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Abstract: Graphitic carbon nitride (g-C3N4) photocatalysts were synthesized via a one-step pyrolysis
process using melamine, dicyandiamide, thiourea, and urea as precursors. The obtained g-C3N4

materials exhibited a significantly different performance for the photocatalytic reduction of Cr(VI)
under white light irradiation, which is attributed to the altered structure and occupancies surface
groups. The urea-derived g-C3N4 with nanosheet morphology, large specific surface area, and
high occupancies of surface amine groups exhibited superior photocatalytic activity. The nanosheet
morphology and large surface area facilitated the separation and transmission of charge, while the
high occupancies of surface amine groups promoted the formation of hydrogen adsorption atomic
centers which were beneficial to Cr(VI) reduction. Moreover, the possible reduction pathway of
Cr(VI) to Cr(III) over the urea-derived g-C3N4 was proposed and the reduction process was mainly
initiated by a direct reduction of photogenerated electrons.

Keywords: Cr (VI) reduction; photocatalytic; g-C3N4 precursors; nanosheet morphology; surface
characteristics

1. Introduction

In recent years, with the rapid development of mining, electroplating, leather tanneries,
and pigments, a large number of heavy metal compounds have been discharged. Among
of them, hexavalent chromium Cr(VI) is one of the most virulent contaminants which can
be accumulated by digestion system via the exposure and intake the polluted substance,
causing serious illness such as cancer and skin allergy [1–3]. Because of its high toxicity,
Cr(VI) has been ranked among the top 20 toxic pollutants on Superfund Priority List of
Hazardous Substances [4]. Photocatalytic reduction technology is an attractive alternative
technology for Cr(VI) reduction because of its acceptable cost, easy operation, and high
safety. Specifically, it can directly reduce high toxic Cr(VI) to less harmful Cr(III), which is
a necessary trace element for human being and easy to precipitation in aqueous solution
(Kθ

sp (Cr(OH)3) = 6.3 × 10−31) [5–7].
As a metal-free semiconductor photocatalyst, graphitic carbon nitride (g-C3N4) has

been widely studied due to its visible-light-driven, narrow bandgap, non-toxic, low cost,
and excellent stability [8,9]. In addition, the conduction band of g-C3N4 level is much more
negative than that of Cr(VI)/Cr(III) (1.3 eV vs. NHE), suggesting that the photo-generated
electrons in g-C3N4 possess a large thermodynamic driving force to reduce Cr(VI) to
Cr(III) [10,11]. In general, g-C3N4 can be synthesized via thermolysis method from cheap
available nitrogen-rich precursors such as urea, thiourea, cyanamide, dicyandiamide, and
melamine. Due to the different chemical structures of these nitrogen-rich precursors, as
well as the influence of foreign chemical elements such as O and S, the g-C3N4 photocata-
lysts prepared from these nitrogen-rich precursors exhibit different structural and optical
properties, and thus display different photocatalytic activities [12–14].
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Several studies have been conducted to investigate the effect of various precursors
on photocatalytic performance and the characteristics of g-C3N4. However, the field
of application of g-C3N4 derived from diverse precursors is debatable in these studies.
Tian et al. found that uran-derived g-C3N4 exhibits superior photocatalytic activity for
tetracycline degradation under visible light when compared with thiourea and dicyandi-
amide [15]. Tim et al. found thiourea served as the best water-dispersible photocatalyst
for MB degradation [16]. Guan et al. founded that g-C3N4 synthesized from melamine
and annealed in N2 exhibited much higher catalytic activities for PMS activation rather
than urea or thiourea [17]. Furthermore, the correlation between the catalytic activities and
the properties g-C3N4, such as structure, morphology, photochemical, and electrochemical
properties is frequently incomplete [18]. Martha et al. found the charge separation property
is more relevant than the specific area in the photocatalytic hydrogen evolution [19], while
Martin et al. showed the large surface area and porous structure are the main factors
for the high hydrogen evolution rate [20]. Ismael et al. claimed that g-C3N4 with a low
polymerization degree has greater photocatalytic activity [21], while Ibad et al. claim that
high crystallinity combined with mesoporosity yield highest active g-C3N4 [22]. Therefore,
understanding the impacts of different precursors on the photocatalytic reduction of Cr(VI)
and the characteristics of g-C3N4 will be useful for rationally designing of g-C3N4 with
good photocatalytic performance.

Until now, most of the investigations on photocatalytic reduction of Cr(VI) have
focused on the modification of g-C3N4 material itself, such as copolymerization [23], exfoli-
ation [24], doping [25], heterostructure fabrication [26], etc. There have been few studies on
the impact of using various nitrogen-rich precursors. In this paper, g-C3N4 photocatalysts
were synthesized via a thermal polymerization technique with dicyandiamide, melamine,
thiourea, and urea as precursors. The obtained products were named as D-CN, M-CN,
T-CN, and U-CN, respectively. The resulting catalysts’ structure, morphology, surface
properties, photoelectrochemical properties, and the photocatalytic reduction performance
of Cr(VI) were further investigated. It was found that urea-derived g-C3N4(U-CN) exhibits
the highest activity due to the nanosheet morphology, large specific surface area, and
high occupancies of surface amine groups. Further, these results demonstrate that the
specific surface area and surface characteristics play a more predominant role in influencing
photocatalytic reduction of Cr(VI) than the photoelectronic properties. Finally, a putative
Cr(VI) to Cr(III) reduction pathway in U-CN was hypothesized.

2. Results and Discussion
2.1. Structure and Morphology

Figure 1a shows X-ray diffraction (XRD) patterns of g-C3N4 prepared by different
precursor systems. It can be seen from the XRD pattern that the g-C3N4 obtained by the
four precursors all have two characteristic peaks. The weak peak near 12.8◦ is attributed
to intralayer long-range atomic order (100), which is associated with the hydrogen bonds
in g-C3N4 [27,28]. The stronger peak near 27.4◦ corresponded to the (002) crystal plane
of g-C3N4, which is caused by the interlayer accumulation of the conjugated aromatic
system [29]. These characteristic diffraction peaks are consistent with previous reports. In
addition, the diffraction peaks of U-CN are broader and lower intensity, indicating that
U-CN has the lowest crystallinity. The low crystallinity of U-CN might be that extra O in
urea produces H2O, CO2, and ammonia during calcination, which inhibit the growth of
the surface crystal [30]. Furthermore, the (100) crystal plane of U-CN is substantially lower
than the other three samples, indicating a reduced hydrogen bond effect in the intralayer
of U-CN [20].

Figure 1b presents the FTIR spectra of the g-C3N4 samples to demonstrate their
graphitic structures. The absorption peaks observed between 1200–1700 cm−1 correspond
to the characteristic breathing modes of aromatic carbon nitride heterocyclic rings [31].
The sharp absorption band at around 801 cm−1 is attributed to the respiratory pattern
of triazine units while the board vibration bands at 3000–3500 cm−1 can be ascribed to
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the uncondensed amine groups and the water molecules adsorbed on the surface [14]. In
addition, it can be seen from Figure 1c that U-CN blue-shifted at 801 cm−1. The main
reason might be due to the hydrogen bond-containing which influences the triazine ring
stretching in the g-C3N4 structure [16].
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Figure 1. (a) XRD patterns; (b) FT-IR spectra; (c) partial enlarged FT-IR spectra, and (d) TG curves of
g-C3N4 prepared by different materials.

The lower degree of polymerization of U-CN can also be obtained from thermal
stability of the different as-prepared g-C3N4. It can be seen from Figure 1d that there is
no further significant weight loss up to a temperature of 400 ◦C. However, weight losses
of 21.1%, 29.0%, 33.3%, and 53.5% were observed for the M-CN, T-CN, D-CN, and U-CN
between 400 ◦C to 650 ◦C, respectively. U-CN can be completely decomposed at 700 ◦C,
while the completely decomposition temperature of T-CN, D-CN, and M-CN are 728 ◦C,
732 ◦C, and 746 ◦C, respectively. The result suggest that U-CN has the worst thermally
stability, which might be due to its low degree of polymerization and poor stability of the
triazine ring structure.

The morphologies of the prepared samples were investigated by SEM. D-CN and
M-CN show the typical flat and layered structure with small lamellas wrapped in large
particles (Figure 2a,b), whereas T-CN has an obvious layered structure, with large lamellae
and a few fine particles scattered on the surface (Figure 2c). U-CN displays nanosheets
morphology with irregular wrinkles (Figure 2d) [32]. It can also be observed that U-CN
displays porous structure while the last three sample present large sheet without porous
structures.

The surface area and porous structure of the prepared samples were further studied on
the basis of nitrogen gas adsorption–desorption isotherms and pore size distribution curves.
As shown in Figure 3, all the samples exhibit a classical type IV isotherms, which is the char-
acteristic of the typical mesoporous materials. The BET surface areas and pore volume of the
as-prepared samples were summarized in Table 1. It can be seen that U-g-C3N4 has the largest
specific surface area (SBET = 81.060 m2 g−1) and pore volume (Vmeso = 0.164 cc g−1), while the
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BET surface areas and pore volume of D-CN (SBET = 8.779 m2 g−1, Vmeso = 0.025 cc g−1), M-CN
(SBET = 8.363 m2 g−1, Vmeso = 0.021 cc g−1), and T-CN (SBET = 7.262 m2 g−1, Vmeso = 0.019 cc g−1)
have little difference. These results are in good agreement with the morphologies of the
samples. The presence of the oxygen heteroatom in urea might also play an important role
in increasing the BET surface area and pore volume of the U-CN sample. The emission of
pyrolysis-generated gases during the thermal condensation process can function as soft
templates and promote the formation of porous structure [33,34]. The external surface area
is very important in photocatalytic action as the reactions take place mainly on the external
surface that is exposed to light irradiation.
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Table 1. Specific surface area and pore volume of as-prepared samples.

Name BET
(m2 g−1)

Pore Volume
(cc g−1)

Elemental Composition
(wt%)

Zeta
Potential

(mV)

Egap
(eV)

k
(min−1)

C N O C/N

D-CN 8.779 0.025 43.85 53.12 2.86 0.82 −21.45 2.72 0.0285

M-CN 8.363 0.021 43.82 53.94 2.24 0.81 −21.75 2.70 0.0287

T-CN 7.262 0.019 45.13 52.19 2.63 0.86 −23.31 2.68 0.0171

U-CN 81.060 0.164 41.58 56.98 1.44 0.72 −15.13 2.84 0.0822

The XPS spectra of the samples are presented in Figure 4. The survey scan XPS spectra
shown in Figure 4a illustrates that the obtained g-C3N4 samples are composed of C, N,
and O elements. It can also be seen from Figure 4 that C1s, N1s, and O1s have no obvious
energy shifts while core electrons occur, indicating the chemical states of the three elements
are the same in D-CN, M-CN, T-CN, and U-CN. As shown in Figure 4b, the high-resolution
XPS spectra of the C 1s for the samples can be deconvoluted into three peaks with binding
energies of 284.67 eV, 285.45 eV, and 288.22 eV, which are characteristic of the sp2 C-C
bond, C-O bond, and N-C=N bond, respectively [35]. The high-definition N 1s spectra of
the samples can be fitted into three distinct peaks at 398.74 eV, 399.59 eV, and 401.12 eV,
corresponding to C-N=C, tertiary nitrogen N-(C)3 and -NH2 (Figure 4c) [36]. In addition, a
weak energy peak at 532.54 eV can also be observed in the high resolution XPS spectra of
O1s, which can be attributed to adsorbed H2O on the sample surface [37] (Figure 4d).
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The surface elements content of the samples can be analyzed from the integrated peak
areas under C1s, N 1s, and O 1s (Table 1). The atomic ratios of C/N of D-CN, M-CN,
T-CN and UCN are determined to be 0.82, 0.81, 0.86, and 0.72, respectively. The C/N
ratio of U-CN is the lowest, implying a more defective structure and lower polymerization.
The zeta potentials of the samples were measured to investigate the surface charges of
the samples. In the suspension with the initial pH, the zeta potentials of D-CN, MCN,
TCN, and U-CN are −21.45 eV, −21.75 eV, −23.31 eV, and −15.13 eV, respectively. g-C3N4
contains abundant Lewis acid and base sites, which are derived from the terminal and
bridging NH-groups and lone pairs of N in triazine/heptazine rings, respectively. Amine
groups can act as proton acceptors and acquire positive surface charges. Additionally,
hydroxyl ions can react with primary and secondary amine groups to produce negative
charges on the surface of g-C3N4. The surface charges and zeta potentials of g-C3N4 are
determined by the number of amine groups on the carbon surface and the pH value of the
suspension [38]. The amine groups on the U-CN surface are substantially higher than those
on the D-CN, M-CN, and T-CN because of the huge specific surface area and much higher
surface N element concentration, resulting in a much stronger ability to adsorb hydrogen
ions in the solution with the same pH value. Furthermore, Lewis acid and base sites on the
surface of g-C3N4 are potential anchoring sites for cocatalysts [39]. A higher occupation of
surface amine group may provide more active sites for the photocatalytic reaction.

2.2. Photocatalytic Performance

The photocatalytic reduction performance of Cr(VI) over the as-prepared photocata-
lysts were evaluated under white light irradiation. As shown in Figure 5a, due to the weak
electrostatic attraction between the anionic chromate species (HCrO4

− and/or Cr2O7
2−)

and the negative charge on the surface of the g-C3N4 catalysts, all the samples show poor
adsorption capacity for Cr(VI). Under the irradiation of white light, all the samples display
significantly different photocatalytic performance, in which U-CN exhibits the best Cr(VI)
reduction activity with efficiency of 99.5% within 60 min, while the efficiencies are 71.1%,
74.1%, and 30.7% for D-CN, M-CN, and T-CN, respectively. Figure 5b depicts the kinetic
curves of the photocatalytic reduction of Cr(VI) with the typical pseudo-first-order model
(lnC/C0 = −kt). The rate constants of U-CN, D-CN, M-CN, and T-CN are 0.0822 min−1,
0.0285 min−1, 0.0287 min−1, and 0.0171 min−1, respectively. Obviously, U-CN possesses
the highest rate constant, which corresponds to the best photocatalytic performance.

Combined with the previous morphological structure and surface characteristics anal-
yses, it was found that the photocatalytic reduction effect of the catalyst has a certain
correspondence with its specific surface area. As shown in Figure 5c, a close correlation
was found between the C/C0 and SBET with a correlation coefficient 0.7967. U-CN with
nanosheet morphology, large specific surface area has the best photocatalytic reduction
performance. The large surface area facilitates the separation and transfer of photoinduced
charges in U-CN, as well as provide more active sites for Cr(VI) reduction. In addition,
it is worth noting that, despite having a similar surface area as D-CN and M-CN, T-CN
had the lowest photocatalytic reduction activity. By analyzing the surface characteristics
of the three samples, it is found that the surface amine group content of the samples has
a significant impact on the photocatalytic activity. The surface amine groups can act as
exciton dissociation traps which are conducive to the rapid splitting of photogenerated ex-
citons and promote the formation of hydrogen adsorption atomic centers, thus facilitating
the photocatalytic reduction of Cr(VI) [39]. The effect of SBET is excluded while investi-
gating the possible role of surface amino groups in the photocatalytic reduction process.
Figure 4d shows the association between normalized C/C0 ((C/C0)/SBET) and zeta poten-
tial. As illustrated in Figure 4d, the value of normalized C/C0 is closely correlation with
the zeta potential which is determined by the varied specific area and the occupation of
the surface amine groups [38]. The correlation coefficient is conculcated to be 0.8686. The
results reveal that the photocatalytic reduction activity of Cr(VI) is affected by the specific
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surface area and the amount of surface amine groups, and the amount of surface amine
groups has a greater impact.
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Figure 6a depicts the effect of initial pH of the solution on Cr(VI) reduction over U-CN.
The photocatalytic reduction efficiency of Cr(VI) decreases markedly with the increase
of pH value. In addition, when pH is 7 or 9, Cr(VI) cannot be degraded at all. pH value
affects the existence of Cr(VI) as well as the surface charge of g-C3N4. Cr(VI) is presented
as Cr2O7

2−, HCrO4
− in acidic solution and mainly as CrO4

2− in basic solution [40]. The
surface of the catalyst becomes highly protonated at low pH value, which makes the
surface of the catalytic more conducive to the accumulation of HCrO4

−. While the surface
of g-C3N4 is negatively charged at alkaline solution, which tends to repel the Cr2O7

2−.
The Cr (VI) photoreduction was achieved following Equations (1) and (2) under acidic
solution, and the hydrogen ion was beneficial to the reduction reaction. In contrast, the
Cr(VI) reduction under alkaline solution was accomplished following Equation (3) [41]. In
addition, Cr(OH)3 may be formed under high pH value and covers the active sites of the
photocatalyst, leading to the declining Cr(VI) reduction performance [42].

Cr2O2−
7 + 14H+ + 6e− → 2Cr3+ + 7H2O (1)
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HCrO−4 + 7H+ + 3e− → Cr3+ + 4H2O (2)

CrO2−
4 + 4H2O + 3e− → Cr(OH)3 + 5OH− (3)
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The effect of U-CN dosage was also tested. As shown in Figure 6b, the photocatalytic
reduction rate of Cr(VI) increases dramatically as the mount of U-CN catalyst is increased.
The improvement in the photocatalytic degradation rate of Cr(VI) declined as the catalyst
dosage was increased further. The reason might be that the effect of photocatalytic reaction
is related to the catalyst surface’s reaction sites [26]. The catalyst’s reaction sites can be
effectively increased by increasing the catalyst dosage. While the surface active sites meet
the need for Cr(VI) reduction as the dose is increased, the influence of the catalyst dosage
on the total reaction rate of Cr(VI) reduction is lowered.

Furthermore, the Influencing factors on Cr(VI) photocatalytic reduction including
light sources, hole scavengers, initial Cr(VI) concentration are presented in Supplementary
Material (Figures S2–S4).

2.3. Photoelectrochemical Properties

Figure 7a shows the UV-visible absorption spectra of the samples. T-CN exhibits
stronger light absorption in the range of 400 to 700 nm than that of the other three samples.
While the absorption edge of U-CN showed a significant blue shift with respect to the
other three samples [16,21]. The band-gap energies of the samples are calculated by plots
of (αhv)1/2 versus photo energy. As depicted in Figure 7b, the bandgaps of T-CN, M-CN,
D-CN and U-CN are estimated to be 2.68, 2.70, 2.72 and 2.84 eV, correspondingly. U-CN
has a larger band gap might be attributed to the quantum size effect caused by smaller and
disordered crystalline domains [33,34]. The band structures of the samples were further
characterized by valence band XPS(VB-XPS). As shown in Figure 7c, the VB maxima of
D-CN, M-CN, U-CN and T-CN are 2.22, 2.22, 2.28 and 2.32 eV, respectively [43]. According
to the results of UV-DRS spectra and CB XPS, the VB potential of D-CN, M-CN, T-CN
and U-CN are conculcated to be −0.50, −0.48, −0.56, −0.36 eV, respectively. Due to the
most negative CB potential in UCN, the photogenerated electrons produced by U-CN have
the most reducing ability for Cr(VI) reduction in comparison to those in the other three
samples.
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The transfer behavior and separation efficiency of photogenerated charge carriers in
the samples can be reflected by the photoluminescence (PL) spectra. As shown in Figure 7d,
the emission peak centers of the four samples are around 440 nm, which represented the
irradiative recombination of e− and h+ [21]. The emission intensity is lower for the U-CN
as compared to the other three samples, indicating the recombination rate of electrons and
holes under white light irradiation is lower in U-CN. To further investigate the separation
efficiency of photogenerated charges during the photoreactions, photoelectrochemical
measurements were performed. As displayed in Figure 8a, fast photocurrent responses via
on-off cycles were observed for all the samples, while the photocurrent intensity of U-CN
was obviously higher than that of the other three samples. In addition, the arc radium of
U-CN in the EIS Nyquist plot shown in Figure 8b was also smaller than that of the other
three samples. It was clear to see that the diameter of arc radius followed in the order of
D-CN < M-CN < T-CN < U-CN, which agrees well with the PL spectra.

As mentioned above, the photoelectric properties have little effect on the photo-
catalytic reduction of Cr(VI). Although having the widest bandgap, U-CN displays the
best photocatalytic reduction performance. T-CN has the highest white light absorption
and much higher charge separation efficiency, but it displays the lowest photocatalytic
reduction activity.
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2.4. Possible Reaction Mechanism

Previous studies have shown that the photocatalytic reduction of Cr (VI) on the sur-
face of g-C3N4 occurs via a direct or indirect reduction of photogenerated electrons. The
trapping of photogenerated electrons by O2 is critical for Cr (VI) reduction in the reduction
process [3,29,44,45]. To investigate the role of O2 on the photocatalytic reduction of Cr
(VI) over U-CN in the presence of citric acid, the comparison experiments were carried
out in different gas atmospheres. It is found from Figure 9a that the photocatalytic re-
duction of Cr(VI) over U-CN in the N2 atmosphere was obviously enhanced, whereas
the photocatalytic reduction of Cr(VI) over U-CN in O2 atmosphere was depressed to
some extent. The results indicate that O2 is involved in the photocatalytic reduction of
Cr (VI) over U-CN. ESR technique was further employed to measure the reactive species
generated during photocatalysis. As shown in Figure 9b, signals of DMPO-•O2

− could be
detected in methanolic suspension of U-CN under white light irradiation, reflecting that
•O2

− is generated via electron transfer from conduction band of U-CN to the dissolved
molecular oxygen under white light illumination. Thus, it can be concluded that in the
photocatalytic reduction system, Cr (VI) is direct reduced by photogenerated electrons
over U-CN, whereas O2 in the solution competes with Cr(VI) for the photogenerated
electrons, inhibiting Cr(VI) reduction. While citric acid acts as sacrificial agent of reactive
oxygen species in the system, avoiding the Cr(III) re-oxidation, while the surplus elec-
trons will participate in the reaction of Cr(VI) reduction or trapped by O2 to form •O2

−

(Figure 10) [46,47].
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3. Materials and Methods
3.1. Materials and Instruments

Melamine, dicyandiamide, thiourea, urea, potassium dichromate(K2Cr2O7), acetone,
sulfuric acid(H2SO4), phosphoric acid(H3PO4), diphenyl carbonyl hydrazine, sodium
hydroxide(NaOH), methyl alcohol, oxalic acid, formic acid, citric acid, and tartaric acid
were all analytical grad and obtained from Chron Chemical Reagent Co., Ltd. (Chengdu,
China.) Furthermore, 5,5-dimethyl-1-pyrroline N-oxide(DMPO) was supplied by the
Aladdin Industrial Corporation (Shanghai, China). All the reagents were analytically pure
and the solutions were prepared using ultrapure water.

3.2. Preparation of Graphitic Carbon Nitride (g-C3N4)

The g-C3N4 samples were synthesized by a thermal polymerization method using
dicyandiamide, melamine, thiourea, and urea as precursors. Typically, 10 g of the precursor
powder was put into an alumina crucible and heated at 5 ◦C/min up to 550 ◦C for 3 h in
a covered muffle furnace. After the crucible cooling to room temperature, four products
were collected and ground into powder. The obtained products were named as D-CN,
M-CN, T-CN, and U-CN, respectively (Figure S1, Supplementary Materials).

3.3. Photocatalytic Experiments

The photocatalytic activity of the synthesized samples for the removal of Cr(VI) was
evaluated under white light provided by a Xe light with the power of 300 W (Perfectlight).
At room temperature a certain amount of g-C3N4 was suspended into 150 mL aqueous
solution of Cr(VI) (50 mg/L) with the addition of citric acid (0.9 mM). The solution pH
was adjusted to 3 by H2SO4 (1 M) or NaOH (1 M). Prior to irradiation, the suspension was
ultrasonicated for 10 min and stirred in the dark for 30 min to establish the adsorption–
desorption equilibrium. Subsequently, the light source was switched on. During the
illumination process, a certain amount of the solution was taken at a predetermined time in-
terval and filtered through a 0.45 µm filter. The Cr(VI) concentration in the supernatant was
determined at 540 nm using the diphenylcarbazide (DPC) method by a spectrophotometer
at the characteristic wavelength of 540 nm.

3.4. Characterization

X-ray diffraction (XRD) patterns were examined using X-ray diffractometer (Panalyti-
cal X’Pert-pro MPD, Almelo, The Netherlands) with Cu Kα radiation source (λ = 1.54056 Å)
in the range of 10◦–60◦. The Fourier transform infrared spectra were measured using an
infrared spectrometer (Nicolet iS 10, Madison, WI, USA) with KBr pallets. The morphology
of the sample was studied using a scanning electron microscope (Hitachi S-4700, Tokyo,
Japan). Thermogravimetry (TG) of the samples was analyzed by TA synchronous ther-
mal analyzer ( TA Q600, New Castle, USA). The surface area was calculated using the
multi-point BET (Quantachrome NOVA 2000e, Boynton Beach, USA) method. X-ray photo-
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electron spectroscopy (XPS) was performed using an X-ray photoelectron (ThermFischer
ESCALAB 250Xi, Waltham, MA, USA) spectrometer with Al monochrome (hv = 1486.6 Ev)
as the X-ray source. The zeta potential of the prepared sample was measured at 293 K
using a zeta potential analyzer (Malvern, Zetasizer Nano ZS90, Worcestershire, UK). The
UV–vis diffuse reflectance spectra (UV-DRS) were measured on a UV–vis spectrometer
(Shimadzu UV-2600, Kyoto, Japan). The photoluminescence (PL) spectra of the samples
were recorded by using a fluorescence spectrophotometer (Hitachi F-7100, Tokyo, Japan).
The ESR spectra were recorded on a ESR spectrometer (Bruker EMX plus X-band CW,
Rheinstetten, Germany) using DMPO as a spin trap agent at room temperature.

The photoelectrochemical measurements were applied in a standard three-electrode
cell with an electrochemical workstation (CHI770E, CHN). A Pt and Ag/AgCl (saturated
KCl) electrode were chosen as counter and reference electrode, respectively. ITO coated
with the prepared catalyst served as the working electrode. The working electrodes were
prepared as follows: 5 mg of the as-obtained photocatalyst was suspended in a mixed
solution (10 µL of 5% nafion and 2 mL of ethanol) with ultrasound. After that, 100 µL of
the obtained suspension was drop-coated on the ITO glass (10 mm × 10 mm), and dried in
the air to completely eliminate water. Additionally, 0.1 M Na2SO4 was used as electrolyte.

4. Conclusions

In this study, g-C3N4 composites are synthesized via a facile polymerized method
with four different precursors (i.e., melamine, dicyandiamide, thiourea, and urea). It
was found that the type of precursors has a significant impact on the morphology and
structure of g-C3N4 and further affects the performance of photocatalytic reduction of
Cr(VI). Urea-derived U-CN with nanosheet morphology, large specific surface area, and
high occupancies of surface amine groups exhibit superior photocatalytic activity. These
results demonstrate that large surface area and high surface amine groups can provide
more catalytically active sites. This work confirms the effect of surface properties on the
photocatalytic activity of g-C3N4 and provides a theoretical and technical foundation for
the construction of practical and high-efficiency photocatalysts based on g-C3N4.

Supplementary Materials: The following are available online. Figure S1: g-C3N4 photocatalysts
prepared by different precursors, Figure S2: (a) Photocatalytic removal of Cr(VI) over g-C3N4
photocatalysts prepared by different precursors (b) Photodegradation kinetic constants of the as-
prepared photocatalysts under white light and visible light, Figure S3: Effect of hole scavengers on
photocatalytic Cr(VI) reduction, Figure S4: Effect of Cr(VI) initial concentration on photocatalytic
Cr(VI) reduction.
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