC50 value, µM).

We used Smart Minimizer algorithm for further minimization of each compound based
on CHARMM force field method. In addition, each compound formed up to 255 different
conformations in order to generate pharmacophore hypothesis or predict the activity of the
newly found compounds [39–41].
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3.2. Generation of Pharmacophore Models

The pharmacophore models which can be generated using 3D-QSAR Pharmacophore
Generation protocol are correlated with the specific chemical features that are necessary
for the biological activity of the molecules. We used the Feature Mapping protocol in
Discovery Studio to seek the different chemical features presented on the training set
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molecules. These features, including hydrogen bond acceptor (HBA), hydrogen bond
donor (HBD), hydrophobic (HYD), positive ionizable (PI), ring aromatic (RA) and negative
ionizable (NI), were selected for the 3D-QSAR Pharmacophore Generation protocol. FAST
algorithm method was applied to generate acceptable conformations for each compound
with 10 kcal/mol as the energy threshold, and maximum generated conformations were
set to 255. The uncertainty values of the training set and test set were set to 1.5 and the IC50
values of individual training set compounds were selected as an active property and the
energy threshold was maintained at 20 kcal/mol during the pharmacophore generation.
The minimum interfeature distance was changed from 2.97 to 2.0 and the maximum
excluded volume was set to zero [2,42].

The pharmacophore models were generated according to significant statistical param-
eters such as total cost value, cost difference, error, root-mean-square deviation (RMSD),
correlation coefficient (r2) and pharmacophore features.

3.3. Pharmacophore Validation

Cost analysis, Fischer’s randomization test and test set analysis are the three methods
to validate the pharmacophore models.

There are three kinds of costs reported in Hypogen, including fixed cost, null cost and
total cost. ∆Cost (Null cost–Total cost) is considered as a key parameter for the quality of
the pharmacophore model. It infers a significant correlation if the cost difference is more
than 60 bits. The model should fall in a prediction range of 70–90% if their cost difference
is in the range of 40–60 bits regions. If the cost difference is less than 40 bits, it will be
problematic during predicting correlation probability [43].

Fischer’s randomization technique acts as a fundamental role in making a correlation
between the structural and biological activity in training set compounds. The validation
of the selected pharmacophore hypothesis in this randomization technique produced
19 random spreadsheets in 95% confidence levels by shuffling the activity values of the
training set compounds [44,45]. The processes of building and minimizing all test set
compounds are similar to that of all training set molecules. The test set with 12 molecules
was selected to validate the pharmacophore model. Ligand Pharmacophore Mapping
protocol in Discovery Studio was utilized to overlap the validated pharmacophore with
the active molecules [46].

3.4. Database Screening

Well validated pharmacophore Hypo1 was used as a 3D query for identifying po-
tential leading molecules from a chemical database which containing 71 HIV-1 integrase
inhibitors [27] as previously reported and additional 1845 drugs (37 antibacterial inhibitors,
131 antiviral inhibitors and 1677 other approved drugs by FDA) that obtained from ZINC
database (ZINC, http://zinc.docking.org (accessed on 7 November 2021).). The fast search
method was carried out to obtain the ‘hit’ compounds matching with the features in
the best pharmacophore Hypo1. Then, the filtered molecules with estimated activity
values <10.0 µM were implied for further screening of absorption, distribution, metabolism,
excretion and toxicity (ADMET) properties.

3.5. Determination of In-Silico Pharmacokinetic Properties

Screened and selected compounds were subjected to analyze the ADMET properties
and the drug-likeness. Nowadays, a popular method to predict ADMET properties is the in
silico methodology, such as Discover Studio 2016 ADMET PREDICT [47]. Although there
are certain limitations, it is a vital method to cut down the actual costs for in vitro analysis.
In this study, we used Discover Studio 2016 ADMET PREDICT to analyze the ADMET
properties and the drug-likeness. Then, the compounds with better ADME properties and
lower toxicity were subjected to the following molecular docking study.

http://zinc.docking.org
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3.6. Molecular Docking

The Gild-XP (extra precision) was applied to perform virtual screening and study the
interactions between the selected molecular candidates and the protein structure [48,49]. We
selected the influenza PAN endonuclease protein (PDB ID: 6E6W) based on the previous
literature sources [22–26] and retrieved protein crystal structure (PDB ID: 6E6W) from the
RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org/ (accessed on 7 November 2021)).
Schrödinger’s protein preparation wizard was used to remove the cofactors, co-crystallized
ligand and water molecules. We also used it to add missing residues and hydrogens, generate
Het states and optimize the selected protein [39]. The prepared protein structure was further
processed for grid generation [50]. The active site was decided by default parameters like
centroid of inbound co-crystal ligand and looking at key residues of in-bound ligand. The box
size was set to 20 Å. The selected ligands from the results of 3D-QSAR models were implied
to the molecular docking by Gild-XP (extra precision). The docking results were ranked on
the basis of the Gild score, and the top-ranked molecules were visually analyzed.

3.7. New Designed Compounds

In the protocol of Replace Fragment, Hit01 was selected as the ‘hit’ compound, and
we hop its side-chain by fusing the same fragments onto the molecules to improve the
activity. Keeping the original molecular skeleton (Pyrimidinone), 4-fluorobenzyl and
1,3,4-oxadiazole-2-carboxamide were named as Group and Group 1 to imply side-chain
hopping. The fragment library was set as the default parameter. The Generate fragment
conformation and Parallel processing were applied. The designed compounds, which fit
all the possible features of the validated pharmacophore Hypo1, were docked back to the
active site of PAN endonuclease again for evaluating binding poses and binding affinity.

4. Conclusions

This study provided the development of ligand-based pharmacophore model by
3D-QSAR Pharmacophore Generation protocol using Discovery Studio.

25 diverse compounds were considered as a training set for the development of the
new pharmacophores model. We selected the best quantitative pharmacophore (Hypo1)
from 10 other pharmacophores based on the highest cost difference (272.95), lowest total
cost value (130.623) and best correlation coefficient (0.910618). The selected Hypo1 model
consisted of four features (HBA, HBD, HYD and RA) and had been cross-validated by cost
analysis, test set predictions, and Fischer’s randomization test. The test set utilized for
evaluating the predictive ability of Hypo1 model consisted of 12 compounds. Then, we ob-
tained the resulting correlation coefficient between the estimated activity and experimental
activity for the 12 test set compounds, which was 0.844000. The Hypo1 model was used
as a 3D query for the virtual screening of 1916 compounds (71 HIV-1 integrase inhibitors,
37 antibacterial inhibitors, 131 antiviral inhibitors and 1677 other approved drugs by FDA).
The 6 compounds with estimated activity less than 10 µM were hit. The 6 compounds were
subjected to further ADMET studies and were carried out toxicity assessment studies under
TOPKAT program to obtain candidate compounds. Subsequently, Hit01 was selected based
on the filtration and retained for docking study, which exhibited better docking scores than
the reported control compound (T38) according to the docking studies. Then we compared
the docking scores and interaction with the active site residues of Hit01 (−6.622 kcal/mol)
with the standard compound (T38). Based on our findings, the hit compound (Hit01) was
utilized for designing a future class of potential PAN endonuclease inhibitors. Hit01 was
gone for lead optimization, and then 197 molecules were produced as derivatives. After
lead optimization, 6 potent compounds obtained good results in estimate activity, fit values
and docking scores. Therefore, we speculate that these 7 compounds (Hit01, Hit07, Hit08,
Hit09, Hit10, Hit11 and Hit12) will target PAN endonuclease to exhibit good anti-influenza
virus activity. Extensive wet-laboratory experimentation is needed to transmute these
seven pyrimidinone derivatives (Hit01, Hit07, Hit08, Hit09, Hit10, Hit11 and Hit12) into
clinical drugs.

http://www.rcsb.org/


Molecules 2021, 26, 7129 18 of 20

Supplementary Materials: The following are available online. The structures, estimated activity,
specific pharmacophore mapping and docking poses of the hit compounds were supported in
Table S1, Figures S1 and S2.

Author Contributions: C.Z., J.X., Q.X., J.Z., H.Z. and E.H. contributed to the data collection and
investigation. C.Z. and X.L. contributed to the original draft preparation. C.Z., H.Z., P.S. and C.H.
proposed the studies and contributed to the writing of the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Science Foundation of China (Grant No.
21342006), the Program for Innovative Research Team of the Ministry of Education of China (Grant No.
IRT_14R36) and the Health and Medical Research Fund of Hong Kong, China (Grant No. 18170352).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors.

Conflicts of Interest: The authors confirm that this article content has no conflict of interest.

Sample Availability: No chemical samples are available.

References
1. Paules, C.; Subbarao, K. Influenza. Lancet 2017, 390, 697–708. [CrossRef]
2. Gao, R.; Cao, B.; Hu, Y.; Feng, Z.; Wang, D.; Hu, W.; Chen, J.; Jie, Z.; Qiu, H.; Xu, K.; et al. Human infection with a novel

avian-origin influenza A (H7N9) virus. N. Engl. J. Med. 2013, 368, 1888–1897. [CrossRef] [PubMed]
3. Le, Q.M.; Kiso, M.; Someya, K.; Sakai, Y.T.; Nguyen, T.H.; Nguyen, K.H.L.; Pham, N.D.; Ngyen, H.H.; Yamada, S.; Muramoto, Y.

Avian flu: Isolation of drug-resistant H5N1 virus. Nature 2005, 437, 1108. [CrossRef]
4. Mcgowan, D.C.; Balemans, W.; Embrechts, W.; Motte, M.; Guillemont, J. Design, synthesis, and biological evaluation of novel

indoles targeting the influenza PB2 cap binding region. J. Med. Chem. 2019, 62, 9680–9690. [CrossRef]
5. Mills, C.E.; Robins, J.M.; Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 2004, 432, 904–906. [CrossRef]
6. Hayden, F.G.; Hay, A.J. Emergence and transmission of influenza A viruses resistant to amantadine and rimantadine. Curr. Top.

Microbiol. Immunol. 1992, 176, 119–130. [CrossRef] [PubMed]
7. Bright, R.A.; Medina, M.; Xu, X.; Perez-Oronoz, G.; Wallis, T.R.; Davis, X.M.; Povinelli, L.; Cox, N.J.; Klimov, A.I. Incidence of

adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: A cause for concern. Lancet
2005, 366, 1175–1181. [CrossRef]

8. Moscona, A. Oseltamivir resistance—Disabling our influenza defenses. N. Engl. J. Med. 2005, 353, 2633–2636. [CrossRef]
[PubMed]

9. Bloom, J.D.; Gong, L.I.; Baltimore, D. Permissive secondary mutations enable the evolution of influenza oseltamivir resistance.
Science 2010, 328, 1272–1275. [CrossRef]

10. O’Hanlon, R.; Shaw, M.L. Baloxavir marboxil: The new influenza drug on the market. Curr. Opin. Virol. 2019, 35, 14–18. [CrossRef]
11. Koszalka, P.; Tilmanis, D.; Roe, M.; Vijaykrishna, D.; Hurt, A.C. Baloxavir marboxil susceptibility of influenza viruses from the

Asia-Pacific, 2012–2018. Antivir. Res. 2019, 164, 91–96. [CrossRef] [PubMed]
12. Das, K.; Aramini, J.M.; Ma, L.; Krug, R.M.; Arnold, E. Structures of influenza A proteins and insights into antiviral drug targets.

Nat. Struct. Mol. Biol. 2010, 17, 530–538. [CrossRef] [PubMed]
13. He, X.; Zhou, J.; Bartlam, M.; Zhang, R.; Ma, J.; Lou, Z.; Li, X.; Li, J.; Joachimiak, A.; Zeng, Z. Crystal structure of the polymerase

PAC–PB1N complex from an avian influenza H5N1 virus. Nature 2008, 454, 1123–1126. [CrossRef]
14. Yuan, P.; Bartlam, M.; Lou, Z.; Chen, S.; Zhou, J.; He, X.; Ge, R.; Li, X.; Deng, T.; Lv, Z. Crystal structure of an avian influenza

polymerase PA(N) reveals an endonuclease active site. Nature 2009, 458, 909–913. [CrossRef] [PubMed]
15. Dias, A.; Bouvier, D.; Crépin, T.; McCarthy, A.A.; Hart, D.J.; Baudin, F.; Cusack, S.; Ruigrok, R.W.H. The cap-snatching

endonuclease of influenza virus polymerase resides in the PA subunit. Nature 2009, 458, 914–918. [CrossRef]
16. Barat, S.; Willer, Y.; Rizos, K.; Claudi, B.; Mazé, A.; Schemmer, A.K.; Kirchhoff, D.; Schmidt, A.; Burton, N.l; Bumann, D.; et al.

Immunity to intracellular salmonella depends on surface-associated antigens. PLoS Pathog. 2012, 8, e1002966. [CrossRef]
17. Tefsen, B.; Lu, G.; Zhu, Y.; Haywood, J.; Zhao, L.; Deng, T.; Qi, J.; Gao, G.F. The N-terminal domain of PA from bat-derived

influenza-like virus H17N10 has endonuclease activity. J. Virol. 2014, 88, 1935–1941. [CrossRef]
18. Jagger, B.W.; Wise, H.M.; Kash, J.C.; Walters, K.A.; Wills, N.M.; Xiao, Y.L.; Dunfee, R.L.; Schwartzman, L.M.; Ozinsky, A.;

Bell, G.L.; et al. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 2012,
337, 199–204. [CrossRef]

http://doi.org/10.1016/S0140-6736(17)30129-0
http://doi.org/10.1056/NEJMoa1304459
http://www.ncbi.nlm.nih.gov/pubmed/23577628
http://doi.org/10.1038/4371108a
http://doi.org/10.1021/acs.jmedchem.9b01091
http://doi.org/10.1038/nature03063
http://doi.org/10.1007/978-3-642-77011-1_8
http://www.ncbi.nlm.nih.gov/pubmed/1600749
http://doi.org/10.1016/S0140-6736(05)67338-2
http://doi.org/10.1056/NEJMp058291
http://www.ncbi.nlm.nih.gov/pubmed/16371626
http://doi.org/10.1126/science.1187816
http://doi.org/10.1016/j.coviro.2019.01.006
http://doi.org/10.1016/j.antiviral.2019.02.007
http://www.ncbi.nlm.nih.gov/pubmed/30771405
http://doi.org/10.1038/nsmb.1779
http://www.ncbi.nlm.nih.gov/pubmed/20383144
http://doi.org/10.1038/nature07120
http://doi.org/10.1038/nature07720
http://www.ncbi.nlm.nih.gov/pubmed/19194458
http://doi.org/10.1038/nature07745
http://doi.org/10.1371/journal.ppat.1002966
http://doi.org/10.1128/JVI.03270-13
http://doi.org/10.1126/science.1222213


Molecules 2021, 26, 7129 19 of 20

19. Hara, K.; Schmidt, F.I.; Crow, M.; Brownlee, G.G. Amino acid residues in the N-terminal region of the PA subunit of influenza
A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter
binding. J. Virol. 2006, 80, 7789–7798. [CrossRef]

20. Liu, X.; Zhu, F.; Ma, X.H.; Shi, Z.; Yang, S.Y.; Wei, Y.Q.; Chen, Y.Z. Predicting targeted polypharmacology for drug repositioning
and multi-target drug discovery. Curr. Med. Chem. 2013, 20, 1646–1661. [CrossRef]

21. Huang, H.; Yu, H.W.; Chen, C.; Hsu, C.; Chen, H.; Lee, K.; Tsai, F.; Chen, Y.C. Current developments of computer-aided drug
design. J. Taiwan Inst. Chem. E. 2010, 41, 623–635. [CrossRef]

22. Pal, S.; Kumar, V.; Kundu, B.; Bhattacharya, D.; Preethy, N.; Reddy, M.P.; Talukdar, A. Ligand-based pharmacophore modeling,
virtual screening and molecular docking studies for discovery of potential topoisomerase I inhibitors. Comput. Struct. Biotech. J.
2019, 17, 291–310. [CrossRef]

23. Ju, H.; Zhang, J.; Huang, B.; Kang, D.; Huang, B.; Liu, X.; Zhan, P. Inhibitors of influenza virus polymerase acidic (PA)
endonuclease: Contemporary developments and perspectives. J. Med. Chem. 2017, 60, 3533–3551. [CrossRef]

24. Stevaert, A.; Nurra, S.; Pala, N.; Carcelli, M.; Rogolino, D.; Shepard, C.; Domaoal, R.A.; Kim, B.; Alfonso-Prieto, M.;
Marras, S.A.E.; et al. An integrated biological approach to guide the development of metal-chelating inhibitors of influenza virus
PA endonuclease. Mol. Pharmacol. 2015, 87, 323–337. [CrossRef] [PubMed]

25. Sagong, H.Y.; Parhi, A.; Bauman, J.D.; Patel, D.; Vijayan, R.S.K.; Das, K.; Arnold, E.; LaVoie, E.J. 3-Hydroxyquinolin-2(1H)-ones as
inhibitors of influenza A endonuclease. ACS Med. Chem. Lett. 2013, 4, 547–550. [CrossRef] [PubMed]

26. Parhi, A.K.; Xiang, A.; Bauman, J.D.; Patel, D.; Vijayan, R.S.K.; Das, K.; Arnold, E.; LaVoie, E.J. Phenyl substituted 3-
hydroxypyridin-2(1H)-ones: Inhibitors of influenza A endonuclease. Bioorg. Med. Chem. 2013, 21, 6435–6446. [CrossRef]

27. Zhang, C.; Xie, Q.; Wan, C.C.; Jin, Z.; Hu, C. Recent advances in small-molecule HIV-1 integrase inhibitors. Curr. Med. Chem. 2021,
28, 4910–4934. [CrossRef]

28. Credille, C.V.; Morrison, C.N.; Stokes, R.W.; Dick, B.L.; Feng, Y.; Sun, J.; Chen, Y.; Cohen, S.M. SAR exploration of tight binding
inhibitors of influenza virus PA endonuclease. J. Med. Chem. 2019, 62, 9438–9449. [CrossRef]

29. Monod, A.; Swale, C.; Tarus, B.; Tissot, A.; Delmas, B.; Ruigrok, R.W.H.; Crépin, T.; Slama-Schwok, A. Learning from structure-
based drug design and new antivirals targeting the ribonucleoprotein complex for the treatment of influenza. Expert Opin. Drug
Dis. 2015, 10, 345–371. [CrossRef]

30. Song, M.; Kumar, G.; Shadrick, W.R.; Zhou, W.; Jeevan, T.; Li, Z.; Slavish, P.J.; Fabrizio, T.P.; Yoon, S.; Webb, T.R.; et al.
Identification and characterization of influenza variants resistant to a viral endonuclease inhibitor. Proc. Nat. Acad. Sci. USA 2016,
113, 3669–3674. [CrossRef]

31. Zima, V.; Radilova, K.; Kozisek, M.; Albinana, C.B.; Karlukova, E.; Brynda, J.; Fanfrlik, J.; Flieger, M.; Hodek, J.; Weber, J.; et al.
Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza
endonuclease inhibitors. Eur. J. Med. Chem. 2020, 227, 112754. [CrossRef] [PubMed]

32. DuBois, R.M.; Slavish, P.J.; Baughman, B.M.; Yun, M.; Bao, J.; Webby, R.J.; Webb, T.R.; White, S.W.; Pekosz, A. Structural and
biochemical basis for development of influenza virus inhibitors targeting the PA endonuclease. PLoS Pathog. 2012, 8, 1002830.
[CrossRef] [PubMed]

33. Zhao, C.; Lou, Z.; Guo, Y.; Ma, M.; Chen, Y.; Liang, S.; Zhang, L.; Chen, S.; Li, X.; Liu, Y.; et al. Nucleoside monophosphate
complex structures of the endonuclease domain from the influenza virus polymerase PA subunit reveal the substrate binding site
inside the catalytic center. J. Virol. 2009, 83, 9024–9030. [CrossRef] [PubMed]

34. Kotlarek, D.; Worch, R.; Huang, X. New insight into metal ion-driven catalysis of nucleic acids by influenza PA-Nter. PLoS ONE
2016, 11, e0156972. [CrossRef]

35. Mbhele, N.; Chimukangara, B.; Gordon, M. HIV-1 integrase strand transfer inhibitors: A review of current drugs, recent advances
and drug resistance. Int. J. Antimicrob. Agents 2021, 57, 106343. [CrossRef]

36. Yesselman, J.D.; Price, D.J.; Knight, J.L.; Brooks, C.L., III. MATCH: An atom-typing toolset for molecular mechanics force fields. J.
Comput. Chem. 2012, 33, 189–202. [CrossRef]

37. Deng, P.; Jiang, J.; Yu, Y.; Hu, X.; Yuan, J.; Gan, Z. Application of Discovery Studio software in the teaching of medicinal chemistry.
Pharm. Educ. 2021, 37, 56–61. [CrossRef]

38. Dai, Y.; Wang, Q.; Zhang, X.; Jia, S.; Zheng, H.; Feng, D.; Yu, P. Molecular docking and QSAR study on steroidal compounds as
aromatase inhibitors. Eur. J. Med. Chem. 2010, 45, 5612–5620. [CrossRef]

39. Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and
influence on virtual screening enrichments. J. Comput. Aid. Mol. Des. 2013, 27, 221–234. [CrossRef]

40. Ponnan, P.; Gupta, S.; Chopra, M.; Tandon, R.; Baghel, A.S.; Gupta, G.; Prasad, A.K.; Rastogi, R.C.; Bose, M.; Raj, H.G. 2D-QSAR,
docking studies, and in silico ADMET prediction of polyphenolic acetates as substrates for protein acetyltransferase function of
glutamine synthetase of mycobacterium tuberculosis. ISRN Struct. Biol. 2013, 2013, 1–12. [CrossRef]

41. Gaur, R.; Cheema, H.S.; Kumar, Y.; Singh, S.P.; Yadav, D.K.; Darokar, M.P.; Khan, F.; Bhakuni, R.S. In vitro antimalarial activity
and molecular modeling studies of novel artemisinin derivatives. RSC Adv. 2015, 5, 47959–47974. [CrossRef]

42. Shahin, R.; Swellmeen, L.; Shaheen, O.; Aboalhaija, N.; Habash, M. Identification of novel inhibitors for Pim-1 kinase using
pharmacophore modeling based on a novel method for selecting pharmacophore generation subsets. J. Comput. Aid. Mol. Des.
2016, 30, 39–68. [CrossRef] [PubMed]

http://doi.org/10.1128/JVI.00600-06
http://doi.org/10.2174/0929867311320130005
http://doi.org/10.1016/j.jtice.2010.03.017
http://doi.org/10.1016/j.csbj.2019.02.006
http://doi.org/10.1021/acs.jmedchem.6b01227
http://doi.org/10.1124/mol.114.095588
http://www.ncbi.nlm.nih.gov/pubmed/25477342
http://doi.org/10.1021/ml4001112
http://www.ncbi.nlm.nih.gov/pubmed/24936242
http://doi.org/10.1016/j.bmc.2013.08.053
http://doi.org/10.2174/0929867328666210114124744
http://doi.org/10.1021/acs.jmedchem.9b00747
http://doi.org/10.1517/17460441.2015.1019859
http://doi.org/10.1073/pnas.1519772113
http://doi.org/10.1016/j.ejmech.2020.112754
http://www.ncbi.nlm.nih.gov/pubmed/32883638
http://doi.org/10.1371/journal.ppat.1002830
http://www.ncbi.nlm.nih.gov/pubmed/22876176
http://doi.org/10.1128/JVI.00911-09
http://www.ncbi.nlm.nih.gov/pubmed/19587036
http://doi.org/10.1371/journal.pone.0156972
http://doi.org/10.1016/j.ijantimicag.2021.106343
http://doi.org/10.1002/jcc.21963
http://doi.org/10.16243/j.cnki.32-1352/g4.2021.03.014
http://doi.org/10.1016/j.ejmech.2010.09.011
http://doi.org/10.1007/s10822-013-9644-8
http://doi.org/10.1155/2013/373516
http://doi.org/10.1039/C5RA07697H
http://doi.org/10.1007/s10822-015-9887-7
http://www.ncbi.nlm.nih.gov/pubmed/26685860


Molecules 2021, 26, 7129 20 of 20

43. John, S.; Thangapandian, S.; Arooj, M.; Hong, J.C.; Kim, K.D.; Lee, K.W. Development, evaluation and application of 3D QSAR
pharmacophore model in the discovery of potential human renin inhibitors. BMC Bioinform. 2011, 12, S4. [CrossRef]

44. Schuster, D.; Laggner, C.; Steindl, T.M.; Palusczak, A.; Hartmann, R.W.; Langer, T. Pharmacophore modeling and in silico
screening for new P450 19 (aromatase) inhibitors. J. Chem. Inf. Model. 2006, 46, 1301–1311. [CrossRef]

45. Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput.
Chem. 1997, 18, 1463–1472. [CrossRef]

46. Dube, D.; Periwal, V.; Kumar, M.; Sharma, S.; Singh, T.P.; Kaur, P. 3D-QSAR based pharmacophore modeling and virtual screening
for identification of novel pteridine reductase inhibitors. J. Mol. Model. 2012, 18, 1701–1711. [CrossRef]

47. Ahamed, J.I.; Meena, K.S. Synthesis, characterization, antibacterial activities and molecular docking studies of some novel
therapeutic N, N’-disubstituted β-branched nitroolefin piperazine derivatives. Int. J. Pharm. Bio Sci. 2018, 9, 1–15. [CrossRef]

48. Kuck, D.; Singh, N.; Lyko, F.; Medina-Franco, J.L. Novel and selective DNA methyltransferase inhibitors: Docking-based virtual
screening and experimental evaluation. Bioorg. Med. Chem. 2010, 18, 822–829. [CrossRef] [PubMed]

49. Medina-Franco, J.L.; López-Vallejo, F.; Kuck, D.; Lyko, F. Natural products as DNA methyltransferase inhibitors: A computer-
aided discovery approach. Mol. Divers. 2011, 15, 293–304. [CrossRef]

50. Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra
precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem.
2006, 49, 6177–6196. [CrossRef]

http://doi.org/10.1186/1471-2105-12-S14-S4
http://doi.org/10.1021/ci050237k
http://doi.org/10.1002/(SICI)1096-987X(199709)18:12&lt;1463::AID-JCC4&gt;3.0.CO;2-H
http://doi.org/10.1007/s00894-011-1187-0
http://doi.org/10.22376/ijpbs.2018.9.1.p1-15
http://doi.org/10.1016/j.bmc.2009.11.050
http://www.ncbi.nlm.nih.gov/pubmed/20006515
http://doi.org/10.1007/s11030-010-9262-5
http://doi.org/10.1021/jm051256o

	Introduction 
	Result and Discussion 
	Pharmacophore Model Generation 
	Validation of the Pharmacophore Models 
	Cost Analysis 
	Fischer’s Randomization Test 
	Test Set Analysis 

	Database Screening 
	ADMET and Toxicity Prediction 
	Molecular Docking Study 
	New Designed Compounds 

	Materials and Method 
	Compound Preparations 
	Generation of Pharmacophore Models 
	Pharmacophore Validation 
	Database Screening 
	Determination of In-Silico Pharmacokinetic Properties 
	Molecular Docking 
	New Designed Compounds 

	Conclusions 
	References

