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Abstract: American trypanosomiasis (Chagas disease) caused by the Trypanosoma cruzi parasite,
is a severe health problem in different regions of Latin America and is currently reported to be
spreading to Europe, North America, Japan, and Australia, due to the migration of populations
from South and Central America. At present, there is no vaccine available and chemotherapeutic
options are reduced to nifurtimox and benznidazole. Therefore, the discovery of new molecules
is urgently needed to initiate the drug development process. Some acetophenones and chalcones,
as well as chromane-type substances, such as chromones and flavones, are natural products that have
been studied as trypanocides, but the relationships between structure and activity are not yet fully
understood. In this work, 26 compounds were synthesized to determine the effect of hydroxyl and
isoprenyl substituents on trypanocide activity. One of the compounds showed interesting activity
against a resistant strain of T. cruzi, with a half effective concentration of 18.3 µM ± 1.1 and an index
of selectivity > 10.9.

Keywords: Trypanosoma cruzi; chromane; phenolic compounds; prenyl derivatives

1. Introduction

Parasitic infections are the main causes of morbidity and mortality in the world; in ad-
dition, the emergence and re-emergence of many of these parasite diseases are accelerated
by climate change, the increasing migration and the increasing parasite resistance to drugs,
among others, contribute to the deterioration of global public health [1].

Chagas disease, also known as American trypanosomiasis, is the result of infection by
the Trypanosoma cruzi (T. cruzi) parasite [2]. Transmission of this parasite to humans occurs
primarily through triatomine bugs, although it can occur through the placenta, blood
transfusion, organ transplantation, or consumption of food contaminated with triatomine
feces. It is estimated that in the world there are between 6 to 7 million people infected with
T. cruzi but the regions with the highest prevalence are the rural areas of South America
and Central America [2].

Today, there are constraints to using the available drugs against Chagas disease,
nifurtimox, and benznidazoles (BNZ), due mainly to bioavailability and efficacy during
the chronic phase of the disease. Besides, low treatment adherence due to severe side
effects such as vomiting, anorexia, peripheral neuropathy, and allergic dermopathy has
been noticed [3].

Some natural products such as acetophenones and chalcones, as well as chromane-type
substances, such as chromones and flavones, exhibit trypanocide activity [4–8]. In these
compounds, besides the phenolic hydroxyls are also frequently present one or several free
or cyclized isoprenyl units. Nonetheless, very little is known about the contribution of
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these groups to the biological activity of the compounds. In this work were synthesized
26 molecules to study the importance of these functional groups in the trypanocidal activity.
The effect of the hydroxyl and isoprenyl substituents and pyran-4-one systems in the
trypanocidal activity was also determined.

2. Results
2.1. Compound Synthesis

The compounds 5–30 were prepared by adapting the procedures previously reported
elsewhere [9–15]. The reaction sequence is shown in Scheme 1. Purification of the products
was carried out through liquid−liquid extraction and chromatographic separations. Yields
were 6.3–77.1%; due to low yield processes, reactions II–VII were repeated at least three
times. Compounds were identified by 1H-NMR, 13C-NMR, and HRMS (see Supplementary
Materials online for details). Although compounds 5–30 have not been tested against
T. cruzi, the search for chemical compounds using a structure search in SciFinder showed
that only 19–30 do not have any preliminary reports.

Scheme 1. The synthetic strategy for the preparation of derivatives 5–30. Reagents and conditions:
(I) Ac2O, BF3-Et2O, 50 ◦C, 12h, 16.5–56%; (II) TEOF, 70% HClO4; room temperature, 2 h, 30.4–70.2%;
(III) 3-Methyl-2-buten-1-ol, BF3-Et2O, room temperature, 24 h, 5.1–12.3%; (IV) K2CO3, ClMOM,
ACN, 60 ◦C, MW, 1 h, 48.0–70.1%; (V) TEOF, 70% HClO4; room temperature, 2 h, 8.21–40.1%;
(VI) KOH/EtOH, 40 ◦C, 12 h, 46.3–77.5%; (VII) DMSO, I2, 120 ◦C, 5 min, MW, 7.5–55.0%.

2.2. In Vitro Cytotoxicity and Trypanocidal Activity

All compounds except 23–25 showed high cytotoxic activity to human U937 macrophages.
BNZ showed moderate activity against T. cruzi and no cytotoxicity with values of EC50 of
56.5 ± 1.5 µM and an LC50 > 768.5 µM, respectively (Table 1). Compounds 6, 16, 18, and
28 showed high cytotoxicity, with LC50 < 10 µM and especially 28, which showed similar
activity to DOX, with LC50 of 0.5 ± 0.12 µM.
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Table 1. In vitro cytotoxicity and antiparasitic activity.

Series N Cytotoxicity
(LC50

a (µM)) Trypanocidal Activity (EC50
b (µM)) SI c

A 5 54.0 ± 0.5 17.8 ± 0.8 3.0
6 6.3 ± 0 3.3 ± 0.1 1.9
7 15.3 ± 1.9 10.5 ± 0.6 1.5
8 >200 18.3 ± 1.1 >10.9
9 >200 49.3 ± 9.0 >4.1

B 10 23.4 ± 6.4 >11.7 * <2

11 28.0 ± 1.9 11.8 ± 0.3 2.4
12 >100 19.9 ± 1.3 >5.0
13 43.0 ± 0.9 154.4 ± 26.8 0.3

C 14 33.98 ± 4.9 >17 * <2

15 25.21 ± 4.6 20.7 ± 1.1 1.2
16 7.8 ± 3.1 >4 * <2
17 21.2 ± 6.9 7.5 ± 0 2.8
18 5.0 ± 1.7 2.6 ± 0.1 1.9

D 23 >200 >20 * >10

24 >100 111.1 ± 18.5 >0.9
25 47.1 ± 5.5 17.3 ± 0.4 >5.8
26 >200 10.3 ± 0 4.59

E 27 43.4 ± 7.3 35.3 ± 1.1 1.2

28 0.5 ± 0.12 >0.3 <2

F 29 17.0 ± 0.2 >9.8 * <2

30 27.2 ± 3.3 >13.6 * <2
BNZ d >768.5 56.5 ± 1.5 >16.8
DOX e 0.5 ± 0 N/A f N/A

The data show the average values plus/minus the standard deviation (SEM) in µM of the cytotoxicity in U937 cells and the antiparasitic
activity for each compound. a LC50: lethal concentration; b EC50: half effective concentration; c IS: index of selectivity (IS = LC50/EC50);
d BNZ: benznidazole; e DOX: doxorubicin; f N/A: Not Applicable * The exact concentration value could not have calculated because the
toxic concentration is higher than the active concentration.

Twenty-four of the twenty-six compounds evaluated were more effective than BNZ
with EC50 values ranging from 2.6 µM (18) to 49.3 µM (9), with compounds 6, 7, 17, 18, and
26 exhibiting an EC50 < 10 µM, of which 18 and 6 were the most active with EC50 values of
2.6 µM and 3.3 µM, respectively. Compounds 8, 9, 11, 12, 15, 25, and 27 showed moderate
activity, with EC50 values varying between 11.8 µM and 49.3 µM. Only compounds 13 and
24 showed very low activity, with EC50 values of 154.4 µM and 111.1 µM. For compounds
10, 14, 16, 23, and 28–30, the effective concentration for T. cruzi exceeded the concentration
that was toxic to the host cells, and therefore the exact EC50 value could not be determined
and therefore is reported with the sign “greater than”.

When trypanocidal activity and cytotoxicity were correlated in compounds with better
EC50, such as 6, 16, 18, and 28, very unfavorable IS were found, usually below 2. In contrast,
compound 8 lacking isoprenyl was the most promising, with an IS > 10.9 (Table 1).
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3. Discussion

This work describes the synthesis of derivatives of acetophenones, chromones, chal-
cones, and flavones, with hydroxyl and isoprenyl substituents. These types of molecules
are of natural origin and present a wide spectrum of reported biological activities, but the
knowledge on how the structural features of these molecules are involved in the interaction
with a possible receptor is reduced. Therefore, 26 synthetic derivatives (six series) of these
substances were evaluated in vitro against T. cruzi, analyzing mainly the effect on the
biological activity of heterocycles condensed to the aromatic rings (pyran-4-one system)
and the hydroxyl and isoprenyl substituent groups. The series evaluated were: series
A, polyhydroxy-substituted acetophenones 5–9; series B, hydroxy-substituted chromones
10–13; series C, hydroxy-substituted and isoprenylated acetophenones 14–18; series D,
hydroxy-substituted and isoprenylated chromones 23–26; series E, isoprenylated chalcones
27 and 28; and, series F, isoprenylated flavones 29 and 30.

All compounds of series C (hydroxy-substituted and isoprenylated acetophenones)
showed good trypanocidal activity, especially 16–18 when compared to compounds 5–9
(series A) that corresponded to polyhydroxy-substituted acetophenones. Apparently, the
introduction of the isoprenyl group plays an important role in modulating the polarity of
the molecule which is corroborated by noting the differences in activity between 18 and 8
(2.6 ± 0.1 µM vs. 18.3 ± 1.1 µM). However, because in the case of isoprenylated chromones
23–26 where no gain in activity with prenylation was observed, other factors than polarity
must be involved in the activity.

On the other hand, the presence of a hydroxy in the position adjacent to the carbonyl
(16 and 17) also increases the activity as seen in compound 7, one of the most active
compounds of series A (LC50 = 10.5 ± 0.6 µM). This effect is possibly caused by increased
nucleophilicity towards the carbonyl group due to the inducing effects of the carbonyl or
its stabilization by an additional hydrogen bridge.

In the chromones (10–13 series B and 23–26 series D), chalcones and flavonoid com-
pounds (27 and 28 series E and 29 and 30 series F), the activity is only marginal, except for
compound 28 which has in addition to a p-chlorophenyl group and the αβ-unsaturated
carbonyl group which has already been demonstrated to be important in antiparasitic
activity [16].

In general, the toxicity of the active compounds tested here against T. cruzi was high.
Despite this, the correlation between trypanocidal activity and cytotoxicity was good,
with IS greater than 1 and even greater than 10.9. However, although cytotoxicity is
usually determined as an important parameter to evaluate in the search for substances
with therapeutic potential, it should be noted that in vitro cytotoxicity tests only reflect
the effect on the specific cell type used in the test, and not on an entire organism, which,
as in animals, has a digestive system and metabolism mechanisms that can modify the
toxicity of a substance. Hence, both the trypanocidal activity and toxicity of a substance
must be confirmed in in vivo studies using the respective disease models. Furthermore,
these molecules still need to be optimized in their structure, in order to try to increase their
activity and modulate bioavailability.

In summary, compounds 6, 7 and 8 (substituted dihydroxy acetophenones), 11, 12,
25 and 26 (chromones), 16–18 (isoprenylated acetophenones), chalcone 28 and flavanones
29 and 30 showed much better trypanocidal activity than the control drug BNZ. The
trypanocidal activity identified in these compounds, even better than that reported for
BNZ, selects them as “hit” compounds to start the development of drug candidates for the
treatment of T. cruzi infection. However, we must proceed not only with the validation of
this activity in vivo models but also with target-identification and mechanism-of-action
studies to confirm specific bioactivity, given that some of these chemical structures can be
related to pan-assay interference compounds (PAINS) [17].
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4. Materials and Methods
4.1. Chemistry

All commercially available reagents and solvents were obtained from commercial
suppliers and used without further purification. Phenol derivatives (1–4) were purchased
from Sigma Chemical Co. (St. Louis, MO, USA). Thin-layer chromatography (TLC) with
silica gel 60 F254-impregnated aluminum sheets (0.25 mm, Merck, Darmstadt, Germany)
was used to check the progress or reactions, and compounds were detected under spraying
with vanillin (3% in H2SO4) and heating at 110 ◦C. The chromatographic separations were
performed using preparative column chromatography with silica gel 60 (200–300 mesh,
Merck, Darmstadt, Germany). The melting points were determined using a Mel-Temp
apparatus (Electrothermal, Staffordshire, UK). The 1H, 13C, and 2D NMR spectra of the
synthetic compounds were recorded on a Bruker Fourier 300 spectrometer (Bruker Bio-Spin
GmbH, Rheinstetten, Germany) operating at 300 MHz for 1H and 75 MHz for 13C NMR,
using CDCl3 (Sigma, St Louis, Mo, USA) as the solvent, and TMS as an internal standard.
Chemical shifts (δ) are reported in ppm, and the coupling constants (J) are reported in Hz.
High-resolution mass spectra were obtained using an ultra-high resolution Qq-time-of-
flight (UHR-QqTOF) mass spectrometer (Impact II-Bruker), with an electrospray ionization
source in positive ion mode.

4.2. General Procedure for Preparation of 2-Hydroxyacetophenone Derivatives (I)

The synthesis of 5–9 was conducted according to literature [9]. Thus, phenol deriva-
tives (1–4) (13.2 mmol) dissolved in acetic anhydride (Ac2O) (3 mL, 30 mmol) were added
in ethyl acetate (AcOEt) (5 mL). Then, boron trifluoride-diethyl ether (BF3-Et2O, 800 µL,
6.4 mmol) was slowly added to the reaction mixtures, a reflux setup allowed the mixtures
to be heated in a controlled manner at 50 ◦C for 12 h without the loss of solvent. The
work-up process was performed using 100 mL of water, neutralization with NaHCO3, and
extraction with CH2Cl2 (3 × 100 mL). The organic phase was brought to dryness and the
resulting solid was eluted on a silica gel 60 columns using hexane:ethyl acetate (Hex:AcOEt)
(2:1) (v:v). The synthesis of 5–9 was achieved in an overall yield of 16.5–56%.

4.2.1. Compound (5)

1-(2,4-Dihydroxyphenyl)ethan-1-one (5). Yield 30.4%, yellow solid, m.p.: 144–145 ◦C. 1H
NMR (300 MHz, CDCl3) δ 7.56 (d, J = 8.8 Hz, 1H), 6.35 (dd, J = 8.8, 2.4 Hz, 1H), 6.29 (d, J =
2.3 Hz, 1H), 2.50 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 202.71, 164.72, 164.64, 133.03, 113.38,
108.34, 102.91, 26.10. HRMS (ESI) m/z, calculated for C8H9O3 [M+H]+ 153.0546; found
153.0547.

4.2.2. Compound (6)

1-(2,5-Dihydroxyphenyl)ethan-1-one (6). Yield 26.3%, yellow solid, m.p.: 200–204 ◦C. 1H
NMR (300 MHz, CDCl3) δ 7.13 (d, J = 2.9 Hz, 1H), 7.00 (dd, J = 8.9, 2.9 Hz, 1H), 6.78 (d, J =
8.9 Hz, 1H), 2.54 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 204.48, 155.41, 148.76, 125.04, 119.35,
118.76, 115.34, 26.67. HRMS (ESI) m/z, calculated for C8H9O3 [M+H]+ 153.0546; found
153.0546.

4.2.3. Compound (7)

1-(2,6-Dihydroxyphenyl)ethan-1-one (7). Yield 49.1%, yellow solid, m.p.: 160–162 ◦C. 1H
NMR (300 MHz, CDCl3) δ 7.20 (t, J = 8.2 Hz, 1H), 6.40 (d, J = 8.2 Hz, 2H), 2.74 (s, 3H).
13C NMR (75 MHz, CDCl3) δ 205.83, 161.97, 136.30, 110.47, 108.04, 33.64. HRMS (ESI) m/z,
calculated for C8H9O3 [M+H]+ 153.0546; found 153.0546.

4.2.4. Compound (8)

1-(2,3,4-Trihydroxyphenyl)ethan-1-one (8). Yield 56.0%, yellow solid, m.p.: 170–172 ◦C. 1H
NMR (300 MHz, CDCl3) δ 7.14 (d, J = 8.9 Hz, 1H), 6.36 (d, J = 8.9 Hz, 1H), 2.46 (s, 3H). 13C
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NMR (75 MHz, CDCl3) δ 203.50, 151.85, 151.43, 131.83, 123.10, 113.62, 107.47, 26.07. HRMS
(ESI) m/z, calculated for C8H9O4 [M+H]+ 169.0495; found 169.0494.

4.2.5. Compound (9)

1-(2,4,6-Trihydroxyphenyl)ethan-1-one (9). Yield 16.5%, yellow solid, m.p.: 137–138 ◦C. 1H
NMR (300 MHz, Acetone) δ 5.92 ppm (s, 2H), 2.60 (s, 3H). 13C NMR (75 MHz, Acetone) δ
203.10, 164.91, 164.90, 104.79, 95.07, 32.17. HRMS (ESI) m/z, calculated for C8H9O4 [M+H]+

169.0495 found 169.0400.

4.3. General Procedure for Prenylation of 2-Hydroxyacetophenone Derivatives (III)

Into round-bottom flasks (10 mL) the 2-Hydroxyacetophenone derivatives 5–9 (4 mmol)
were dissolved individually in 3-Methyl-2-buten-1-ol (2 mL, 20 mmol). The resulting
mixtures were stirred at 50 ◦C for 15 min to obtain a full homogenization. Then, the
reaction mixtures were poured into ice-water, and BF3-Et2O (150 µL, 1.20 mmol) was added
dropwise [10]. After the addition of BF3.Et2O, the mixtures were then stirred at room
temperature for 24 h. The work-up process consisted of an addition of 50 mL water, and
successive extractions with dichloromethane. The organic layer was dried over sodium
sulfate and concentrated to dryness. The compounds 14–18 were purified using column
chromatography with silica gel 60, eluting with Hex:AcOEt (2:1) (v/v). The synthesis of
14–18 has been achieved in an overall yield of 5.1–12.3%.

4.3.1. Compound (14)

1-(2,4-Dihydroxy-5-(3-methylbut-2-en-1-yl)phenyl)ethan-1-one (14). Yield 7.6%, white solid.
m.p.: 137 ◦C. 1H NMR (300 MHz, Acetone) δ 12.63 (s, 1H), 9.52 (s, 1H), 7.60 (s, 1H), 6.36 (s,
1H), 5.41–5.26 (m, 1H), 3.26 (d, J = 7.2 Hz, 2H), 2.53 (s, 3H), 1.72 (s, 6H). 13C NMR (75 MHz,
Acetone) δ 202.67, 163.46, 162.49, 132.20, 131.90, 122.57, 120.29, 113.12, 102.24, 27.53, 25.35,
25.00, 16.96. HRMS (ESI) m/z, calculated for C13H17O3 [M+H]+ 221.1172 found 221.1173.

4.3.2. Compound (15)

1-(2,4-Dihydroxy-3-(3-methylbut-2-en-1-yl)phenyl)ethan-1-one (15). Yield 6.3%, white solid.
m.p.: 148 ◦C. 1H NMR (300 MHz, Acetone) δ 13.11 (s, 1H), 9.35 (s, 1H), 7.63 (d, J = 8.7 Hz,
2H), 6.50 (d, J = 8.7 Hz, 2H), 5.33–5.16 (m, 2H), 3.35 (d, J = 7.2 Hz, 2H), 1.77 (s, 3H), 1.64
(s, 3H), 1.29 (s, 3H). 13C NMR (75 MHz, Acetone) δ 203.02, 162.78, 161.79, 130.64, 130.38,
122.32, 114.97, 113.24, 107.12, 25.36, 25.01, 21.29, 17.03. HRMS (ESI) m/z, calculated for
C13H17O3 [M+H]+ 221.1172 found 221.1177.

4.3.3. Compound (16)

1-(2,6-Dihydroxy-3-(3-methylbut-2-en-1-yl)phenyl)ethan-1-one (16). Yield 9.1%, white solid.
m.p.: 75–76 ◦C. 1H NMR (300 MHz, CDCl3) δ 10.75 (s, 1H), 9.25 (s, 1H), 7.12 (d, J = 8.3 Hz,
1H), 6.33 (d, J = 8.3 Hz, 1H), 5.34–5.19 (m, 1H), 3.27 (d, J = 7.2 Hz, 2H), 2.74 (s, 3H), 1.76 (s,
3H), 1.74 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 206.01, 160.21, 159.17, 136.46, 134.73, 121.82,
119.72, 110.29, 107.12, 33.68, 28.50, 25.93, 17.94. HRMS (ESI) m/z, calculated for C13H17O3
[M+H]+ 221.1172, found 221.1170.

4.3.4. Compound (17)

1-(2,4,6-Trihydroxy-3-(3-methylbut-2-en-1-yl)phenyl)ethan-1-one (17). Yield 10.1%. white
solid. m.p.: 174 ◦C. 1H NMR (300 MHz, CDCl3) δ 5.84 (s, 1H), 5.21 (t, J = 6.9 Hz, 1H), 3.26
(d, J = 6.9 Hz, 2H), 2.64 (s, 3H), 1.77 (s, 3H), 1.68 (s, 3H). 13C NMR (75 MHz, CDCl3) δ
203.93, 164.31, 162.13, 160.53, 132.45, 122.66, 106.58, 104.81, 94.89, 32.59, 25.70, 21.27, 17.70.
HRMS (ESI) m/z, calculated for C13H17O4 [M+H]+ 237.1121, found 237.1122.

4.3.5. Compound (18)

1-(2,3,4-Trihydroxy-5-(3-methylbut-2-en-1-yl)phenyl)ethan-1-one (18). Yield 12.3%, white
solid. m.p.: 110–115 ◦C. 1H NMR (300 MHz, CDCl3) δ 7.01 (s, 1H), 5.24 (t, J = 7.8 Hz, 1H),
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3.22 (d, J = 7.1 Hz, 2H), 2.48 (s, 3H), 1.70 (s, 3H), 1.67 (s, 3H). 13C NMR (75 MHz, CDCl3) δ
203.64, 149.74, 149.62, 133.14, 131.12, 122.37, 121.93, 120.01, 112.99, 27.76, 26.11, 25.72, 17.74.
HRMS (ESI) m/z, calculated for C13H17O4 [M+H]+ 237.1121 found 237.1122.

4.4. General Procedure for Protection of Hydroxyl Groups (IV)

The 2-Hydroxyacetophenone derivatives (14–18) (0.6 mmol) were dissolved individu-
ally in 3 mL of ACN and K2CO3 (1.8 mmol) was added, the resulting solutions were stirred
for 10 min followed by 2 equivalents of methoxymethyl chloride (ClMOM). The reaction
mixtures were brought to 60 ◦C for 1 h in the microwave. The new compounds 19–22 were
purified by column chromatography with silica gel 60, eluting Hex:AcOEt (2:1) (v/v). The
synthesis of 19–22 has been achieved in an overall yield of 48.0–70.1%.

4.5. General Procedure for Preparation of Prenylated Chalcones (VI)

The synthesis of chalcones was achieved according to the previously reported proce-
dures for the Claisen−Schmidt reaction (4) [12,13]. Briefly, methoxy-methylated acetophe-
none (19) (1 mmol) and benzaldehyde derivatives (1.05 mmol) were dissolved in ethanol
(10 mL), the resulting reaction mixtures were kept at room temperature and magnetic stir-
ring for 5 min. Then, a KOH/EtOH solution (1.1 mmol on 10 mL) was added dropwise and
stirring was continued at 40 ◦C for 12 h. The compounds 27–28 were purified using column
chromatography with silica gel 60, eluting with Hex: AcOEt (2:1) (v/v). The synthesis of
prenylated chalcones has been achieved in an overall yield of 46.3–77.5%.

4.5.1. Compound (27)

1-(2-Hydroxy-4-(methoxymethoxy)-5-(3-methylbut-2-en-1-yl)phenyl)-3-(4-methoxyphenyl)
prop-2-en-1-one (27). Yield 56.3%, white solid. m.p.: 108–109 ◦C. 1H NMR (300 MHz,
CDCl3) δ 13.38 (s, 1H), 7.91 (d, J = 15.4 Hz, 1H), 7.67 (d, J = 6.8 Hz, 3H), 7.50 (d, J = 15.3 Hz,
1H), 7.01 (d, J = 8.3 Hz, 2H), 6.70 (s, 1H), 5.35–5.30 (m, 3H), 3.92 (s, 3H), 3.53 (s, 3H), 3.34
(d, J = 7.3 Hz, 2H), 1.80 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 192.01, 164.81, 161.79, 161.35,
144.15, 132.84, 130.38, 130.07, 126.10, 122.45, 121.92, 118.00, 114.50, 114.29, 102.18, 93.98,
56.39, 55.49, 28.44, 25.84, 17.90. HRMS (ESI) m/z, calculated for C23H26O5Na [M+Na]+

405.1672, found 405.1673.

4.5.2. Compound (28)

3-(4-Chlorophenyl)-1-(2-hydroxy-4-(methoxymethoxy)-5-(3-methylbut-2-en-1-yl)
phenyl)prop-2-en-1-one (28). Yield 77.5%, white solid. m.p.: 103–105 ◦C. 1H NMR
(300 MHz, CDCl3) 13.18 (s, OH), 7.80 (d, J = 15.5 Hz, 1H), 7.59 (d, J = 5.9 Hz, 2H), 7.53 (d,
J = 16.8 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 6.65 (s, 1H), 5.37–5.19 (m, 3H), 3.48 (s, 3H), 3.29
(d, J = 7.1 Hz, 2H), 1.75 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 191.62, 165.00, 161.69, 142.73,
136.52, 133.38, 132.90, 130.09, 129.68, 129.31, 122.37, 122.18, 120.95, 114.15, 102.20, 93.98,
56.41, 28.46, 25.84, 17.94. HRMS (ESI) m/z, calculated for C22H23ClO4Na [M+Na]+ 409.1177,
found 409.1135.

4.6. General Procedure for Preparation of Prenylated Flavones (VII)

The hydroxychalcones (27–28) (0.5 mmol) were dissolved in DMSO (5 mL) and these
solutions were treated with a catalytic amount of iodine [14]. The resulting mixtures
were charged in 10 mL glass tubes containing a magnetic stirring bar and a rubber cap.
The tubes were subjected to MW at 120 ◦C for 5 min. After completion of the reaction,
the tubes were removed, cooled to room temperature, and the mixture was purified by
column chromatography with silica gel 60, eluting Hex:AcOEt (2:1) (v/v). The synthesis of
prenylated flavones (29–30) has been achieved in an overall yield of 7.5–41.3%.

4.6.1. Compound (29)

7-(Methoxymethoxy)-2-(4-methoxyphenyl)-6-(3-methylbut-2-en-1-yl)-4H-chromen-4-one (29).
Yield 41.3%, white solid. m.p.: 70.5 ◦C. 1H NMR (300 MHz, CDCl3) δ 7.98 (s, 1H), 7.88
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(d, J = 8.9 Hz, 2H), 7.20 (s, 1H), 7.02 (d, J = 11.8 Hz, 2H), 6.77 (s, 1H), 5.39–5.26 (m, 3H),
3.89 (s, 3H), 3.52 (s, 3H), 3.40 (d, J = 7.4 Hz, 2H), 1.74 (m, 6H). 13C NMR (75 MHz, CDCl3)
δ 178.02, 163.4, 162.37, 159.52, 156.33, 133.44, 129.70, 128.01, 125.59, 124.10, 121.44, 117.7,
114.46, 105.77, 101.51, 94.29, 56.40, 55.56, 28.62, 25.92, 17.88. HRMS (ESI) m/z, calculated for
C23H25O5 [M+H]+ 381.1696, found 381.1704.

4.6.2. Compound (30)

2-(4-Chlorophenyl)-7-(methoxymethoxy)-6-(3-methylbut-2-en-1-yl)-4H-chromen-4-one (30).
Yield 30.1%, white solid. m.p.: 108–109 ◦C. 1H NMR (300 MHz, Acetone) δ 8.10 (d, J = 8.7
Hz, 2H), 7.86 (s, 1H), 7.62 (d, J = 8.7 Hz, 2H), 7.34 (s, 1H), 6.81 (s, 1H), 5.45 (s, 2H), 5.35
(t, J = 7.9 Hz, 1H), 3.51 (s, 3H), 3.41 (d, J = 7.4 Hz, 2H), 1.75 (s, 6H). 13C NMR (75 MHz,
Acetone) δ 177.13, 162.07, 160.17, 156.85, 137.58, 133.58, 131.48, 130.15, 129.92, 128.58, 125.66,
122.43, 118.53, 107.90, 102.45, 95.01, 56.43, 28.1, 25.77, 17.71. HRMS (ESI) m/z, calculated for
C22H22ClO4 [M+H]+ 385.1201, found 385.1203.

4.7. General Procedure for Preparation of Chromones (II and V)

The series of compounds 5–9 and 19–22 (1 mmol) were suspended in triethyl ortho-
formate (TEOF) (0.5 mL), the resulting solutions were treated with 70% HClO4 (0.01 mL,
0.17 mmol) slowly [15]. The mixtures were then stirred at room temperature for 2 h, and
ether (200 mL) was added, subsequently, the solution was filtered and the solid was pu-
rified by column chromatography with silica gel 60, eluting Hex:AcOEt (2:1) (v/v). The
synthesis of chromones (10–13) and prenylated chromones (23–26) was achieved in an
overall yield of 30.4–70.2% and 8.21–40.1% respectively.

4.7.1. Compound (10)

7-Hydroxy-4H-chromen-4-one (10). Yield 56.9%, white solid, m.p.: 215 ◦C. 1H NMR (300
MHz, Acetone) δ 8.03 (d, J = 6.0 Hz, 1H), 7.97 (d, J = 8.7 Hz, 1H), 6.98 (d, J = 9.8 Hz, 1H), 6.89
(s, 1H), 6.19 (d, J = 6.0 Hz, 1H). 13C NMR (75 MHz, Acetone) δ 175.81, 162.51, 158.25, 155.53,
127.00, 117.95, 114.75, 112.21, 102.48. HRMS (ESI) m/z, calculated for C9H7O3 [M+H]+

163.0389, found 163.0388.

4.7.2. Compound (11)

6-Hydroxy-4H-chromen-4-one (11). Yield 30.55%, white solid, m.p.: 242–243 ◦C. 1H NMR
(300 MHz, DMSO) δ 10.07 (s, OH), 8.2 (d, J = 6.0 Hz, 1H), 7.50 (d, J = 9.0 Hz, 1H), 7.29 (d,
J = 3.0 Hz, 1H), 7.22 (dd, J = 9.0, 3.0 Hz, 1H), 6.25 (d, J = 6.0 Hz, 1H). 13C NMR (75 MHz,
DMSO) δ 176.47, 156.68, 154.89, 149.84, 125.23, 123.25, 119.97, 111.21, 107.58. HRMS (ESI)
m/z, calculated for C9H7O3 [M+H]+ 163.0389, found 163.0399.

4.7.3. Compound (12)

5-Hydroxy-4H-chromen-4-one (12). Yield 40.1%, white solid, m.p.: 125–126 ◦C. 1H NMR
(300 MHz, Acetone) δ 12.57 (s, 1H), 8.21 (d, J = 5.9 Hz, 1H), 7.64 (t, J = 8.4 Hz, 1H), 6.99
(d, J = 8.4 Hz, 1H), 6.78 (d, J = 8.2 Hz, 1H), 6.35 (d, J = 5.9 Hz, 1H). 13C NMR (75 MHz,
Acetone) δ 183.03, 160.90, 157.80, 156.81, 135.72, 111.51, 111.14, 110.98, 107.16. HRMS (ESI)
m/z, calculated for C9H7O3 [M+H]+ 163.0389, found 163.0389.

4.7.4. Compound (13)

7,8-Dihydroxy-4H-chromen-4-one (13). Yield 34.1%, white solid, m.p.: 265 ◦C. 1H NMR
(300 MHz, MeOD) δ 8.11 (d, J = 5.9 Hz, 1H), 7.52 (d, J = 8.8 Hz, 1H), 6.95 (d, J = 8.8 Hz, 1H),
6.26 (d, J = 5.9 Hz, 1H). 13C NMR (75 MHz, MeOD) δ 178.61, 156.12, 150.59, 147.22, 132.94,
117.50, 115.44, 113.98, 110.88. HRMS (ESI) m/z, calculated for C9H7O4 [M+H]+ 179.0338
found 179.0338.
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4.7.5. Compound (23)

7-Hydroxy-6-(3-methylbut-2-en-1-yl)-4H-chromen-4-one (23). Yield 17.32%, white solid.
m.p.: 120–125 ◦C. 1H NMR (300 MHz, CDCl3) δ 8.73 (s, 1H), 7.96 (s, 1H), 7.79 (d, J = 6.0 Hz,
1H), 6.97 (s, 1H), 6.32 (d, J = 6.0 Hz, 1H), 5.35 (t, J = 7.3 Hz, 1H), 3.43 (d, J = 7.2 Hz, 2H), 1.74
(s, 6H). 13C NMR (75 MHz, CDCl3) δ 178.22, 160.98, 157.13, 155.31, 134.90, 128.19, 126.08,
120.98, 117.66, 112.18, 102.82, 28.85, 25.86, 17.91. HRMS (ESI) m/z, calculated for C14H15O3
[M+H]+ 231.1015, found 231.1023.

4.7.6. Compound (24)

7-Hydroxy-8-(3-methylbut-2-en-1-yl)-4H-chromen-4-one (24). Yield 21.14%, white solid.
m.p.: 172–173 ◦C. 1H NMR (300 MHz, CDCl3) δ 8.44 (s, 1H), 7.96 (d, J = 8.8 Hz, 1H), 7.88
(d, J = 5.9 Hz, 1H), 7.04 (d, J = 8.8 Hz, 1H), 6.32 (d, J = 5.9 Hz, 1H), 5.26 (t, J = 7.2 Hz,
1H), 3.58 (d, J = 7.1 Hz, 2H), 1.83 (s, 3H), 1.71 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 178.51,
160.14, 156.21, 155.43, 134.13, 124.55, 120.92, 118.10, 115.37, 115.14, 112.02, 25.82, 22.28, 17.98.
HRMS (ESI) m/z, calculated for C14H15O3 [M+H]+ 231.1015, found 231.1012.

4.7.7. Compound (25)

5-Hydroxy-6-(3-methylbut-2-en-1-yl)-4H-chromen-4-one (25). Yield 5.21%, white solid.
m.p.: 235–236 ◦C. 1H NMR (300 MHz, CDCl3) δ 12.67 (s, 1H), 7.81 (d, J = 5.9 Hz, 1H), 7.42
(d, J = 8.7 Hz, 1H), 6.85 (d, J = 8.6 Hz, 1H), 6.26 (d, J = 5.9 Hz, 2H), 5.30 (dd, J = 14.6, 7.1 Hz,
1H), 3.36 (d, J = 7.2 Hz, 2H), 1.74 (d, J = 7.5 Hz, 6H). 13C RMN (75 MHz, CDCl3) δ 183.35,
158.90, 157.89, 156.22, 135.55, 133.55, 124.20, 121.56, 111.35, 111.10, 106.48, 27.06, 25.83, 17.85.
HRMS (ESI) m/z, calculated for C14H15O3 [M+H]+ 231.1015, found 231.1001.

4.7.8. Compound (26)

7,8-Dihydroxy-6-(3-methylbut-2-en-1-yl)-4H-chromen-4-one (26). Yield 8.21%, white solid.
m.p.: 255–258 ◦C. 1H NMR (300 MHz, Acetone) δ 7.86 (d, J = 6.0 Hz, 1H), 7,27 (s, 1H), 5.98
(d, J = 6.0 Hz, 1H), 5.26 (t, J = 7.4 Hz, 1H), 3.29 (d, J = 7.7 Hz, 2H), 1.60 (s, 6H). 13C NMR (75
MHz, Acetone) δ 175.96, 154.60, 148.54, 141.61, 132.59, 132.39, 126.80, 122.07, 117.58, 114.64,
111.78, 26.72, 25.04, 16.94. HRMS (ESI) m/z, calculated for C14H15O4 [M+H]+ 247.0964,
found 247.0921.

4.8. Cytotoxic Activity

Cytotoxicity was evaluated in the human monocyte cell line U-937 (ATCC CRL-1593.2)
at the exponential growth phase, adjusted at 1 × 105 cells/mL in complete RPMI-1640
medium (RPMI-1640 enriched with 200 mM L-glutamine, 10% inactivated fetal bovine
serum (FBS) and 1% of a mixture of 10,000 IU/mL penicillin plus 10,000 mg/mL strepto-
mycin). Then, in each well of a 96-well tissue culture plate were dispensed 100 mL of cells
plus 100 mL of each compound (as one of six serials 1:2 dilution concentrations starting at
368 µM prepared in the same medium). Doxorubicin was included as an internal positive
control under the same dilution pattern, starting at 18 µM whereas unexposed cells were
used as negative controls. Afterward, cells were incubated for 72 h at 37 ◦C and 5% CO2.
Cell viability was assayed by the MTT reduction assay according to the optical density
(O.D) at 570 nm of the resulting reduction of formazan in a Varioskan Flash Multimode
Reader (Thermo Scientific, Waltham, MA, USA) [18]. Nonspecific absorbance was corrected
by subtracting the O.D of the blank solution that corresponded to complete RPMI-1640
medium. The assay was done in triplicate in at least two independent experiments.

4.9. Anti-Trypanosomal Activity

This activity was carried out in intracellular amastigotes of T. cruzi (Tulahuen strain
transfected with the β-galactosidase gene [19]. Briefly, metacyclic trypomastigotes were
cultured at 26 ◦C for ten days in a modified NNN (Novy−McNeal−Nicolle) medium. U937
cells were seeded in 96-well tissue culture plates at a density of 2.5 × 104 cells in 100 µL
of complete RPMI-1640 medium/well and exposed for 24 h to phorbol myristate acetate
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(1 ng/mL) to induce transformation of monocytes into macrophages. Cells were infected
with trypomastigotes (5 parasites per cell) and incubated for 24 h at 37 ◦C, 5% CO2. Wells
were washed twice with warm phosphate buffer solution (PBS) to remove noninternalized
parasites, and then were added 100 µL of complete RPMI-1640 medium and 100 µL of each
concentration of compound (50, 12.5, 3.125 µM). BNZ, at the same concentrations, was
used as internal control for trypanocidal activity (positive control), and nontreated cells as
controls for infection (negative control). After 72 h of incubation 37 ◦C, 5% CO2, the viability
of intracellular amastigotes was determined by measuring the β-galactosidase activity.
For this, 100 µM of Chlorophenol red-β-D- galactopyranoside (CPRG), and 0.1% Nonidet
P-40 was added to each well and incubated for 4 h at 37 ◦C, at 24 ◦C protected from light.
After that, measurement β-galactosidase activity was measured at 570 nm on a Varioskan,
Thermo spectrophotometer. Nonspecific absorbance was subtracted from the measurement.
Infected cells exposed to benznidazole were used as controls for anti-trypanosomal activity.
Determinations were done in triplicate with at least two independent experiments [18].

4.10. Data Analysis

The cytotoxicity was expressed as the medial lethal concentration (LC50), while the
trypanocidal activity was defined as the median effective concentration (EC50) according to
the percentage of inhibition of cells and parasites, respectively, as described elsewhere [19].
Both LC50 and EC50 were calculated by the Probit analysis. The cytotoxicity level was
graded based on the own hit criteria into high when LC50 values were lower than 50 µM,
moderate when LC50 was higher than 50 µM and lower than 100 µM, and, low when
LC50 was higher than 100 µM. Similarly, the trypanocidal activity was graded according
to EC50 values, based on the hit criteria proposed by others [20] into high when EC50 was
lower than 10 µM, moderate when EC50 values were higher than 10 µM but lower than
50 µM and, low when EC50 was higher than 50 µM. The relation between cytotoxicity and
trypanocidal activity was expressed as the index of selectivity (IS) that corresponded to the
ratio when dividing the LC50 by the EC50.
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Author Contributions: L.A.G., G.E. and W.Q. performed the chemical synthesis; Y.U. and S.R.,
performed the biological experiments. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Ministerio de Ciencia, Tecnología e Innovación –Minciencias
and Universidad de Antioquia, grant number 111571249860-061-2016.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in this article or Supple-
mentary Materials.

Acknowledgments: Luis Alberto González López is grateful to Minciencias and Universidad de
Antioquia for a scholarship in Doctorados Nacionales Program, 647-2014.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pottie, K.; Girard, V. Common Infectious Diseases. Prim. Care Clin. Off. Pract. 2021, 48, 45–55. [CrossRef] [PubMed]
2. World Health Organization: Chagas Disease (American Trypanosomiasis). Available online: https://www.who.int/health-

topics/chagas-disease#tab=tab_1 (accessed on 6 September 2021).
3. Chao, M.N.; Storey, M.; Li, C.; Rodriguez, M.G.; Di Salvo, F.; Szajnman, S.H.; Moreno, S.N.J.; Docampo, R.; Rodriguez, J.B.

Selenium-containing analogues of WC-9 are extremely potent inhibitors of Trypanosoma cruzi proliferation. Bioorg. Med. Chem.
2017, 25, 6435–6449. [CrossRef] [PubMed]

4. Espinoza-Hicks, J.C.; Chacón-Vargas, K.F.; Hernández-Rivera, J.L.; Nogueda-Torres, B.; Tamariz, J.; Sánchez-Torres, L.E.; Camacho-
Dávila, A. Novel prenyloxy chalcones as potential leishmanicidal and trypanocidal agents: Design, synthesis, and evaluation.
Eur. J. Med. Chem. 2019, 167, 402–413. [CrossRef]

http://doi.org/10.1016/j.pop.2020.11.002
http://www.ncbi.nlm.nih.gov/pubmed/33516423
https://www.who.int/health-topics/chagas-disease#tab=tab_1
https://www.who.int/health-topics/chagas-disease#tab=tab_1
http://doi.org/10.1016/j.bmc.2017.10.016
http://www.ncbi.nlm.nih.gov/pubmed/29107437
http://doi.org/10.1016/j.ejmech.2019.02.028


Molecules 2021, 26, 7067 11 of 11

5. Passalacqua, T.G.; Dutra, L.A.; De Almeida, L.; Velásquez, A.M.A.; Torres Esteves, F.A.; Yamasaki, P.R.; Dos Santos Bastos, M.;
Regasini, L.O.; Michels, P.A.M.; Da Silva Bolzani, V.; et al. Synthesis and evaluation of novel prenylated chalcone derivatives as
anti-leishmanial and anti-trypanosomal compounds. Bioorg. Med. Chem. Lett. 2015, 25, 3342–3345. [CrossRef] [PubMed]

6. Garcia, E.; Coa, J.C.; Otero, E.; Carda, M.; Velez, I.D.; Robledo, S.M.; Cardona, W.I. Synthesis, and antiprotozoal activity of
furanchalcone-quinoline, furanchalcone-chromone and furanchalcone-imidazole hybrids. Med. Chem. Res. 2017, 27, 497–511.
[CrossRef]

7. Gomes, K.S.; da Costa-Silva, T.A.; Oliveira, I.H.; Aguilar, A.M.; Oliveira-Silva, D.; Uemi, M.; Silva, W.A.; Melo, L.R.; Andrade,
C.K.Z.; Tempone, A.G.; et al. Structure-activity relationship study of antitrypanosomal chalcone derivatives using multivariate
analysis. Bioorg. Med. Chem. Lett. 2019, 29, 1459–1462. [CrossRef] [PubMed]

8. Arioka, S.; Sakagami, M.; Uematsu, R.; Yamaguchi, H.; Togame, H.; Takemoto, H.; Hinou, H.; Nishimura, S.I. Potent inhibitor
scaffold against Trypanosoma cruzi trans-sialidase. Bioorg. Med. Chem. 2010, 18, 1633–1640. [CrossRef] [PubMed]

9. Wang, J.; Zhou, R.-G.; Wu, T.; Yang, T.; Qin, Q.-X.; Li, L.; Yang, B.; Yang, J. Total synthesis of apigenin. J. Chem. Res. 2012, 36,
121–122. [CrossRef]

10. Hoarau, C.; Pettus, T.R.R. Strategies for the preparation of differentially protected ortho-prenylated phenols. Synlett 2003, 1,
127–137. [CrossRef]

11. Gomes, M.; Muratov, E.; Pereira, M.; Peixoto, J.; Rosseto, L.; Cravo, P.; Andrade, C.; Neves, B. Chalcone Derivatives: Promising
Starting Points for Drug Design. Molecules 2017, 22, 1210. [CrossRef] [PubMed]

12. Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem.
Rev 2017, 117, 7762–7810. [CrossRef] [PubMed]

13. Donnelly, J.A.; Farrell, D.F. The chemistry of 2′-amino analogs of 2′- hydroxychalcone and its derivatives. J. Org. Chem. 1990, 55,
1757–1761. [CrossRef]

14. Lahyani, A.; Trabelsi, M. Ultrasonic-assisted synthesis of flavones by oxidative cyclization of 2′-hydroxychalcones using iodine
monochloride. Ultrason. Sonochem. 2016, 31, 626–630. [CrossRef] [PubMed]

15. Wang, S.H.; Wang, Y.; Zhu, Y.Y.; Han, J.; Zhou, Y.F.; Koirala, D.; Li, D.W.; Hu, C. Synthesis, characterization, crystal structure and
cytotoxicities of 2- aroyl-3-aryl-5H-furo[3,2-g]chromene derivatives. Arkivoc 2010, 11, 204–214.

16. González, L.A.; Upegui, Y.A.; Rivas, L.; Echeverri, F.; Escobar, G.; Robledo, S.M.; Quiñones, W. Effect of substituents in the A and
B rings of chalcones on antiparasite activity. Arch. Pharm. 2020, 353, 2000157. [CrossRef]

17. Baell, J.; Walters, M. Chemistry: Chemical con artists foil drug discovery. Nature 2014, 513, 481–483. [CrossRef] [PubMed]
18. Torres, F.; Robledo, S.M.; Quiñones, W.; Escobar, G.; Archbold, R.; Correa, E.; Gil, J.F.; Arbeláez, N.; Murillo, J.; Echeverri, F.

Exploring Antiparasitic Molecule Sources from Timber by-Product Industries-Leishmanicidal and Trypanocidal Compounds
from Clathrotropis brunnea Amshoff. Front Pharmacol. 2020, 11, 584668. [CrossRef] [PubMed]

19. Buckner, F.S.; Verlinde, C.L.; La Flamme, A.C.; Van Voorhis, W.C. Efficient technique for screening drugs for activity against
Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob. Agents Chemother. 1996, 40, 2592–2597. [CrossRef]
[PubMed]

20. Katsuno, K.; Burrows, J.N.; Duncan, K.; van Huijsduijnen, R.H.; Kaneko, T.; Kita, K.; Mowbray, C.E.; Schmatz, D.; Warner, P.;
Slingsby, B.T. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat. Rev. Drug Discov. 2015,
14, 751–758. [CrossRef]

http://doi.org/10.1016/j.bmcl.2015.05.072
http://www.ncbi.nlm.nih.gov/pubmed/26055530
http://doi.org/10.1007/s00044-017-2076-6
http://doi.org/10.1016/j.bmcl.2019.04.020
http://www.ncbi.nlm.nih.gov/pubmed/31000155
http://doi.org/10.1016/j.bmc.2009.12.062
http://www.ncbi.nlm.nih.gov/pubmed/20097567
http://doi.org/10.3184/174751912X13285269293913
http://doi.org/10.1002/chin.200310256
http://doi.org/10.3390/molecules22081210
http://www.ncbi.nlm.nih.gov/pubmed/28757583
http://doi.org/10.1021/acs.chemrev.7b00020
http://www.ncbi.nlm.nih.gov/pubmed/28488435
http://doi.org/10.1021/jo00293a017
http://doi.org/10.1016/j.ultsonch.2016.02.018
http://www.ncbi.nlm.nih.gov/pubmed/26964989
http://doi.org/10.1002/ardp.202000157
http://doi.org/10.1038/513481a
http://www.ncbi.nlm.nih.gov/pubmed/25254460
http://doi.org/10.3389/fphar.2020.584668
http://www.ncbi.nlm.nih.gov/pubmed/33424593
http://doi.org/10.1128/AAC.40.11.2592
http://www.ncbi.nlm.nih.gov/pubmed/8913471
http://doi.org/10.1038/nrd4683

	Introduction 
	Results 
	Compound Synthesis 
	In Vitro Cytotoxicity and Trypanocidal Activity 

	Discussion 
	Materials and Methods 
	Chemistry 
	General Procedure for Preparation of 2-Hydroxyacetophenone Derivatives (I) 
	Compound (5) 
	Compound (6) 
	Compound (7) 
	Compound (8) 
	Compound (9) 

	General Procedure for Prenylation of 2-Hydroxyacetophenone Derivatives (III) 
	Compound (14) 
	Compound (15) 
	Compound (16) 
	Compound (17) 
	Compound (18) 

	General Procedure for Protection of Hydroxyl Groups (IV) 
	General Procedure for Preparation of Prenylated Chalcones (VI) 
	Compound (27) 
	Compound (28) 

	General Procedure for Preparation of Prenylated Flavones (VII) 
	Compound (29) 
	Compound (30) 

	General Procedure for Preparation of Chromones (II and V) 
	Compound (10) 
	Compound (11) 
	Compound (12) 
	Compound (13) 
	Compound (23) 
	Compound (24) 
	Compound (25) 
	Compound (26) 

	Cytotoxic Activity 
	Anti-Trypanosomal Activity 
	Data Analysis 

	References

