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Abstract: Anti-Kasha behavior has been the subject of intense debate in the last few years, as
demonstrated by the high number of papers appearing in the literature on this topic, dealing with
both mechanistic and applicative aspects of this phenomenon. Examples of anomalous emitters
reported in the last 10 years are collected in the present review, which is focused on strictly anti-Kasha
organic molecules displaying radiative deactivation from Sn and/or Tn, with n greater than 1.

Keywords: anti-Kasha fluorescence; anti-Kasha phosphorescence; organic dyes

1. Introduction

In its original formulation, the Kasha rule states that for complex organic molecules,
“regardless of which electronic state of a given multiplicity is excited [ . . . ], the emitting
electronic level of a given multiplicity is the lowest excited level of that multiplicity” [1].
This rule originates from the widespread feature that the E1-E0 energy gap is much larger
than the En-En−1 (n > 1) ones and the energy gap law. According to this law, the smaller
the energy gap between two electronic states is, the more probable is the nonradiative
deactivation (by IC and ISC) between them. In the condensed phase, exceptions to Kasha’s
rule are possible under various circumstances. In particular, two prototype mechanisms
are responsible for fluorescence from S2: (i) when the energy gap between S1 and S2 is large
and the oscillator strength (f ) of the S0-S2 transition is large, fluorescence from S2 becomes
competitive, a mechanism observed for example for azulene and its derivatives [2–5] and
thioketones [6–8], the difference between the two families being the (π, π*) character of
S1 for the former and (n, π*) for the latter; (ii) when the S2-S1 energy gap and f of the
S0-S1 transition are very small but f of the S0-S2 transition is large, fluorescence from S2
is observed due to thermal population from S1, a mechanism observed for example for
ovalene [9]. Moreover, fluorescence from higher Sn (n > 2) can be observed when energy
separation between the levels is favorable (necessary condition) and the Sn-S1 internal
conversion is prohibited based on symmetry grounds (sufficient condition) [10]. Anti-
Kasha phosphorescence from high-energy triplet levels is of course less observed. It may
be favored by either an easy ISC (by both El-Sayed and energy gap considerations) to T2
level of proper symmetry, different from the T1 one so as to give low T2-T1 IC efficiency, or
T2 thermal population from T1.

Currently, it is proven that the Kasha rule applies to most of the emissive organic
molecules, and despite the increased instrumental sensitivity with respect to that avail-
able when Kasha made his observation, it is difficult to recognize exceptions. However,
“anti-Kasha” emissions represent interesting cases for both fundamental knowledge and
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application aspects. In fact, anti-Kasha emitters do not dissipate through IC the excess
of electronic energy, which can therefore be exploited in practical applications, such as
improved luminescent quantum efficiency, tunable emission colors and lifetimes. The
interest in this subject is demonstrated by the increasing number of works appearing in the
literature in the last few years. In this regard, in 2012, Itoh reviewed works produced until
2011 on traditional anti-Kasha emitters such as azulene and its derivatives, aromatic acenes,
polyenes, thioketones, metalloporphyrins, aromatic carbonyl compounds, quinones and
halogenated aromatic compounds [9]. The reported examples comprise emission from
higher singlet and triplet levels.

Anomalous emission includes a large number of photophysical phenomena, among
which anti-Kasha behavior represents a very limited subset that manifests either through
single or multiple emissions [11]. The first case may be particularly difficult to discern
because low-lying dark excited levels are silent to many experimental investigations.
Importantly, when more than one band is displayed by a single molecule due to struc-
tural rearrangement and/or chemical transformation, such as “excited state conjugation
enhancement” (ESCE), “twisted intramolecular charge transfer” (TICT), “excited state
intramolecular proton transfer” (ESIPT) and “optically triggered counterion migration”
(OTCM) [11], dual or multiple emissive behavior is to be used instead of anti-Kasha behav-
ior. Actually, a few examples of ESCE, TICT, ESIPT and OTCM associated with anti-Kasha
behavior exist [12] since the reorganization occurs starting from a higher excited state in
the molecule. However, such examples will not be covered in the present review. Even
those cases where various emissions are due to the molecule and its aggregates in the
same phase (solution, amorphous or crystalline solids) have to be described as Kasha
emitters. Of course, trivial mistakes such as the presence of traces of impurities which can
be responsible for the appearance of multiple emission bands should be carefully checked
before claiming an anti-Kasha behavior [13,14].

Here we collect works reporting “rigorous” anti-Kasha emitters that have appeared in
the literature since 2011, starting from the seminal analysis from Itoh [9]. By “rigorous”,
we mean systems that radiatively deactivate from Sn or Tn (n > 1). In fact, in the literature,
some works report as anti-Kasha a behavior that instead could be better described as
anti-Vavilov [14,15]. According to the Vavilov rule, the intensity of the dye emissions is
independent of excitation wavelength.

Another important caveat should be presented. Since anti-Kasha behavior is hardly
recognizable through an exclusively experimental approach, in particular when states
below the emissive Sn or Tn (n > 1) ones are silent, quantum-chemical computational
studies acquire a key role in establishing the presence and the origin of anomalous emission.
Owing to the high computational costs associated with accurate ab initio techniques (e.g.,
CASPT2 and MRCI), most theoretical investigations aimed at predicting electronic spectra
of complex molecules are performed within the TDDFT approach. The performance
of this method was always deemed highly reliable for predicting non-charge-transfer
excitations, while it is well known that exchange-correlation functionals generally used for
ground-state calculations, such as those based on the generalized gradient approximation
(GGA) or the hybrid GGA functionals (typically the popular B3LYP one) do not allow for
sufficient accuracy to study CT excited states [16–21]. Very few exceptions (for example,
the PBE0 functional) have been recognized [22]. Recently, the development of the so-called
range-separated hybrid functionals (including CAM-B3LYP,ωB97X andωB97XD), where
the exchange term is split into long- and short-range [23–27] and the range-separation
parameter can be suitably determined by a self-consistent procedure [28], has allowed for
easy resolution of the CT problem for many systems of practical interest [29,30]. Additional
functionals have been developed since, such as the hybrid meta-GGA ones (including
Mo6-2X) whose performance in electronic spectra calculations has been assessed [31]. It
is therefore to be noted that the cases of anti-Kasha behavior involving CT excited states
collected in the present review, especially those where TDDFT calculations have been
performed using inadequate functionals, could be confuted by more reliable approaches.
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This manuscript is organized by different families of molecules, including azulenes,
cyclic triimidazoles, 1,2-diphenylphenanthroimidazole derivatives, cyanines, thiophenes
and carbazoles.

2. Azulenes

Azulene, 1 (Scheme 1), can be regarded as the forefather of organic molecules display-
ing anti-Kasha behavior, namely a fluorescent emission from the S2 excited state [9,32].
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This feature derives from the unique molecular structure of azulene, different from
other traditional aromatic compounds and characterized by an electron-rich five-membered
ring fused with an electron-poor seven-membered ring with HOMO density localized
mainly on the odd positions and LUMO density located on the even positions [33]
(Figure 1). This leads to an unusually low-lying first electronic excited state (S1), favoring
a large S2-S1 energy gap (>1.2 eV) and, according to the energy-gap law, resulting in flu-
orescence from S2 rather than IC to S1. Similar emissive behavior is found for variously
substituted azulenes, polyazulenes and pseudoazulenes (having a −CH=CH− group in
the heptagonal ring of azulene replaced by a heteroatom). It has been shown that HOMO
and LUMO energy levels can be modified by proper choice of electron-donor or electron-
withdrawing functional groups. In particular, the insertion of electron-donor substituents
at the 1, 3, 5 or 7 ring positions usually increases the S2-S1 gap while electron-withdrawing
substituents have the opposite effect. A reverse behavior is found for substitutions at the 2,
4, 6 and 8 positions, resulting in an S2-S1 energy gap increased by electron-withdrawing
groups and lowered by electron-donor substituents. In some cases, for derivatives character-
ized by a relatively small S2-S1 energy gap, IC to S1 becomes competitive with fluorescence
from S2, and fluorescence from both excited states is observed [9,32]. Azulene and a series
of its derivatives have been the subject of accurate theoretical benchmark studies to validate
state-of-the-art computational protocols predicting anti-Kasha photoluminescence [34,35].
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Due to these intriguing photophysical properties, there is a growing interest in the
development of azulene-based materials for optoelectronic applications, even though
the preparation of new derivatives is hampered by multistep and low-yield synthetic
procedures [32,33,36].

In this regard, Zhou et al. [37] reported on two azulene derivatives, 2 and 3 (Scheme 2),
substituted at the 3 position with cyanostyryl moieties that, under UV or visible irradiation
in acidic conditions, photoisomerize from Z- to E-form (Figure 2). The process is accompa-
nied by a strong modification of the photoluminescent features. In particular, nonradiative
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decays are inhibited by sterical restrictions going from the not emissive Z-isomer to the
E-isomer. Moreover, the E-form displays dual luminescence with a major emission band at
around 480 nm (assigned to an S2-S0 transition) and an NIR emission at around 800 nm
(attributed to a radiative decay from S1, Figure 3). The conversion between the two isomers
is reversible, and the E-isomer can be converted into the Z-isomer by simply heating the
sample at a temperature above 65 ◦C.
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The same research group investigated the photophysics of compound 4 (Scheme 3) in
which dual Vis and NIR emissive cyanostyryl-modified azulene moieties are inserted onto a
hexathiobenzene core [38]. With respect to its cyanostyryl–azulene precursor, 4 displays an
increased anti-Kasha emission at 480 nm due to a FRET process from the hexathiobenzene
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to the azulene. The emission intensity of 4 can be further enhanced in tetrahydrofuran
(THF)/H2O solvent mixtures by an AIE effect, thus leading to a total 15-fold amplification
of the QY of this material compared to its precursors. In addition, 4 is a rare example of
multiwavelength anti-Kasha emissions since it displays, in addition to the visible S2-S0
fluorescence at 480 nm, a UV emission at 360 nm, generated by radiative decay from the
higher S3 excited state. Interestingly, these emissive features are retained in PMMA films,
opening the way to possible applications of solid-state anti-Kasha materials.
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In an extension of their research, Zhou et al. [39] reported on a series of mono-, di-
and triformyl-substituted azulenes, among which the triformyl derivative 5 (Scheme 4)
shows a remarkable dual fluorescence (photoluminescence QY, Φ, up to 10%) in DMF
solution. On the basis of experimental and theoretical investigations, the latter based on
TDDFT calculations at the B3LYP/6-31G(d) level of theory, the photoluminescent behavior
of 5 was attributed to concomitant radiative deactivations from the upper S3 and S2
energy levels with (π, π*) and (n, π*) character, respectively, and having an energy gap
of 0.35 eV which guarantees a slow IC. In the presence of water, intermolecular H-bonds
between the aldehydic groups and water result in the red shift of the emission and in the
quenching of the S3 deactivation path due to the stabilization of S4 and S5 (n, π*) levels (see
Figure 4b). Tunable emission color, from blue to cyan and green, by H-bonding control
was demonstrated both in solution and in the solid state by using hydrophilic polymers
such as polyvinyl alcohol (PVA) and polyacrylic acid sodium salt (PAAS) as matrices to
ensure a sufficient moisture sensitivity and the realization of a visual sensor for moisture
(Figure 4c).
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Zhang et al. [40] reported on the synthesis of dicyclohepta[ij-kl,uvwx]rubicene, 6
(Scheme 5), a polycyclic aromatic hydrocarbon containing two coplanar pentagons and
heptagons constituting two formal azulene moieties. The presence of these conjugated rings
ensures thermal and air stability together with planarity, as confirmed by crystal structure
analysis. A combined photophysical and theoretical investigation revealed the presence in
THF solution of two emission bands at 670 and 400 nm which were assigned, according
to CASPT2/6-31G(d)/(12,12) calculations based on CASSCF orbitals, to S1-S0 and S2-S0
radiative decays, respectively. The anti-Kasha emission was established to originate mainly
from a contribution of the two formal azulene units present in the molecular structure.

Molecules 2021, 26, x FOR PEER REVIEW 6 of 45 
 

 

 
Scheme 4. Chemical structure of compound 5. 

 
Figure 4. (a) Proposed process for the formation of intermolecular H-bonding of compound 5 upon 
addition of a small amount of H2O. (b) Proposed mechanism accompanied by an anti-Kasha lumi-
nescent conversion for the tuning of the 5 luminescence in DMF/H2O mixtures. (c) The writing of 
“Z” character with H2O onto the 5-doped PVA/PAAS film on a quartz substrate and the process of 
the three-state recyclable (photographs were taken under 365 nm UV light). Adapted with permis-
sion from [39], Copyright 2018, American Chemical Society. 

Zhang et al. [40] reported on the synthesis of dicyclohepta[ij-kl,uvwx]rubicene, 6 
(Scheme 5), a polycyclic aromatic hydrocarbon containing two coplanar pentagons and 
heptagons constituting two formal azulene moieties. The presence of these conjugated 
rings ensures thermal and air stability together with planarity, as confirmed by crystal 
structure analysis. A combined photophysical and theoretical investigation revealed the 
presence in THF solution of two emission bands at 670 and 400 nm which were assigned, 
according to CASPT2/6-31G(d)/(12,12) calculations based on CASSCF orbitals, to S1-S0 and 
S2-S0 radiative decays, respectively. The anti-Kasha emission was established to originate 
mainly from a contribution of the two formal azulene units present in the molecular struc-
ture.  

 
Scheme 5. Chemical structure of compound 6. 

Based on the observation that protonation of azulene can result in a tropylium form 
with intensified fluorescence due to the suppression of anti-Kasha emission in favor of the 
S1 one, Amir et al. [41] studied 5,5′-(azulene-4,7-diyl)bis(3-dodecylthiophene), 7, and 2,2′-
(6-dodecylazulene-4,7-diyl)dithiophene, 8 (Scheme 6). The two compounds can, in fact, 

Scheme 5. Chemical structure of compound 6.

Based on the observation that protonation of azulene can result in a tropylium form
with intensified fluorescence due to the suppression of anti-Kasha emission in favor of
the S1 one, Amir et al. [41] studied 5,5′-(azulene-4,7-diyl)bis(3-dodecylthiophene), 7, and
2,2′-(6-dodecylazulene-4,7-diyl)dithiophene, 8 (Scheme 6). The two compounds can, in fact,
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undergo a reversible protonation/deprotonation process by treatment with trifluoroacetic
acid (TFA) and triethylamine (NEt3). The acidochromic switch can be easily followed by
fluorescent spectroscopy (see Figure 5) revealing a red shift and a remarkable increase in
emission intensity upon protonation and the quenching of the signal by deprotonation
with the base.
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Figure 5. Fluorescence measurements in dichloromethane for neutral oligomer 7 and after pro-
tonation to give 7H+. Reprinted with permission from [41], Copyright 2011, American Chemical
Society.

A similar behavior was reported by Koch et al. [42] for a series of 2-alkynyl azulenes,
9–20 (Scheme 7), characterized by a weak fluorescence that can be enhanced and red-shifted
by treatment with acids.
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Scheme 7. Chemical structure of compounds 9–20.

Shoij et al. [43] reported on a family of azulene-fused phthalimides, among which
derivative 21 (Scheme 8) displays the typical azulene fluorescent anti-Kasha feature. Com-
pound 21 and a series of 2-arylazulenes reported by the same authors [44] show the typical
intensification of the S1 emission through protonation, leading to suppression of anti-Kasha
behavior.
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In the search of new polycyclic heteroaromatics for potential optoelectronic applica-
tions, new examples of azulene derivatives showing anti-Kasha behavior were reported by
Xin et al. [45], who prepared the first two azulene-based BN-heteroaromatics, 22 (Scheme 9)
and 23, by nitrogen aromatic borylation. Their analysis was supported by TDDFT cal-
culations at the CAM-B3LYP/Def2-TZVP level of theory. The same research group [46]
described the reductive cyclization of 1-nitroazulene precursors to produce a series of
azulene-pyridine-fused heteroaromatics, 24–29, displaying photophysical features typical
of azulene derivatives with a weak emission band originating, based on CAM-B3LYP/6-
311G(d,p) TDDFT calculations, from S2 or higher excited states and no detectable emission
from S1.
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3. Cyclic Triimidazoles

Lucenti et al. [47] investigated an extensive series of “cyclic triimidazole”, TT (Scheme 10),
derivatives (where TT is triimidazo[1,2-a:1′,2′-c:1”,2”-e][1,3,5]triazine) characterized, mainly
in the solid state, by an intricated multiemissive behavior of molecular and aggregation-
induced origin, including RTP associated with π–π interactions. Within this rich pho-
tophysics, for some members of this family, a fluorescent or phosphorescent anti-Kasha
behavior was recognized.

In particular, benzo[4,5]imidazo[1,2-a]benzo[4,5]imidazo[1,2-c]benzo[4,5]imidazo[1,2-
e][1,3,5]triazine, 30 (Scheme 10), displays a single fluorescent emission at about 330 nm
(Φ = 17%) in diluted DCM solution at RT, which, based on TDDFT calculations at the
ωB97X/6-311++G(d,p) level of theory, was associated with deactivation from an S2 excited
state [48]. This attribution was supported by a calculated substantial S2-S1 energy gap
(0.35 eV) and an S0-S1 transition with zero oscillator strength owing to the high symmetry
(ideally C3h) of the molecular π-electron system. Intriguingly, solid 30 shows both phos-
phorescence and dual fluorescence (Φ = 18%) at RT, which can be selectively activated
by varying the excitation wavelength (see Figure 6). At 260 nm excitation wavelength, a
near-UV fluorescence emission at 350 nm of S2-S0 origin, similar to that of the chromophore
in dilute solution, is observed. By exciting at 370 nm, a structured blue fluorescence at
407 nm superimposed onto the phosphorescent emission at 530 nm is produced. The
authors explained the presence of this second fluorescence of S1-S0 nature, selectively
activated only by populating the S1 state, by partial loss of the molecular symmetry of the
chromophore owing to interchromophoric interactions in the solid state.
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based on analysis of excitation spectra showing a first absorption at 320–330 nm and a 
second absorption at 300 nm, were assigned to deactivation from S1 and Sn (n > 1), respec-
tively, with an experimental S2-S1 energy gap in the 0.27–0.38 eV range. This anti-Kasha 
origin of the dual fluorescence was supported by ωB97X/6-311++G(d,p) DFT/TDDFT cal-
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Figure 6. Compound 30. (a) Powders at 77 K with UV irradiation on (left) and off (right). (b) In
DCM at RT: absorption and emission (blue line, λex = 260 nm). (c) Powders at RT: Top: excitation
(dashed black line, λem = 348 nm) and emission (blue line, λex = 260 nm). Bottom: excitation (dashed
black line, λem = 408 nm), emission (blue line, λex = 370 nm) and phosphorescence (green dotted line,
10 ms delay, window 50 ms, λex = 358 nm). Reprinted with permission from [48].

Similarly, mono-, di- and trihalogenated TT compounds [48–50], 31–36 (Scheme 10),
display dual fluorescence in the solid state due to a large Sn-S1 energy splitting and a
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low or zero oscillator strength of the S0-S1 transition. In particular, 31–33 (Φ = 24%,
12% and 9%, respectively) are characterized by multiple long-lived emissive components
(due to molecular, T1 and aggregated forms) in addition to dual fluorescence (one at
about 340 nm for the three compounds and the other at about 350, 400 and 370 nm for
31, 32 and 33, respectively; see Figure 7), better resolved at low temperature [49]. The
two fluorescences, based on analysis of excitation spectra showing a first absorption at
320–330 nm and a second absorption at 300 nm, were assigned to deactivation from S1 and
Sn (n > 1), respectively, with an experimental S2-S1 energy gap in the 0.27–0.38 eV range.
This anti-Kasha origin of the dual fluorescence was supported byωB97X/6-311++G(d,p)
DFT/TDDFT calculations which provided an S1 state of low oscillator strength (f = 0.013,
0.009 and 0 for 31, 32 and 33, respectively) due to symmetry reasons and high-energy
singlet levels with large oscillator strength (S3 and S4, f > 0.4).
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at 298 K. Emission: λex = 300 nm (black), λex = 340 nm (blue) and λex = 440 nm (red). Excitation:
λem = 371 nm (black), λem = 427 nm (blue) and λem = 550 nm (red). (b) Normalized excitation
(dotted lines) and emission (solid lines) spectra of 32 crystals at 298 K. Emission: λex = 280 nm (black),
λex = 308 nm (blue), λex = 375 nm (red) and λex = 413 nm (green). Excitation: λem = 328 nm (black),
λem = 398 nm (blue), λem = 436 nm (red) and λem = 514 nm (green). (c) Normalized excitation
(dotted lines) and emission (solid lines) spectra of 33 crystals at 298 K. Emission: λex = 300 nm
(black), λex = 330 nm (red), λex = 374 nm (blue) and λex = 440 nm (green). Excitation: λem = 327 nm
(black), λem = 373 nm (red), λem = 441 nm (blue), λem = 487 nm (orange) and λem = 524 nm (green).
Adapted with permission from [49].

Analysis of the emissive properties of 31–33 in solution was precluded by the very
low quantum efficiency of the compounds at low concentration. On the other side, DCM
solutions of 34–36 [48,50] display a weak but recognizable fluorescence with maxima at
328, 380 and 370 nm, respectively (Φ equal to 3% for 34 and almost vanishing for 35 and
36), which was ascribed, on the basis ofωB97X/6-311++G(d,p) DFT/TDDFT calculations,
to a high-energy Sn state (n = 3; 4, 5; 6, 7 for 34–36, respectively). Again, the absence of
the S1-S0 radiative deactivation channel was explained by the low f of the S0-S1 transition
(0.024, 0.016 and 0 for 34–36, respectively) associated with the high symmetry of the TT



Molecules 2021, 26, 6999 12 of 44

π-electron system, only partially disrupted in 34 and 35, and to the sizable Sn-S1 energy
gap (calculated as 0.43, 0.44 and 0.48 eV for 34–36, respectively).

Interestingly, unlike S1 and Sn having (π, π*) character, the intermediate Sm levels (S2,
S2,3 and S2–4 for 34–36, respectively) correspond to forbidden transitions (f = 0) with partial
(π, σ*) character, where the involved σ orbitals are mainly delocalized on Br atom(s) and
C–Br bond(s). Going to the solid state (Φ < 0.1, 14 and <0.1 for 34–36, respectively) (see
Figure 8 for 34), molecular and intermolecular-induced phosphorescences are observed in
the spectra of the three compounds. Moreover, while an Sm-S0 emission is visible for 34–36
(at 326, 345, 365, 382; 395, 419, 443; 394, 418, 444 nm, respectively), the S1-S0 one appears
only for 34 and 36 (with maxima at 426 and 415 nm, respectively). This latter emission,
associated with the distorting packing forces which reduce the symmetry of the molecular
π-electron system, is the only emission observed by exciting at high energy (E > Sm) while
dual fluorescence is produced by exciting to Sm levels. A possible interpretation was
provided by ωB97X/6-311++G(d,p) DFT/TDDFT calculations on the π–π dimer of 36,
which revealed a manifold of Sm levels of (π, π*), (π, σ*) and mixed (π, π*)/(π, σ*) character
where the latter possess the strongest oscillator strength. It is therefore expected that
excitation to Sm results in both radiative deactivation (from (π, π*)/(π, σ*) levels) to S0 and
IC (from (π, π*) levels) to S1, while excitation to (π, π*) Sn leads to IC to S1. In the case of 35,
no mixed Sm (π, π*)/(π, σ*) states came out from calculations on its π–π dimer, and the (π,
σ*) excitations have f < 0.01, suggesting that Sm levels have predominant (π, π*) character
with f greater than that of S1. Therefore, irrespective of excitation energy, these (π, π*) Sm
levels are responsible for the observed single fluorescence.
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Figure 8. Compound 34. (a) Crystal packing: π-π stacking interactions and Br . . . N XB shown as
yellow and green dotted lines, respectively. (b) In DCM: top: absorption and emission (λex = 280 nm)
at RT; bottom: excitation (black dotted line, λem = 580 nm) and emission (red line, λex = 280 nm)
at 77 K. (c) Powders at RT: top: excitation (black dotted line, λem = 363 nm) and emission (blue
line, λex = 300 nm); bottom: excitation (green dashed line, λem = 429 nm) and emission (red line,
λex = 360 nm). (d) Powders at 77 K: top: emission (green line, λex = 300 nm) and excitation (blue
line, λem = 363 nm; black dashed line, λem = 492 nm); bottom: excitation (black dashed line,
λem = 580 nm) and emission (red line, λex = 280 nm). Reprinted with permission from [48].

3-(Pyridin-2-yl)triimidazo[1,2-a:1′,2′-c:1”,2”-e][1,3,5]triazine, 37 (Scheme 10), is the
only member of the TT family showing anti-Kasha behavior from an excited triplet
level [51]. This compound crystallizes in three phases characterized by a highly intri-
cated photophysics comprising multiple fluorescent and phosphorescent bands (Φ = 50%).
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The dual fluorescence observed at about 350 and 450 nm was associated with two different
molecular conformations; therefore, it does not represent an exception to the Kasha rule.
On the other side, two (at about 370 and 400 nm) of the four observed phosphorescences
were ascribed to molecular origin and interpreted, on the basis ofωB97X/6-311++G(d,p)
DFT/TDDFT calculations, as derived from triplet levels of different character. In partic-
ular, the high energy contribution resulted from the calculated T6 level having (σ/π, π*)
character, while the low energy contribution derived from the calculated T1 with (π, π*)
symmetry.

4. 1,2-Diphenylphenanthroimidazole (PPI) Derivatives

1,2-Diphenylphenanthroimidazole, PPI (Scheme 11), represents an interesting tecton
for the preparation of new emissive materials due to its intense blue fluorescence and
its bipolar character associated with the presence of two distinct nitrogen atoms in the
imidazole ring. Therefore, PPI can be used as an electron acceptor when combined with
a strong electron-donor group or as an electron donor when combined with an electron-
deficient or a weak electron-donor group. By exploiting PPI bipolarity, Yang et al. [52]
prepared and investigated the symmetrical triads PPI-PCz, 38–41 (Scheme 11) (PCz is
9-phenylcarbazole), where PPI plays the role of the donor inside the molecule as revealed
by femtosecond TA studies. Interestingly, for 38–41, anti-Kasha ICT behavior was reported.

Molecules 2021, 26, x FOR PEER REVIEW 13 of 45 
 

 

4. 1,2-Diphenylphenanthroimidazole (PPI) Derivatives 
1,2-Diphenylphenanthroimidazole, PPI (Scheme 11), represents an interesting tecton 

for the preparation of new emissive materials due to its intense blue fluorescence and its 
bipolar character associated with the presence of two distinct nitrogen atoms in the imid-
azole ring. Therefore, PPI can be used as an electron acceptor when combined with a 
strong electron-donor group or as an electron donor when combined with an electron-
deficient or a weak electron-donor group. By exploiting PPI bipolarity, Yang et al. [52] 
prepared and investigated the symmetrical triads PPI-PCz, 38–41 (Scheme 11) (PCz is 9-
phenylcarbazole), where PPI plays the role of the donor inside the molecule as revealed 
by femtosecond TA studies. Interestingly, for 38–41, anti-Kasha ICT behavior was re-
ported.  

 
Scheme 11. Chemical structure of PPI and compounds 38–41. 

In diluted DMF solution, 38–41 display a fluorescent emission at 420 nm (Φ almost 
100%), with a red shift of 55 and 30 nm with respect to that of PCz and PPI, respectively. 
TDDFT calculations on 38–41, performed at the B3LYP/6-311G(d,p) level of theory, 

Scheme 11. Chemical structure of PPI and compounds 38–41.



Molecules 2021, 26, 6999 14 of 44

In diluted DMF solution, 38–41 display a fluorescent emission at 420 nm (Φ almost
100%), with a red shift of 55 and 30 nm with respect to that of PCz and PPI, respectively.
TDDFT calculations on 38–41, performed at the B3LYP/6-311G(d,p) level of theory, revealed
for the S0-S2 transition a higher probability than the S0-S1 one due to its higher oscillator
strength. Moreover, calculations confirmed the S0-S2 ICT nature with the HOMO mainly
located on the PPI fragment and the LUMO located on PCz and phenyl moieties.

Qiao et al. [53] reported on the excitation-dependent and anti-Kasha emissive behavior
of 9-phenyl-10-(pyren-1-yl)-9H-pyreno[4,5-d]imidazole, 42 (Scheme 12).
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Jiang et al. [54] reported the photophysical investigation of compound 43 (Scheme 
13) in which PPI is connected to the anthracene-9-carbonitrile (AnCN) fragment. The ab-
sorption bands of the compound are a combination of the independent absorption bands 
of the PPI and AnCN units while the emission displays a solvatochromic behavior, con-
sistent with its CT character. This was supported by DFT calculations which revealed that 
HOMO and LUMO are delocalized on the PPI and AnCN units, respectively, and are al-
most totally separated. PL spectra in toluene solution display an emission at 463 nm and 
a very weak one in the 360–400 nm range which becomes predominant when triethyla-
mine is added to the solution (see Figure 10). Through comparative spectroscopical 

Scheme 12. Chemical structure of compound 42.

When excited at 350 nm, neat and PMMA blended film of 42 display one fluorescence
at 468 nm (τ equal to 4.5 ns). However, at 250 nm excitation wavelength, an additional
dominant emission at 392 nm (τ equal to 109.7 µs) is produced together with the 468 nm
one. Excitation profiles of the two emissions obtained for the blended film indicated for
the low-energy emission the same profile observed in absorption, while the high-energy
emission is dominated by a sharp peak at around 250 nm. Based on the experimental
results and theoretical calculations, the emissive behavior was interpreted according to the
mechanism reported in Figure 9. The anti-Kasha emission is attributed to the presence of a
Tn level easily populated through ISC from the high-energy singlet level (S5). Subsequent
ISC to S2 results in the high-energy long-lived fluorescence. It should be noted that, for this
system, a mixed DFT/TDDFT computational protocol has been adopted, where the S0 and
S1 geometries were optimized at B3LYP/6-31G(d,p) level while the higher-energy singlet
levels and the triplet states were calculated at M062X/6-31G(d,p) level on the optimized
geometry of S1.
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Figure 9. Exciton evolution route. Schematic potential key photophysical processes proposed for
anti-Kasha photoemission of 42. Abs, IC, ISC and RISC represent the absorption, IC, ISC and reverse
ISC, respectively. The absorption and emission processes are represented as solid arrow lines. The
nonradiative processes are indicated as dashed arrow lines. Reprinted with permission from [53],
Copyright 2019, American Chemical Society.
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Jiang et al. [54] reported the photophysical investigation of compound 43 (Scheme 13)
in which PPI is connected to the anthracene-9-carbonitrile (AnCN) fragment. The absorp-
tion bands of the compound are a combination of the independent absorption bands of the
PPI and AnCN units while the emission displays a solvatochromic behavior, consistent
with its CT character. This was supported by DFT calculations which revealed that HOMO
and LUMO are delocalized on the PPI and AnCN units, respectively, and are almost totally
separated. PL spectra in toluene solution display an emission at 463 nm and a very weak
one in the 360–400 nm range which becomes predominant when triethylamine is added to
the solution (see Figure 10). Through comparative spectroscopical studies, the high-energy
emission was associated with the PPI unit. Based on TDDFT calculations at the M06-2X/6-
31G(d,p) level (see Figure 11), the origin of the two emissions was ascribed to radiative
decay from molecular S4 and S1 excited states. In particular, calculations indicated S1 and
S3 states localized on the AnCN unit, S2 state with CT character from PPI to AnCN and
S4 and S5 both localized on PPI units. Anti-Kasha emission from S4 was explained by the
poor electronic coupling between S1 and S4, the high S4-S1 energy gap (0.75 eV) and the
large oscillator strength of S4 with respect to S2 and S3. In agreement with time-resolved
analysis, quenching of the low-energy emission by triethylamine was ascribed to exciplex
formation between the S1 state and triethylamine, which results in an inhibited S4-S1 IC
and therefore in an intensification of the high-energy emission.
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5. Cyanines

The peculiar electronic structure of cyanines, having an odd number of conjugated
pz orbitals and an even number of π electrons, results in the stabilization of the S1 state
with respect to S2. Therefore, frequently, these dyes are characterized by an intense S0-S1
transition in the visible/near-IR region and much less intense S0-Sn (n > 1) transitions in the
visible/near-UV region. Another relevant aspect of cyanine dyes is their large two-photon
absorption cross-sections for near-IR wavelengths. These peculiar properties of cyanine
dyes have attracted much interest in many applications such as two-photon photosensitizer
or antenna systems. In addition, the large S2-S1 energy gaps (0.6–1.0 eV) associated with
low S2-S1 IC rates represent an interesting feature for possible anti-Kasha behavior. In fact,
some cyanine dyes exhibit dual fluorescence when excited directly to S2, as reported by Das
et al. [55] in 2013. In particular, cyanine IR125 (44) (Scheme 14) in DMSO produces a single
fluorescence at 851 nm when excited at 805 nm, but a second fluorescence at 571 nm (of
S2-S0 origin) is activated together with the one at 851 nm (of S1-S0 nature) upon excitation
at 527 nm. According to steady-state and time-resolved experiments, dual fluorescence
was schematized as reported in Figure 12. By high-energy excitation, direct fluorescence
from S2 is produced together with IC to S1, from which fluorescence is also observed. By
low-energy excitation, only S1 is populated, therefore resulting in single fluorescence.
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Figure 12. Schematic diagram of excitation of IR125 (44) in DMSO by (a) 805 nm laser pulse (low-
energy excitation) and (b) 527 nm laser pulse (high-energy excitation). Incident laser polarization
dependent studies have shown the importance of higher excited states in the fluorescence emission
as discussed in the text. Reprinted from [55], Copyright 2013, with permission from Elsevier.



Molecules 2021, 26, 6999 18 of 44

Later on, Das et al. [56] reported two near-infrared (NIR) tricarbocyanine dyes, IR144
and IR140 (45 and 46, respectively) (Scheme 14), displaying two distinct fluorescent emis-
sions in different alcoholic solutions (MeOH, EtOH, PrOH and BuOH): one in the visible
region (500–550 nm), assigned to an S2-S0 transition, and the other in the NIR (850–900 nm),
assigned to an S1-S0 transition. For both 45 and 46, a variation of the S2 emission intensity
and lifetimes by varying the alcohol chain length was observed. Differently from 46, 45
displays an S2 excited state dynamics which depends on the solvent polarizability as pre-
dicted by the energy gap law. By increasing the polarizability of the alcohol series (from
MeOH to BuOH), S2 emission lifetimes of 45 can be extended from a few picoseconds to
quite larger values (83.46 ps in BuOH), opening up a new area for cell imaging and tissue
engineering in different alcohols.

Nairat et al. [57] proposed an original way to modulate the Kasha rule through
photonic control in cyanine dyes by using shaped pulses for direct S2 excitation. The
authors tracked the S2 and S1 fluorescence yield for different cyanine dyes, i.e., IR144
(45) and mPi-IR806 (47) (Scheme 15), in solution as a function of the femtosecond pulse
produced by a linear chirp device. These findings offer a photonic method to control S2
population, allowing the exploration of photochemical processes initiated from higher
excited states.
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Guarin et al. [58] reported direct measurements of the S2 lifetime for three cyanine
families with benzothiazolyl (48–50) (Scheme 16), 2-quinolyl (51–53) (Scheme 16) and 4-
quinolyl (54–56) (Scheme 16) end groups and different –(C=C)n– skeleton sizes (n = 1, 2
and 3 for each family) in order to investigate the structural features able to slow down or
inhibit S2-S1 IC. Clear emission peaks in the region between the first and second absorption
transitions, ascribable to emission from S2, were detected for the longer cyanines in ethanol
solution (at 429 and 494 nm for 49 and 50, respectively; at about 460 and 490 nm for 52
and 53, respectively; at 460 and 523 nm for 55 and 56, respectively), while the shortest
ones displayed weak emission from S2 only in more concentrated solutions. The dynam-
ics of the upper states was followed by femtosecond fluorescence upconversion and by
time-resolving spontaneous emission. Moreover, the time evolution of the S1 emission
allowed the monitoring of the population growth of S1 through IC from S2. The authors
observed that S2 lifetime can vary by more than two orders of magnitude depending on
the conjugation length and end groups. For the shortest cyanines, 51 and 54, ultrafast
(<0.4 ps) S2 lifetimes were measured, with a correspondingly fast S1 population. These
rapid dynamics were associated with the nonplanar ground state geometry due to steric
hindrance between the end groups. For all the other cyanines (48–50, 52, 53, 55 and 56),
having planar structures, the S2 lifetimes were found to closely follow the energy gap law,
so that the cyanine with the largest gap, 50, displays the slowest (17.3 ps in ethanol) S2
decay time among all the analyzed compounds.
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Similarly, Kumari and Gupta [59] showed that indocyanine green ICG, 57 (Scheme 17),
an exogenous contrast agent used for clinical applications in the NIR region for its 810 nm
emission from S1, displays direct fluorescence at 572 nm from S2 when excited at 393 nm. S2
level can be populated also by two-photon excitation with a 790 nm wavelength femtosec-
ond laser, in the well-known “tissue-optical window”, providing a two-photon contrast
agent for biomedical imaging applications. The authors demonstrated the use of 57 as
exogenous contrast agent for HeLa cell imaging, exploiting its direct emission from the
S2 state.
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spectroscopic and B3LYP/6-31G(d) DFT and TDDFT investigation, to favor S1 to energy-
matched T2 ISC [60].

Chaudhuri et al. [61] prepared and studied compound 58 (Scheme 18), which has a
thiophene-decorated phenazine linked to a triphenylene block. Compound 58 displays in
solution one fluorescent emission at 630 nm corresponding to deactivation from S1. Con-
comitant phosphorescent emission at 760 nm at room temperature becomes visible only in
polystyrene matrix with exclusion of oxygen (see Figure 13). Intriguingly, room temperature
EL spectra of 58 in poly(9-vinylcarbazole) matrix display fluorescence/phosphorescence
dual EL (see Figure 14). Moreover, EL and gated spectra of diluted polystyrene films,
collected at 4 and 25 K, respectively, show an additional peak at 530 nm from a high-energy
triplet. Based on PBE0/6-31G(d) geometry optimization and PBE0/6-311G(d) TDDFT
calculations on the analog compound with the long alkyl chains (R) replaced by methyl
groups, the two phosphorescences were assigned to triplet states localized on the triph-
enylene (the high-energy emission) and the phenazine moieties (the low-energy one). At
RT, the high-energy triplet emission is quenched by vibrations that favor IC from the
“hot” triphenylene triplet to the lower-energy phenazine one. It was therefore suggested
that anti-Kasha dual phosphorescence may favor the realization of room-temperature
electrophosphorescent devices.
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He et al. [62] proposed a design strategy to develop pure-phosphorescent single-mol-
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behavior showing weak luminescence in solution and intense emission as crystals at am-
bient conditions arising from two phosphorescent contributions: a fast one at 470 nm (τ = 
0.06–0.71 ms), which has been attributed to a radiative decay from T2, and a long-lived 
one at about 570 nm (τ = 104–123 ms) due to emission from T1 (see Figure 15). The assign-
ment of the fast decay to a phosphorescence rather than a TADF was supported by low-
temperature measurements, revealing an increase in lifetime with a decrease in tempera-
ture. Moreover, quantum mechanics/molecular mechanics (QM/MM) studies on selected 
compounds, where the QM region was treated at B3LYP/6-31G(d) level for both DFT and 
TDDFT calculations, provided two lowest excited states (T1 and T2) below S1, with large 
S1-T1 separation (in the 0.72–0.88 eV range), suggesting that TADF is less likely to occur at 
RT. The key point for successfully obtaining dual phosphorescence relies on the phenyl 
group shared between benzophenone and dibenzothiophene moieties providing, respec-
tively, (n, π*) and (π, π*) character to the transitions. As a result, although both T1 and T2 
states have mixed (n, π*) and (π, π*) configuration, T2 is mainly an (n, π*) transition while 
T1 possesses more (π, π*) character. According to the El-Sayed rule, a larger SOC is ex-
pected for T2-S0 than for T1-S0. This leads to a short lifetime for T2 and a long lifetime for 
T1. The anti-Kasha emission might then occur after the thermal population of T2 from T1 
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He et al. [62] proposed a design strategy to develop pure-phosphorescent single-
molecule white light emitters by incorporating benzophenone derivatives into the diben-
zothiophene unit. By Friedel–Crafts acylation, five compounds, namely dibenzo[b,d]thioph-
en-2-yl(phenyl)methanone (59), dibenzo[b,d]thiophen-2-yl(4-fluorophenyl)methanone (60),
dibenzo[b,d]thiophen-2-yl(4-chlorophenyl)methanone (61), dibenzo[b,d]thiophen-2-yl(4-
bromophenyl)methanone (62) and 4-bromo-4′-chlorobenzophenone (63) (Scheme 19) were
synthesized, for which phosphorescence was expected to be triggered by the presence of
both the carbonyl group and the heavy atom. Moreover, the dibenzothiophene moiety
should favor dual phosphorescence by providing various triplet excited states with differ-
ent molecular orbital configurations. The derivatives display CIE behavior showing weak
luminescence in solution and intense emission as crystals at ambient conditions arising
from two phosphorescent contributions: a fast one at 470 nm (τ = 0.06–0.71 ms), which
has been attributed to a radiative decay from T2, and a long-lived one at about 570 nm
(τ = 104–123 ms) due to emission from T1 (see Figure 15). The assignment of the fast decay
to a phosphorescence rather than a TADF was supported by low-temperature measure-
ments, revealing an increase in lifetime with a decrease in temperature. Moreover, quantum
mechanics/molecular mechanics (QM/MM) studies on selected compounds, where the
QM region was treated at B3LYP/6-31G(d) level for both DFT and TDDFT calculations,
provided two lowest excited states (T1 and T2) below S1, with large S1-T1 separation (in the
0.72–0.88 eV range), suggesting that TADF is less likely to occur at RT. The key point for
successfully obtaining dual phosphorescence relies on the phenyl group shared between
benzophenone and dibenzothiophene moieties providing, respectively, (n, π*) and (π, π*)
character to the transitions. As a result, although both T1 and T2 states have mixed (n, π*)
and (π, π*) configuration, T2 is mainly an (n, π*) transition while T1 possesses more (π, π*)
character. According to the El-Sayed rule, a larger SOC is expected for T2-S0 than for T1-S0.
This leads to a short lifetime for T2 and a long lifetime for T1. The anti-Kasha emission
might then occur after the thermal population of T2 from T1 due to a small ∆E(T1-T2) (0.19
and 0.27 eV from experiment and theory, respectively, for 61), comparable to RT thermal
energy.

Later on, Paul et al. [63] applied computational techniques to re-examine the previ-
ously reported anti-Kasha behavior of 61 [62]. According to the new calculations, per-
formed by DFT and TDDFT approaches at the Grimme’s dispersion corrected B3LYP/6-
311G(d,p) level of theory, the ∆E(T1-T2), 0.48 eV, is too large to obtain a sufficient Boltzmann
population of T2 from T1. Therefore, they proposed that T2 is instead populated by S1-T2
ISC. These two levels are in fact separated by only 0.09 eV and are characterized by strong
Duschinsky mixing [64] between their normal modes.
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Figure 15. Jablonski diagram for dual phosphorescent emission of 59–63. Adapted with permission
from [62]. Copyright 2017, Springer Nature.

Cao et al. [65] prepared and investigated a series of highly planar indaceno[1,2-b:5,6-
b′]dithiophene 1,6-dioxide derivatives containing out-of-plane side chains aimed at pre-
venting quenching of the emission due to strong intermolecular π–π interactions. Among
the studied compounds, film of 64 (Scheme 20) displays anti-Kasha phosphorescence.
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Diluted chloroform solution of 64 displays, when excited at 380 nm, a vibrationally
resolved emission originating from a locally excited state at 400–500 nm and an additional
broad band of ICT character at 500–700 nm. The film of 64 shows excitation-dependent
photoluminescence. In particular, upon excitation at 340 nm, a fluorescent band at 570 nm
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appears in the spectrum. While, at 253 nm excitation, dual emission comprising a phospho-
rescence at 400 nm (τ = 0.102 ms) and a fluorescence at 570 nm (τ = 0.812 ns) is observed.
The phosphorescence was attributed to anti-Kasha deactivation originating from a high-
energy triplet level. In agreement, DFT-TDDFT calculations on a model molecule where
hexyl was replaced by methyl, performed at B3LYP/6-31G(d) level for S0 and S1 and
at M06-2X/6-31G(d) level for higher singlet states and for triplet states, revealed small
S2–3-T3–4 energy gaps and a large T3-T2 one. This justifies an easy ISC to populate high
triplet levels from which phosphorescence is observed due to inhibited IC. Therefore, it
was suggested that upon excitation to S1, only the corresponding fluorescence at 570 nm
is observed. However, by populating upper excited states (Sn), relaxed S1 (by IC) and
Tn (by ISC) are obtained, from which fluorescence and anti-Kasha phosphorescence are
respectively produced (see Figure 16).
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7. Carbazoles

Carbazole possesses a high triplet energy level which induces a small energy gap
between triplet and singlet states beneficial for ISC [66]. Feng et al. [67] developed a
fully organic compound, 65 (Scheme 21) (containing carbazole (Cz), a carbonyl group
(Cb) and dibenzothiophene (DBT)), able to display in DCM solution RTP from T2 (at
485 nm) with Φ varying from 25% in air to 40% under nitrogen. The ICT features of such
emission were proven by a significant solvatochromic red shift with increasing solvent
polarity. Experimental studies performed at 77 K revealed for the molecule three radiative
deactivation paths assigned to S1, T2 and T1, with bands respectively at 440, 465 and
570 nm, originating from the same photogenerated excited state. Based on the observation
that, among the three bands, that associated with T2 is the strongest while that originating
from T1 is the weakest and has the longest lifetimes, an easy S1-T2 ISC and a slow T2-T1 IC
were suggested. Such interpretation was supported by B3LYP/6-31G(d) DFT and TDDFT
calculations in DCM, which provided two lowest triplet excited states, T1 and T2, both
of mixed (n, π*) and (π, π*) character, below the (π, π*) S1 level, with ∆EST energy gaps
equal to 0.305 and 0.04 eV, respectively. While T1, mainly localized on the Cz unit, has a
predominant (π, π*) contribution, T2 is distributed on the CbDBT moiety and is principally
(n, π*) in nature. Moreover, the computed SOC constant, ξST, is larger for T2 (4.69 cm−1)
than for T1 (1.11 cm−1). Therefore, theoretical results confirm that, on one side, S1-T2 ISC is
facilitated with respect to the S1-T1 one and, on the other side, T2-T1 IC is inhibited owing
to spatial separation, altogether explaining the observed anti-Kasha emission from T2.
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Wang et al. [68] prepared and fully photophysically characterized both in solution
and in the solid state three 4,4′-biscarbazole derivatives, 66–68 (Scheme 22).
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The three compounds are not emissive (67 and 68) or are hardly emissive (66) in diluted
THF or acetone solutions at RT and exhibit a fluorescence (in the 410–430 nm range) and a
long-lived component (in the 460–490 nm range) at 77 K. In solvent/nonsolvent (water)
mixtures, AIE long-lived (≈3 µs) features become visible at RT. Powders of 66–68 at RT do
not display fluorescent emissions but exhibit long-lived components with a lifetime in the
microsecond range (Φ = 35–64%) whose dual phosphorescence origin was established by
steady-state and time-resolved experiment at different temperatures and assigned to T2 and
T1 excited states. Assignment and mechanism of the observed dual phosphorescence were
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supported by TDDFT calculations performed at the ωB97XD/6-311G(d) level of theory.
For 66, calculations revealed the presence of three triplet excited states, T1 and degenerate
T2 and T3, below S1. The four excited states possess mixed (n, π*)/(π, π*) character, and,
being S1 and T1 of prevailing (n, π*) and (π, π*) contribution, respectively, an easy ISC from
S1 to T1 can be predicted based on El-Sayed rules. Similarly, T2, despite its dominant (n, π*)
character, can be easily populated from S1 through degenerate T3 of main (π, π*) nature.
Radiative deactivation from T2 competes with IC to T1 due to the relatively large T1-T2
energy gap. Similar results were obtained for 67 and 68, for which an S1 of predominant
(n, π*) contribution and T1 and T2 dominated by a (π, π*) one were determined. The
potentiality of the RTP features of the compounds was investigated, except for 68 having
the lower quantum efficiency, in nondoped OLED devices based on their homogeneous thin
films. TmPyPB, m-MTDATA (4,4′,4”-Tris[(3-methylphenyl)phenylamino]triphenylamine)
and TAPC were used as electron-transporting, hole-injecting and hole-transporting layers,
respectively. The 67 device displays a relatively small efficiency roll-off of about 20% at
1000 cd/m2 with a luminance up to 4019 cd/m2. Moreover, thanks to the combination of
AIE and RTP characteristics, the ηext of device 66 reached beyond the theoretical ηext limit
of fluorescence-based OLED.

8. Miscellaneous

Wilson et al. [69] probed the process of exciton fission in polycrystalline thin films of
pentacene, 69 (Scheme 23), by ultrafast TA spectroscopy. The authors monitored the singlet
population through the detection of stimulated emissions (SEs), which were found to be
excitation-dependent. The anti-Kasha blue-shifted SE obtained by excitation of higher-lying
transitions was attributed to light emitted by the “hot” exciton before its relaxation to S1
(as suggested by the red arrows in Figure 17). The dynamics of triplet generation indicated
that the singlet fission process does not require first relaxation to S1 but can proceed directly
from higher-lying singlet states on a similarly rapid (~80 fs) time scale. These observations
imply that pentacene S1 state is short-lived, even on the time scale of excitonic cooling, in
agreement with the very low luminescence efficiency of pentacene crystals.
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Some derivatives of benzaldehyde [9] were reported to emit from T2 due to its close-
ness to T1 and to the higher S0-T2 oscillator strength with respect to the S0-T1 one. How-
ever, for hydroxybenzaldehyde, 70 (Scheme 24), despite the S1 (n, π*) > T2 (n, π*) > T1 (π,



Molecules 2021, 26, 6999 26 of 44

π*) excited-state ordering being favorable to observing phosphorescence from T2, only
phosphorescence from T1 was observed in a rigid matrix at 77 K [9]. In 2014, Itoh [70], spec-
ulating that anti-Kasha emission from T2 could be missed due to its weakness, performed a
detailed steady-state and time-resolved investigation of 70 in a 1,4-dichlorobenzene matrix
in the −196 to −20 ◦C interval. At 77 K the only phosphorescent emission at 405 nm was
assigned to the T1 (π, π*) state. At −70 ◦C an additional phosphorescent contribution at
391 nm of T2 (n, π*) origin, with intensity increasing with temperature up to −20 ◦C, was
observed. A ∆E(T1-T2) equal to 0.11 eV was estimated from both steady-state and time-
resolved experiments which allowed the drawing of the mechanism reported in Figure 18
in which the thermal population of T2 from T1 justifies the observed emissive behavior.
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matrix: kP1 and kNP1 are, respectively, the radiative and nonradiative rate constants of T1; kP2 and
kNP2 are those of T2. Reprinted from [70], Copyright 2014, with permission from Elsevier.

While pyrene, previously reported as an exception to Kasha rule [9], was recently
demonstrated [14] to emit uniquely from S1, the introduction of dicyano methane sub-
stituents on the pyrene scaffold to generate compounds 71 and 72 (Scheme 25) promotes,
in DCM solution, an intense ICT emission that originates from S2, while no radiative deac-
tivation is obtained upon S0-S1 excitation [71] (see Figure 19). Violation of the Kasha rule
was attributed to the large S1-S2 energy gap (0.98 and 0.94 eV in 71 and 72, respectively, as
determined by DFT and TDDFT calculations at B3LYP/6-31G(d,p) level) favoring emission
from S2 over S2-S1 IC as a consequence of the reduced overlap between vibrational levels
of S1 and S2.
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Reprinted with permission from [71], Copyright 2014, American Chemical Society.

Bis(bora)calix[4]arene, 73 (Scheme 26), was reported by Arimori et al. [72] as a fluores-
cent sensor selective for fluoride due to a decrease in UV absorption and fluorescence upon
F− binding. In 2016, Jin et al. [73] performed a thorough DFT/TDDFT study to interpret
this behavior. Calculations were performed by using a GGA functional, PBE1W, which
provided a better agreement with experimental data, and the 6-311G(d) basis set. The
prompt fluorescence of 73 was assigned to emission from S2 owing to a sizable ∆E(S1-S2)
gap (0.48 eV) and very low S0-S1 oscillator strength. The quenching of fluorescence ob-
served for the fluoride-binding complex 73-F was explained by a theoretically predicted
fast IC to a dark S1 state.
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Qian et al. [74] reported on a series of boron difluorohydrazone derivatives, 74–
81 (Scheme 27), showing enhanced emission in the solid state and in highly viscous
environments and a quenched emission in nonviscous solvents. Based on DFT/TDDFT
calculations at the PBE/TZVP level, the authors attributed this behavior to the presence,
in these molecular rotors, of an S1 dark state and of a higher excited state, Sn (with n > 1,
varying within the series of compounds), having high oscillator strength. In nonviscous
solvents, the free intramolecular rotation in the excited state leads to a conformation
having a low Sn-S1 energy gap, which allows rapid Sn-S1 IC and then very weak emission
or nonradiative decay to S0. Highly viscous solvents, on the other hand, inhibit the
formation of the nonradiative excited-state structure, decreasing the rate of Sn-S1 IC and
then resulting in anti-Kasha emission from Sn. Such behavior was supported by a strict
correlation between the viscosity sensitivity of the fluorescence and the computed barrier
to rotation in the excited state: the higher the barrier, the greater the viscosity sensitivity.
Moreover, the anti-Kasha emission was experimentally confirmed in 81 by the observation
of different absorbance and circular dichroism band shapes at 77 K, a feature that can be
explained by the existence of two or more distinct electronic transitions. Furthermore, a
weak emission emerged when excitation was shifted towards lower energies, indicating
that the molecule is relaxing from the dark state S1.
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Subsequently, Zhou et al. [75], contesting the use of the pure functional PBE adopted by
Qian et al. [74] for 74–81, performed a new TDDFT study on the same series of compounds
using the B3LYP and CAM-B3LYP functionals, besides complete active space self-consistent
field (CASSCF) calculations. It was reported that S1 for the same series of compounds
74–81 is not a dark but a bright state, which calls into question the anti-Kasha origin
of the enhanced emission of these compounds in viscous environments. The authors
proposed an alternative origin, based on restriction, in viscous solvents, of flip-flop motion
promoting fast S1-S0 IC. Confutation of the previously proposed anti-Kasha behavior of
these compounds, however, still deserves experimental validation.

Zhou et al. [76] reported single-molecule white light emission from dibenzo[a,c]phenaz-
ine, 82 (Scheme 28). In solution, 82 displays steady-state PL dominated by a structured
phosphorescence with a lifetime of 2.7 µs, accompanied by a fluorescent emission. This
latter was associated to an S1 state with (n, π*) character while the phosphorescence was
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assigned to a (π, π*) T1 level, with S1-T1 ISC facilitated by El-Sayed considerations (see
Figure 20), as confirmed by the very short fluorescence lifetime of 82 (0.07 ns) [77]. Pow-
ders of 82 display multiple emissions comprising one S1-S0 fluorescence and two RTPs,
reaching Commission Internationale de l’Éclairage (CIE) coordinates of (0.28, 0.33) and Φ
of 1%. From steady-state measurements at variable temperature and time-resolved studies,
the authors demonstrate that the two RTPs are relatively independent of each other and
excluded a T1-Tn thermally activated reversed IC. With the support of TDDFT calculations,
performed at the B3LYP/6-31G(d,p) level of theory, the high-energy RTP was assigned to
a T2 state of (n, π*) character. T2-T1 IC competes with T2 radiative deactivation, leading
to the dual phosphorescent emission. The excitation wavelength dependency of the RTPs
demonstrated that the high-energy one could be efficiently generated through multiple
alternative ISC channels (S2-T2 and S1-T2, see Figure 20c).
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Peng et al. [78] investigated the photophysical properties in different states of a series
of amino benzothiadiazoles. Anti-Kasha dual emission was observed in solution for 83–87
(Scheme 29) and was correlated to the strength of the electronic communication between
the amino group and the benzothiadiazole moiety. In fact, by increasing the CT character
of the molecule, the molecular rigidity is increased and S2-S1 IC is inhibited. For 83 and
84, having the strongest CT character and the highest planarity among the members of
the family, excitation-dependent dual emission in the visible region was observed both
in toluene and acetonitrile solutions. Compounds 85 and 86, characterized by reduced
electron-donating ability from the amino group, display dual emission only in acetonitrile
where the ICT is enhanced. For 87, dual emission appears in both solvents but is hardly
visible in acetonitrile.
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Sun et al. [79] and Liu et al. [80] revealed a family of highly twisted o,o′-substituted
binaphthyls, 88–92, featuring a D–π–A structure with ICT character within each aryl group
(Figure 21). These compounds, unlike the “normal” D–π–A molecules, consist of two
independent D–π–A subunits, each of them bearing either dimesitylboryl, Mes2B (88, 89, 92)
or CHO (90) or CN (91) groups as strong electron acceptors, and NR2 groups, with R = Me
(88, 90–92) or Ph (89) as donors. All these compounds revealed temperature-dependent
dual fluorescence and switchable circularly polarized luminescence (CPL). Comparison
between 88 and 89 [79] indicates that, in the presence of the less bulky NMe2 group (88),
the two fluorescence bands are well separated in polar solvents and are very sensitive to
temperature, enabling the use of 88 as a ratiometric fluorescence thermometer. On the
other hand, for 89, the dual emission was observed only in the CPL spectra, probably
due to the overlap of the two fluorescences. Combining experimental and theoretical
results, the latter obtained by DFT and TDDFT calculations at the PBE0/6-31G(d) level



Molecules 2021, 26, 6999 31 of 44

of theory, the dual fluorescence of 88 was assigned to deactivation from S1 and S2. The
computed excitation energies of these two states were very similar (∆E = 0.07 eV), justifying
a thermal equilibrium population between them which explains the observed temperature-
dependent dual fluorescence. Moreover, the optimized geometries of S1 and S2 reveal
different features, S1 having mainly inter-subunit CT character and S2 having mixed intra-
subunit CT and LE character. Calculations on 89 provided essentially identical features;
owing to its higher structural rigidity with respect to 88, only small changes are observed
in the optimized S1 and S2 geometries with respect to the ground state. This explains the
observed overlap of the S1-S0 and S2-S0 deactivations.
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Figure 21. Schematic presentation and structure of o,o′-binaphthyls 88–92 consisting of two D–π–A
subunits. Adapted with permission from [80].

From comparative analysis of the effect of the A group in 88, 90 and 91 [80], it appeared
that the acceptor groups greatly affect the relative intensity and the energy separation of
the two emissions. The reference compound 92, lacking one electron-accepting group,
was found to possess less sensitive temperature-dependent dual fluorescence, indicating
that the symmetric structure of 88–91 is very important for realizing highly sensitive
temperature-dependent dual fluorescence.

Liu et al. [81] reported a study on intramolecular O–H . . . S H-bond formation in a
thione derivative which displays dual RTP due to a remarkable photoinduced intramolec-
ular H-bond on/off switching reactions. The corresponding methylated compound, 93
(Scheme 30), which lacks the dual RTP, represents instead an example of anti-Kasha fluo-
rescence (see Figure 22). In cyclohexane at RT, 93 displays dual emission comprising one
fluorescence (at 380 nm) and an RTP (at 690 nm). Through a deep photophysical analysis,
integrated with DFT and TDDFT calculations at the B3LYP/6-311++G(3df,3pd) level of
theory, the authors assigned the first excited state, S1, to an optically forbidden (n, π*)
transition and the higher-lying S2 state to an allowed (π, π*) one. The calculated ∆E(S2-S1)
energy gap, amounting to about 1.37 eV, justifies an anomalously slow S2-S1 IC, allowing
the radiative S2-S0 transition to become competitive.
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Figure 22. Absorption (gray filled area) and emission spectra (blue filled area and solid red line) of
93 in cyclohexane at room temperature. Insets: expansions of the absorption spectra over specified
wavelength regions. λex: 350 nm. Note that the labeling “aerated” refers to aeration in atmosphere.
Adapted with permission from [81], Copyright 2019, American Chemical Society.

Guo et al. [82] reported three donor-acceptor (D–A) compounds, 94–96 (Scheme 31),
consisting of electron-donating phenoxazine and fluorene derivatives coupled with an
electron-withdrawing benzoyl core, that are weakly emissive in solution but display DF
upon aggregation. DFT/TDDFT calculations using the PBE0 functional were employed to
rationalize the emission mechanism of 94 as the representative of the family. The obtained
oscillator strength for S1 was almost zero (f = 0.0006), indicating that S1 is nonemissive.
On the other hand, the optimization of the S2 geometry provided a relatively large f value
(0.0523), suggesting that the efficient emission of 94 corresponds to an anti-Kasha radiative
deactivation from S2.
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Additionally, natural transition orbital (NTO) analysis, both in THF and in solid state,
has been performed. For S2, a typical CT state was predicted, while a significant LE feature
was found for T3. Moreover, the small (0.22 eV) S2-T3 energy gap calculated in solid state
makes an rISC process highly favorable; thus, in the solid state, T3 can be converted to S2,
supporting the subsequent anti-Kasha delayed emission (see Figure 23). The full emissive
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mechanism in the solid state can be therefore explained by a reduced IC and a promoted
ISC, with respect to the solution, resulting in the DF.
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Such aggregation-induced delayed fluorescence (AIDF) appears particularly useful for
OLED applications since the use of fluorescent emission, with respect to phosphorescence,
allows the problem of efficiency roll-off to be reduced, while the AIE property of the
compounds allows the fabrication of efficient nondoped devices. Therefore, the EL behavior
of the compounds was investigated in nondoped and doped OLEDs, and external quantum
efficiency, ηext, of up to 14.3% was obtained in the device of 95. At 1000 cd m−2 the
device kept excellent ηext of 14.1%, and the external quantum efficiency roll-off was as
small as 1.4%, indicative of the superior efficiency stability of the device based on these
AIDF materials.

Shi et al. [83] proposed a strategy to obtain ratiometric sensing for quantitative analysis
of biomolecules in a dynamic cellular environment by using dyes able to switch from a
close Kasha form to an open anti-Kasha one characterized by dual emission. In particular,
97 (Scheme 32), where fluorescein is covalently linked to a chromene unit, displays in
solution two fluorescences at 520 and 700 nm, assigned, through DFT-TDDFT studies
at M06-2X/Def2-SVP level, to emissions from S2 and S1, respectively. According to the
quantum chemical calculations, a ∆E(S2-S1) equal to 0.74 eV was determined. Such a high
energy gap, together with the different S2 and S1 orbital localization, the former mainly on
the fluorescein fragment and the latter on the chromene moiety, justify the slow S2-S1 IC
resulting in the observed dual fluorescence. For the corresponding closed form of 97, only
Kasha emission from S1 was recorded (see Figure 24).

Starting from 97, similar compounds (98, 99) (Scheme 32) were prepared and studied.
Through D–π–A structural modifications, the ∆E(S2-S1) gap can be modulated to provide
diverse anti-Kasha/Kasha chromophores exhibiting an invariant S1-S0 NIR Kasha emission
and an anti-Kasha visible S2-S0 one. In the physiological pH range, these chromophores re-
main in their open form, emitting from both S2 and S1. A quantitative sensing platform can
be realized by replacing the hydroxy group with different biorecognition units (Figure 25)
When the probes in their closed form (with only the NIR emission from S1) encounter the
corresponding analyte, the hydroxyl group is restored, turning the probes to their open
form at the desirable physiological pH, with both S2 and S1 emissions. The invariant NIR
Kasha emission from the S1 state acts as internal reference while the green emission from
the anti-Kasha-active S2 state linearly increases with the concentration of targeted analyte.
Using this strategy, the authors demonstrated the ratiometric quantification of cysteine and
glutathione in living cells and animals.
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Figure 25. Chemical structures of 97–99 with different biomolecular-recognition groups as quanti-
tative sensing platform (IFC stands for integrated fluorescein with chromene). Reprinted/adapted
from [83].

Luo et al. [84] reported dual TADF emission in a single luminophore arising from
anti-Kasha/Kasha pathways from different excited electronic states (see Figure 26). The
authors designed the unsymmetrical D–A–D′ molecular structure 100 (Scheme 33) (where
D = phenothiazine, D′ = N-(1H-indole-5-yl) acetamide and A = diphenylsulfone) which
possesses two CT states localized on the D–A and D′–A subunits of the molecule, as
elucidated by means of B3LYP/6-31G(d) DFT and TDDFT calculations. For each CT singlet-
triplet pair, the calculated energy splitting was found to be less than 0.1 eV, allowing,
both in diluted solution and in the aggregated state (THF/water, solvent/nonsolvent
mixture), very fast ISC and rISC rates that produce two independent DFs with different
colors and lifetimes. Due to its favorable features, 100 was successfully employed in time-
resolved fluorescence cell imaging. The main advantage of this probe was its capability to
provide complementary dual-channel lifetime mapping that reduces time-resolved imaging
distortions.

Wu et al. [85] presented three heterocyclic 1,2-diphenyl ethylene derivatives, 101–103
(Scheme 34), that, at ambient conditions in the solid state, display excitation wavelength-
dependent multiple emission, comprising prompt, delayed and RTP components origi-
nating from first and higher-energy excited singlet and triplet levels. The first and upper
excited singlet and triplet states were responsible for the observed dual fluorescence and
dual phosphorescence, as supported by QM/MM calculations with TDDFT excitation
energies for the QM region computed at B3LYP/6-31G(d) level. In particular, prompt
fluorescence from S1 and prompt and TADF emission from S2 were observed for all com-
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pounds, while dual T2/T1 RTP was recorded only for 101, 102 and 103 displaying single
RTP from T2 (see Figure 27).
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For 101, an S2 level of mainly (π, π*) character, energetically close to triplet states
of mixed (n, π*)/(π, π*) nature, and an S1 and its close triplets of (π, π*) symmetry were
calculated. For the other two compounds, an (n, π*) S2 level close to (π, π*) triplets together
with an S1 and its adjacent triplets of (π, π*) symmetry were computed. Therefore, based
on symmetry considerations and the small E(S2-Tn) (0.08, 0.04 and 0.02 eV for 101, 102
and 103, respectively), an easy DF from S2 and a negligible one from S1 were predicted.
Moreover, the large ∆E(T2-T1) of 101, 1.40 eV, explains its observed dual RTP.
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Sun et al. [86] reported a tetraphenylethene-substituted Schiff base, 104 (Scheme 35),
which exhibits water-induced fluorescent switch from weak yellow-green Kasha emission
to intense sky blue anti-Kasha one. According to TDDFT calculations at the B3LYP/6-
31G(d) level of theory, in nonprotic solvents, an ESIPT process involving an intramolecular
O-H . . . N hydrogen bond is expected to lead to a ketone structure, responsible for the Kasha
yellow emission (see Figure 28). When water was added, an intramolecular hydrogen bond
was broken in favor of an intermolecular one with a water molecule. ESIPT associated with
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this interaction leads to a solvated ketone structure whose 440 nm emission was assigned
to radiative deactivation from S2, and the S2-S1 IC was inhibited by the large ∆E(S2-S1),
0.54 eV. It should be underlined that this ESIPT process is correctly included in the present
review, despite what was mentioned in the introduction, since it results in the formation
of a new species from which anti-Kasha emission is observed. A practical use of 104 in
rewritable papers and fluorescent sensors was developed with potential applications in
information security protection, multilevel anticounterfeiting and data storage.
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Figure 28. Possible mechanism for the dynamic stimuli-responsive fluorescence switch. S0
E: ground

state of enol form of 104; Sn
E: excited state of enol form of 104; S0

K: ground state of keto form of 104;
Sn

K: excited state of keto form of 104; S0
SE: ground state of enol form of solvated 104; Sn

SE: excited
state of enol form of solvated 104; S0

SK: ground state of keto form of solvated 104; Sn
SK: excited state

of keto form of solvated 104. Adapted from [86], Copyright 2021, with permission from Elsevier.

Due to the presence of (π, π*) and (n, π*) levels, coumarin exhibits efficient El-Sayed-
allowed ISC and therefore represents a useful scaffold to populate triplet levels in the
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absence of heavy atoms [87]. Jhun et al. [87] investigated a series of D-coumarin deriva-
tives where D represents units with different oxidation potentials. Among the studied
compounds, 10H-spiro(acridine-9,9′-fluorene), 105; 9,9′-dimethyl-9,10-dihydroacridine,
106; and 10H-phenoxazine, 107 (Scheme 36), display anti-Kasha dual emission in toluene
solution comprising a high-energy fluorescence at 420 nm of (π, π*) with partial CT char-
acter and a low-energy one in the 470–580 nm region of ICT character. Steady-state and
time-resolved results revealed the TADF nature of the low-energy emission, which involves
thermal repopulation of the 1ICT state from a close 3(n, π*) one. This latter is populated
through El-Sayed-allowed ISC from the 1(π, π*) level since both states are localized on the
coumarin moiety (see Figure 29). Intriguingly, such dual fluorescence is produced from
(π, π*) and ICT transitions, both usually characterized by high oscillator strength. On the
contrary, a single Kasha fluorescence was observed for the reference carbazole-coumarin
compound, where the low (π, π*)-ICT energy gap (0.23 eV), smaller than those of the other
investigated D-coumarin derivatives, allows a faster IC to the 1ICT state rather than ISC to
the 3(n, π*) one. It has to be noted that TDDFT calculations on this series of compounds,
aimed at investigating the nature of the emissive state(s), revealed that the B3LYP functional
provided results closer to the experimental values with respect to other tested (CAM-B3LYP
and PBE0) functionals.
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2021, with permission from the Royal Society of Chemistry.

The dual fluorescence was successfully used by the authors for ratiometric temperature
monitoring in the 120–300 K range and triplet quencher detection.

Imran et al. [88] reported on the anti-Kasha behavior of radical cation 108 (Scheme 37).
When excited at 537 nm, DCM solutions of 108 display a red fluorescent emission centered
at about 634 nm (Φ = 9.3%), which is intensified (Φ = 19.3%) when the compound is
dispersed in PMMA matrix (1 wt%). The compound possesses one of the highest photo-
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stabilities among radical emitters with a half-life of 9.5 × 104 s under 350 nm irradiation.
This property was ascribed to its cationic charge, which stabilizes ground and excited state
molecular orbitals and inhibits their oxidation. DFT and configuration interaction singles
calculations at the UB3LYP/6-31G+(d,p) level provided a low-energy excited doublet.
According to the energy gap law, nonradiative deactivation was predicted from this state
due to its closeness to the ground state. Therefore, the observed emission was associated
with higher-energy calculated doublets, in violation of the Kasha rule.
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Multiple anti-Kasha emissions from three singlet states of a single molecule were
reported by Franca et al. [89] for a spiro compound, 10-phenyl-10H,10′H-spiro[acridine-
9,9′-anthracen]-10′-one, 109 (Scheme 38), characterized by rigidly connected orthogonal
D–A units. Excitation of toluene solutions of 109 at high energy provides simultaneous
emission from three states (see Figure 30) which were described, based on previously
reported calculations on this molecule [90], performed at the DFT/MRCI-R/SV(p) level,
as LED (π, π*) (1B1 in Figure 30), LEA (n, π*) and CT (π, π*) states (in order of decreasing
energy), the first two being locally excited states pertaining to the acridine (D) and the
anthracenone (A) moieties, respectively. The lower-energy CT state, very close in energy to
LEA, provides both prompt and delayed fluorescence. The strongest allowed transition
was ascribed to the high energy state, LED, located at about 0.6 eV above the other two.
Emission from LED competes with both IC (to LEA and CT lower-lying states) and ISC to a
close triplet state which then decays to populate a lower triplet state yielding DF from rISC.
Direct population of the weaker states produces both prompt (from LEA and CT states)
and delayed (from ISC between LEA and 3LEA followed by rISC to CT state) emissions.
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Scheme 38. Chemical structure of compound 109.

The existence of the three emissions was unequivocally assessed by working in aer-
ated/deaerated conditions and by varying both the excitation wavelength, resulting in a
change in the relative intensities of the emissions, and the solvent. Strong solvatochromic
relaxation was observed for the lowest-energy singlet CT state, while the close-lying LEA
state was unaffected by polarity. The origin of such unprecedented rich photophysics
of 109 was attributed to its rigid perpendicular geometry which effectively electronically
decouples the D and A moieties. This ensures small ∆EST values and activates the TADF
from a molecular CT state, in addition to the prompt emissions from the local LED and
LEA states.
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9. Conclusions

This review of the literature of the past 10 years collects examples of purely organic
compounds exhibiting photophysical behaviors that violate the Kasha rule. Mechanisms
involved in different systems are frequently related to the same molecular properties,
which are a large En-En−1 energy gap, a strong En-E0 oscillator strength and a weak En−1-
E0 oscillator strength (n > 1), where E refers to both singlet and triplet levels. Moreover,
symmetry considerations on En and En−1 have to be taken into account, together with the
energy gap ones, as a factor that inhibits En-En−1 IC, making the radiative deactivation
from En competitive. From the collected examples it appears that even a ∆E(En-En−1)
as small as 0.35 eV is enough to favor emission from En. This value is derived from
computational studies, some of which can be of course further improved. However, at this
stage, a ∆E(En-En−1) smaller than the generally accepted 1 eV limit could be enough to
observe anti-Kasha emission.

Alternatively, thermally activated anti-Kasha behavior may occur in the presence of a
small En-En−1 energy gap (about 0.2 eV) by both reverse IC and reverse ISC.

In addition to basic research considerations, anti-Kasha behavior might offer improved
performances useful for many practical applications. Among them, dual fluorescence from
S2 and S1 and/or phosphorescence from T2 and T1 allow the development of OLEDs
with dual electroluminescence based on a single compound, strongly simplifying device
technology and concomitantly reducing fabrication costs. Other interesting issues are
the intrinsic response of dual emitters to external stimuli such as temperature, allowing
their use as fluorescence thermometers, or water, being optimal as humidity sensors, or
encryption/decryption. The different lifetimes of their emitting states offer unprecedented
opportunities for their use in time-resolved bio-imaging, solving the problem of detection
in weak emission areas.
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Abbreviations

IC = internal conversion; ISC = intersystem crossing; RISC or rISC = reverse intersystem
crossing; FRET = fluorescence resonance energy transfer; DFT = density functional theory; TDDFT
= time-dependent density functional theory; CASPT2 = complete active space second-order per-
turbation theory; MRCI = multireference configuration interaction; ICT = intermolecular charge
transfer; CT = charge transfer; AIE= aggregation-induced emission; CIE = crystallization-induced
emission; QY = quantum yield; PMMA = polymethylmetacrilate; RT = room temperature; RTP =
room temperature phosphorescence; DCM = dichloromethane; TA = transient absorption; EL = elec-
troluminescence; DF = delayed fluorescence; TADF = thermally activated delayed fluorescence; TAPC
= 1,1′-bis(di-4-tolylaminophenyl)cyclohexane; TmPyPB = 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene.
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