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Abstract: Rearrangements of o-tolyl aryl ethers, amines, and sulfides with the Grubbs–Stoltz
reagent (Et3SiH + KOtBu) were recently announced, in which the ethers were converted to o-
hydroxydiarylmethanes, while the (o-tol)(Ar)NH amines were transformed into dihydroacridines.
Radical mechanisms were proposed, based on prior evidence for triethylsilyl radicals in this reagent
system. A detailed computational investigation of the rearrangements of the aryl tolyl ethers now in-
stead supports an anionic Truce–Smiles rearrangement, where the initial benzyl anion can be formed
by either of two pathways: (i) direct deprotonation of the tolyl methyl group under basic conditions
or (ii) electron transfer to an initially formed benzyl radical. By contrast, the rearrangements of o-tolyl
aryl amines depend on the nature of the amine. Secondary amines undergo deprotonation of the
N-H followed by a radical rearrangement, to form dihydroacridines, while tertiary amines form both
dihydroacridines and diarylmethanes through radical and/or anionic pathways. Overall, this study
highlights the competition between the reactive intermediates formed by the Et3SiH/KOtBu system.

Keywords: Truce–Smiles rearrangement; Grubbs–Stoltz reagent; radical; electron transfer; aryl sub-
stitution; diarylmethanes; dihydroacridines; triethylsilane; potassium tert-butoxide; DFT; carbanion

1. Introduction

The first aryl migration reaction was published by Wieland in 1911 [1]. Since then, many
studies have graced the literature, presenting synthetically useful transformations [2,3]. The
Smiles rearrangement, discovered in 1930 [4,5], an intramolecular SNAr reaction taking
place at the ipso position of a substituted aromatic system, is an example of an aryl mi-
gration under basic conditions (Scheme 1) [6,7]. This SNAr reaction, like the vicarious
nucleophilic substitution, investigated by the team of Mąkosza [8], often features activation
using electron-withdrawing groups, usually a nitro group [6,7,9–12]. However, the first
identification of this rearrangement by Smiles was on naphthalene derivatives which lacked
activating groups [5].
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Scheme 1. General representation of a Smiles rearrangement [9].

The Truce–Smiles rearrangement, discovered in 1958, is a derivative of the Smiles
rearrangement in which the attacking atom is a carbanion [7]. The rearrangement of unacti-
vated substrates in the Smiles rearrangements requires the use of strong bases and forcing
conditions [13–16]. The Truce–Smiles rearrangement does not require the use of activating
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groups in the migrating aryl group, however, forcing conditions are still necessary for the
generation of a carbanion [7,9,17]. The Smiles rearrangement, originally a two-electron
process, has since then also been developed as a radical rearrangement [3,9,17–27]. Very
recently, a series of radical cation Smiles rearrangements was reported [19] and a DFT study
of the radical Smiles rearrangement has also been published [28].

In our recent publication [29], o-tolylaryl ethers 1 and sulfides 3 underwent rearrange-
ment to diarylmethanes 2 and 4, respectively, while o-tolylaryl amine 5 yielded oxidatively
cyclised products 6 and 7 (Scheme 2A). The reactions were mediated by triethylsilane and
potassium tert-butoxide. This novel reagent pair was first reported by Grubbs and Stoltz
in 2013 [30]. The original discovery presented a new method for the cleavage of strong
C–O bonds in aryl ethers (8→9, Scheme 2B). Since then, the reagent pair has proven to be
remarkably versatile by facilitating the wide range of transformations shown in Scheme 2B.
Three reaction intermediates 24a–26a (Scheme 2C) are proposed to be responsible for the
diverse chemistry observed [30–38]. Triethylsilyl radicals 24a were previously identified by
detection of a TEMPO-SiEt3 adduct [32]. In addition, a ReactIR study on the combination
of triethylsilane and potassium tert-butoxide had revealed the formation of a new species
in situ, suggested to be pentavalent silicate 25a. [33]. This intermediate can be a source
of a hydrogen atom or a hydride ion [33,34]. Smith et al. proposed radical anion 26a as
an intermediate in the debenzylation of N-benzylindoles [35]. Accordingly, substrates
treated with the triethylsilane/potassium tert-butoxide system are subjected to radical,
base, hydrogen atom transfer, hydride ion, and electron transfer chemistry simultaneously,
allowing for diverse reaction outcomes and mechanisms. Following our publication [29],
we decided to launch a computational and experimental study to understand the difference
in reactivity between the ether and amine substrate classes. The results of this investigation
are presented within this paper.

Theoretical details: DFT calculations were carried out using the M06-2X functional [39,40]
with the 6-311++G(d,p) [41–44] basis set on all atoms. All calculations were performed using
the C-PCM [44] implicit solvent model with parameters for triethylamine as solvent. No silane
(Me3SiH or Et3SiH) solvents are parametrised in Gaussian 16, so triethylamine was chosen as
the closest model to actual silane solvent since it has a similar dielectric constant (ε = 2.3832)
compared to triethylsilane (ε = 2.323) [45]. All calculations were performed in Gaussian 16 [46]
at 403.15 K. While experimental reactions used triethylsilane, yielding intermediates 24a–26a,
theoretical studies made use of the corresponding trimethylsilane-derived intermediates,
24b–26b which were used for computational economy.
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Scheme 2. Chemistry of the Et3SiH/KOtBu system. (A) Rearrangements of o-tolylaryl ethers,
sulfides, and amines, (B) Transformations mediated by the silane/tert-butoxide system, (C) Reactive
Intermediates derived from R3SiH.
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2. Results and Discussion

The o-tolylaryl ethers, represented by 1, were considered first (Scheme 3). Thus, after
hydrogen atom abstraction by triethylsilyl radicals 24a to form benzyl radical 27, two pos-
sibilities for cyclisation were considered. 5-Exo-trig cyclisation gives the spiro intermediate
28, which then fragments to yield phenoxyl radical 29. This species is transformed to the
isolated product 2 either by electron transfer followed by protonation, or by hydrogen
atom transfer. In the alternative route, benzyl radical 27 undergoes a 6-aryl cyclisation (we
prefer to refer to such cyclisations as ‘6-aryl’, since they could potentially be regarded as
6-exo or 6-endo depending on the initial Kekulé representation of the Ph group in 27) to give
cyclohexadienyl radical 30, which likely suffers rapid deprotonation by either KOtBu or
pentavalent silicate 25b to form radical anion 31 [47]. To proceed to product 2, this would
be followed by C–O fragmentation to give distal radical anion 32. Hydrogen atom abstrac-
tion and protonation would then yield product 2. Scheme 3 reports the energy changes for
the two competing cyclisation steps. The 6-aryl cyclisation is favoured here, with a lower
transition state for 27→30 (22.5 kcal mol−1) than for 27→28 (25.2 kcal mol−1). In addition,
the formation of 30 is less endergonic (1.8 kcal mol−1) compared to 28 (7.3 kcal mol−1).
Based on these results, the 6-aryl cyclisation is kinetically and thermodynamically favoured;
however, the steps following either cyclisation mode towards the product are exergonic
(28→29, 30→31). Given these figures, and the accuracy of computational predictions (accu-
racy to within 2.0 kcal mol−1 [39]) one might expect that the 6-aryl cyclisation is favoured
or that both cyclisation routes are in contention.
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Scheme 3. Energy barriers and relative energy changes for rearrangement of o-tolylaryl ether 1.

However, our recent paper showed that the rearranged ethers must arise only by the 5-
exo cyclisation route using substrates 33 (Scheme 4). In these cases, a different product 34 or
39, would arise, depending on the cyclisation mode. Thus, 5-exo cyclisation of 35 would
give spiro intermediate 36, resulting in product 34, where the R group is para- to the
benzylic CH2. Alternatively, 6-aryl cyclisation of 35 would lead to product 39, where the
relationship is meta. The outcome of these experiments was that products 34 were isolated
and no 39 was ever detected. Therefore, the laboratory reaction must proceed through a
5-exo cyclisation. The discrepancy between this result and the energy-based predictions of
Scheme 3 suggested that further mechanistic possibilities should be considered.
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Scheme 4. Reaction of o-tolylaryl ether 33 with the Et3SiH/KOtBu [25].

The simplest change to consider was how the competition between the two modes
of cyclisation would be affected by complexation to a potassium cation. Experiments and
computational evidence testify to the important role that π-cation complexes involving K+

ions can have on organic reactions of aryl substrates [37,48–52].
Scheme 5 indicates that the presence of a potassium cation does affect the energy pro-

file of the reactions, but with the numbers still favouring the 6-aryl case (42→ 43) slightly
over 5-exo (40 → 41). Thus, the computational results did not reflect the experimental
results.
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Scheme 5. Probing potential cation-π interactions.

Accordingly, the investigation of the mechanism was extended to anionic intermedi-
ates, and pathways to access benzyl anions were considered. As mentioned above, radical
anion 26a has been proposed as an intermediate that is formed from heating triethylsilane
and KOtBu. According to our computational studies, 26b (without a potassium counte-
rion) is an extremely strong electron donor [31,53], with Eox = −3.74 V vs. SCE (MeCN).
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Therefore, it would be capable of reducing an intermediate benzylic radical [Ered = −1.43 V
vs. SCE (MeCN)] [54] to an anion. This single electron transfer (SET) was probed using the
Nelsen Four-Point method [55] (Scheme 6).
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Scheme 6. SET reduction of benzylic radical 27 to benzylic anion 44.

The reduction of benzyl radical 27 was almost barrierless with an activation energy
of 0.3 kcal mol−1. The reduction was also exergonic and, so, it is likely to happen in situ
prior to the cyclisation. Therefore, it was appropriate to explore the energy profiles for
cyclisations of benzyl anions.

Anion 44 is likely to complex with a potassium cation in situ to form a salt, 46. This
salt was used to investigate the two cyclisation modes available to it (Scheme 7).
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Thermodynamics predict that the 5-exo-trig cyclisation [∆Grel = −39.7 kcal mol−1]
leading to 47 is favoured over the 6-aryl cyclisation [∆Grel = +6.2 kcal mol−1] that would
lead to 48. The activation energy for the 5-exo-trig pathway (∆G‡ = 33.6 kcal mol−1) is
achievable under the conditions of the reaction. The 6-aryl cyclisation does possess a lower
activation energy favouring it as the kinetic cyclisation. However, it is also endergonic by
6.2 kcal mol−1. The experimental results have already shown that this cyclisation mode is
not featured in the products (Scheme 3). Therefore, if it occurs, intermediate 48 reverts to
intermediate 46 which undergoes an irreversible 5-exo-trig cyclisation.

Our computations also show that this Truce–Smiles rearrangement from 46 to 47 is
concerted. Generally, Smiles and Truce–Smiles rearrangements proceed through the for-
mation of a spiro intermediate, which subsequently undergoes a ring-opening to yield the
product [6,17]. Mechanisms featuring a spiro transition state rather than a spiro intermedi-
ate have been proposed [7], with several examples being identified by Clayden et al. for the
Smiles and Truce–Smiles rearrangements [56–62]. Concerted reaction pathways have also
been identified for other Smiles-type rearrangements [63–65]. In our case, the conversion
of salt 46 to 47 presents a new example of a concerted Truce–Smiles rearrangement. This
was confirmed through an intrinsic reaction coordinate (IRC) calculation which displayed
the simultaneous contraction of the C–C bond being formed and the elongation C–O bond
being broken. Attempts to optimise a spiro intermediate all resulted in the ring-opening of
the dihydrofuran ring yielding salt 47.

The formation of anion 46 through a radical-polar crossover from radical 27 however,
is not the only possible route for formation of 46, and so we considered the direct depro-
tonation of the methyl group of aryl ether 1 by either pentavalent silicate 25 or KOtBu
(Scheme 8). The initiation route featuring pentavalent silicate 25b was found to be exergonic
(∆Grel = −10.7 kcal mol−1) with an attainable activation energy (∆G‡ = 23.6 kcal mol−1),
making it a competitive initiation route with the radical-polar crossover pathway. KOtBu
was also identified as a base potentially capable of initiating the reaction; the deprotonation
has a surmountable barrier, but it is accompanied by an endergonic change in energy
disfavouring the formation of salt 46. The following concerted Truce–Smiles rearrangement
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is sufficiently exergonic to push the reaction forward. Hence, a control experiment using
only KOtBu and aryl ether 1 was carried out to probe this possibility. However, the reaction
did not yield the product and only starting material was recovered. This result rules out
KOtBu as a base capable of initiating the reaction via direct deprotonation of the methyl
group of the o-tolyl ring. Complete reaction coordinate diagrams utilising both initiation
routes are shown in the SI (Figures S3 and S4).
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In summary, o-tolyl aryl ethers were identified to yield o-hydroxydiarylmethanes
through a concerted Truce–Smiles rearrangement. The o-tolyl anion responsible for the
rearrangement is generated through two competitive pathways: (i) a radical polar crossover
route featuring a SET reduction of the initial benzylic radical formed via hydrogen atom
abstraction by a triethylsilyl radical 24a (Scheme 6), (ii) the direct deprotonation of the
o-tolyl methyl group by pentavalent silicate 25a (Scheme 8). The carbanion generated by
these initiation pathways has the option to undergo either a 5-exo-trig cyclisation or a 6-aryl
cyclisation. The former cyclisation mode is supported by experimental evidence from
the treatment of strategically substituted aryl ether 33 (Scheme 4). Computationally, the
6-aryl cyclisation was established to be kinetically favoured over the 5-exo-trig cyclisation.
However, the 6-aryl cyclisation was ruled out based on experimental evidence (Scheme 4).
This is compatible with an endergonic and reversible 6-aryl cyclisation, which ultimately
results in the carbanion undergoing the thermodynamically favoured irreversible 5-exo trig
cyclisation (Scheme 7).

Nitrogen series: Our recent experimental findings showed that the structure of the
o-tolyl amine substrate governs which type(s) of product are formed. When the starting
amine is secondary (50a) or when it has a group bonded to the nitrogen, as in 51a, which is
cleavable under the reaction conditions, only acridine-type products are formed (Scheme 9).
To test what happens when the starting amine is tertiary, the N-methyl amine 52 was
prepared and subjected to the reaction conditions. This yielded both dihydroacridine
55 (10%) and diarylmethane 56 (14%).

Substrates 50a and 51a will be considered first. Under strongly basic conditions, they
are converted to potassium salt 57a. A radical mechanism for the transformation of salt
57 was initially probed (Scheme 10). For computational economy, the simpler case 57b,
derived from 50b and 51b was explored. Benzyl radical 58b, formed via hydrogen atom
abstraction by a trimethylsilyl radical (∆G‡ = 19.4 kcal mol−1; ∆Grel = 0.9 kcal mol−1)
could undergo either a 5-exo-trig cyclisation to 59b or a 6-aryl cyclisation to 61b. The
latter is preferred, having a lower activation (∆G‡ = 22.8 kcal mol−1) and a favourable
change in Gibbs free energy (∆Grel = −2.5 kcal mol−1) versus the 5-exo-trig cyclisation
mode (∆G‡ = 31.5 kcal mol−1, (∆Grel = 11.7 kcal mol−1). The 6-aryl cyclisation intermediate
61b is subsequently deprotonated by either pentavalent silicate 25a or KOtBu, yielding
the corresponding radical anion 62b. Oxidation and protonation of 62 on workup yields
dihydroacridine 53b which can be further oxidised by air during purification to yield
acridine 54b.
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Scheme 10. Energy barriers and relative changes in energy for rearrangement of o-tolylaryl amine
salts 57.

Having studied the behaviour of the benzyl radicals, the next stage was to study the
corresponding benzyl anions. These might be formed by: (i) reduction of the initially
formed benzyl radical to a benzyl anion by single electron transfer and (ii) formation of the
benzyl anion by direct deprotonation of the methyl group of the o-tolyl ring. Both of these
routes were also now investigated for salt 57b (Scheme 11).
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The conversion of 58b to 63 by electron transfer (Nelsen Four-Point method) [55] was
endergonic (Scheme 11A). In solution, the product anion might be rapidly stabilised by
complexation with a potassium cation to form 64 (for an analogous stabilisation, see Figure
S14). The alternative route to the benzyl anion 64 utilising pentavalent silicate 25b as
base, was also found to be unproductive, as the activation energy (∆G‡ = 41.0 kcal mol−1)
exceeded the attainable limit at 130 ◦C. Assuming 64 was formed by the electron transfer
route, its cyclisation by 5-exo-trig or 6-aryl cyclisation was not feasible due to the high
activation barriers in both cases (Scheme 11C); this rules out an anionic cyclisation mecha-
nism for o-tolylaryl amines that are converted to the analogous potassium salt 57 under the
reaction conditions. Therefore, o-tolyl aryl amines which yield the corresponding amide
salt in situ prior to the rearrangement proceed through a radical mechanism by 6-aryl
cyclisation to yield the observed acridine-type products (Scheme 10).

The above discussion assumes that salt 57 is the reactive species in solution. However,
it has recently been shown by Palumbo et al. [36] that amide anions can be silylated by
Et3SiH/KOtBu. Therefore, a substrate containing a SiMe3 group bonded to the nitrogen
atom, 67, was explored (Figure 1). Effectively, substrate 67 features a tertiary amine,
as does substrate 52, so the reactivity of substrate 52 is considered below, after that of
67. Subsequently, our studies on an additional substrate, 68, will be reported below. Its
relevance lies in the fact that, although all of our substrates to date have been ortho-tolyl
amines and ethers, our experimental interests lie in extending studies to more complex
substrates, where the tolyl methyl group is replaced by an extended chain, for which
substrate 68 would be the simplest computational model.
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Figure 1. Additional o-tolyl aryl amine substrates investigated.

Cyclisation of substrate 67 was studied via both benzyl radical and benzyl anion
intermediates and the energy profiles for formation of these intermediates are shown in
Table 1. The initial hydrogen atom abstraction of the ortho methyl by a trimethylsilyl
radical 24b has attainable activation energy (17.8 kcal mol−1) and is almost thermoneutral
(entry 1, Table 1A).

Table 1. Investigation into (A) the hydrogen atom abstraction facilitated by 24b, (B) the radical-polar
crossover mediated by 26b, and (C) direct deprotonation of the ortho methyl group via pentavalent
silicate 25b for substrates 65 and 58.
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The energy profiles for the cyclisation of benzyl radical 69 were closely balanced:
for 6-aryl cyclisation, ∆G‡ = 24.6 kcal mol−1 and ∆Grel = 2.3 kcal mol−1, while for 5-exo
cyclisation, ∆G‡ = 25.1 kcal mol−1 and ∆Grel = 7.9 kcal mol−1, (see Figures S7 and S8) and
so the expectation would be that a mixture of diarylmethane and dihydroacridine products
would be produced by this pathway.

Addressing possible anionic pathways, reduction of radical 69 to anion 71 was found
to be feasible (entry 1, Table 1B), making the benzyl anion a likely participant in the
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reaction. Direct deprotonation of the methyl group of the o-tolyl ring of 67 by pen-
tavalent silicate 25b was also energetically viable (entry 1, Table 1C). Anionic cyclisa-
tions of the benzyl anion intermediates formed from these initiation routes were inves-
tigated next (Table 2). The anionic 5-exo-trig cyclisation of 73 has a very achievable acti-
vation energy (∆G‡ = 26.5 kcal mol−1) [66,67] similar to the alternative 6-aryl cyclisation
(∆G‡ = 27.7 kcal mol−1), and so the expectation would be that a mixture of diarylmethane
and dihydroacridine products would also be produced by this pathway.

Table 2. Summary of activation energies and relative changes in Gibbs free energy for the cyclisation step of the anionic
mechanisms for anions 73 and 74.
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Entry Anion 5-exo-trig 6-aryl

- - ∆G‡ (kcal mol−1) ∆Grel (kcal mol−1) ∆G‡ (kcal mol−1) ∆Grel (kcal mol−1)

1 73 26.5 3.0 27.7 8.6

2 74 26.5 1.1 31.0 8.5

As both the radical and the anionic routes predict that a diarylmethane product
should be formed from the silylated substrate 67, and as no such product is observed
experimentally, we conclude that silylation of secondary amine substrates plays no role in
their conversion to products.

Turning now to examine substrate 52, conversion to the benzyl radical 70 is easily
achieved (Table 1A, entry 2). Radical cyclisations of substrate 52 showed a preference for
6-aryl cyclisation (∆G‡= 19.8 kcal mol−1, ∆Grel = −2.7 kcal mol−1) versus 5-exo cyclisation
(∆G‡= 23.1 kcal mol−1, ∆Grel = 4.8 kcal mol−1) (see Figures S11 and S12). Accordingly, the
radical cyclisation pathway favours formation of dihydroacridine product, 55 (Scheme 9).

Reduction of radical 70 to anion 72 witnesses a low barrier (3.8 kcal mol−1) and is
exergonic. Anion 72 would be further stabilised by complexing with a potassium ion to
form 74 (see Figures S15 and S16). Salt 74 could alternatively arise by direct deprotonation
of substrate 52 by strong base 25b. Table 1C (entry 2) shows that this is also an energetically
accessible route.

Table 2 (entry 2) reports the energy profile for 5-exo and 6-aryl cyclisations of salt
74. 5-Exo-trig cyclisation is almost thermoneutral and has an accessible barrier, while
6-aryl cyclisation is not at all favoured, with its very high barrier (∆G‡ = 31.0 kcal mol−1);
furthermore, it is quite endergonic (∆Grel = 8.5 kcal mol−1). Therefore, the anionic pathway
favours the pathway that leads towards a diarylmethane product 56

Scheme 9 shows that both dihydroacridine 55 and diarylmethane 56 are isolated from
the reaction of substrate 52, suggesting that both radical and anionic pathways contribute to
product formation. Computation clearly shows that both cyclisation routes are accessible,
but it is challenging to define the relative contribution of each pathway.

The final substrate to be examined was substrate 68 (Figure 1). It is a close analogue
of substrate 50b. In that case, we have reported above that the pathway through benzyl
radical was operative, while that through a benzyl anion was not. Accordingly, here we
investigated solely the radical pathway. Table 3 presents the energy changes for the cycli-
sation step of the radical pathway for radical 79 derived from substrate 68 and compares
them with radical 58b derived from substrate 50b. As for 50b, the 6-aryl cyclisation is the
preferred pathway, with the cyclisation being somewhat facilitated for the more highly
substituted 68.
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Table 3. Summary of activation energies and relative change in Gibbs free energy for the cyclisation steps for radical 79
compared to 58b.
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Entry Radical 5-exo-trig 6-aryl

- - ∆G‡ (kcal mol−1) ∆Grel (kcal mol−1) ∆G‡ (kcal mol−1) ∆Grel (kcal mol−1)

1 58b 31.5 17.1 22.8 −2.5

2 79 27.9 16.6 20.2 −0.8

The computations report that the cyclisation of substrates like 68 proceed through
a benzylic radical intermediate rather than through an anionic counterpart. In terms of
future plans, this informs us that more complex sidechains for analogues of 68 should be
designed with substituents that do not intercept the benzyl radical more rapidly than it
attacks the target aryl ring.

In this paper, we have relied on computational assessment of the mechanism. This
is appropriate, as the computation can compare the favourability of cyclisation of radical
and anionic intermediates that could arise from identical substrates. There are of course,
experimental approaches to determining whether a reaction is radical [68] or anionic [69],
and indeed we have used such methods in previous studies on different chemistry [70,71].
A benzyl radical intermediate might be probed by means of an adjacent radical clock or
by trapping with a commercial persistent radical, e.g., TEMPO. However, TEMPO would
likely intercept the first radical intermediates in our pathway (silyl radicals) and this would
inhibit that pathway before the benzyl radicals were formed, while radical clocks would
necessarily intercept the relevant benzyl radical intermediate prior to cyclisation, and thus
the test substrates would not actually cyclise (detecting a benzyl radical would not mean
that it was normally responsible for the cyclisation). On the other hand, a benzyl anion
intermediate might be reported by a leaving group (e.g., OMe) on the adjacent carbon,
elimination of which would give rise to a styrene. However, this substrate would then not
cyclise, and so it would not be clear which intermediate was responsible for the cyclisation.

3. Materials and Methods
3.1. Experimental Details

All reagents and solvents were obtained from commercial suppliers and were used
without further purification unless mentioned otherwise. Anhydrous diethyl ether, THF
and dichloromethane (DCM) were dried using a Pure-Solv 400 solvent purification system
(Innovative Technology Inc., USA). DMF was dried over 3 Å pre-activated molecular sieves.
Molecular sieves were activated by three heating cycles in the microwave, followed by
evacuation under vacuum.

The glovebox was supplied by Innovative Technology Inc., Herndon, VA, USA, which
is operated with a nitrogen atmosphere.

Thin Layer Chromatography was performed on silica gel pre-coated aluminium plates
(60 Å, F254 UV indicator) purchased from Merck. The thin layer chromatograms were
analysed by UV (254 nm, UVP mineralight UVG-11 lamp) and staining either with basic
KMnO4 [KMnO4 (6 g), K2CO3 (40 g), NaOH (5 mL, 10% w/w) in water (600 mL)] or an
ethanolic solution of phosphomolybdic acid [phosphomolybdic acid hydrate (10 g) in
ethanol (100 mL)].

Flash Column Chromatography purification was performed with 35-70 µm particle
size silica gel 60 Å (200–400 mesh) purchased from Prolabo.

NMR spectra were measured on a Bruker AV400 instrument. 1H and 13C NMR spectra
were obtained at 400 and 101 MHz, respectively. Spectra were recorded in chloroform-
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d1. The frequency was locked against the deuterated solvent signal and the final spectra
were referenced against the residual non-deuterated solvent signal (for 1H spectra) or the
deuterated solvent signal (for 13C spectra). Chemical shifts are reported as δ (ppm) with
respect to tetramethylsilane. The following multiplet abbreviations are used: s = singlet, d
= doublet, t = triplet, td = triplet of doublets, m = multiplet, b = broad.

Infrared spectra were recorded on a Shimadzu IRAffinity-1 instrument. GC-(EI)MS
analysis was performed on an Agilent Technologies 7890A GC system connected to an
Agilent Technologies 5975C inert XL EI/CI MSD triple axis-mass detector. The GC was
equipped with a Rxi-5Sil MS column (30 m × 0.25 mm × 0.25 µm). Helium was used as the
carrier gas (1.0 mL/min flow rate). The injector temperature was 320 ◦C and was operated
in splitless mode.

High resolution mass spectrometry (HRMS) was conducted at the University of
Glasgow using a Bruker microTOFq High Resolution Mass Spectrometer. This instrument
has an Electrospray (ESI) ion source coupled to a time-of-flight (ToF) analyser.

3.2. Substrate Synthesis
3.2.1. Preparation of 1-methyl-2-phenoxybenzene (1)
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size silica gel 60 Å (200–400 mesh) purchased from Prolabo.  

NMR spectra were measured on a Bruker AV400 instrument. 1H and 13C NMR spec-
tra were obtained at 400 and 101 MHz, respectively. Spectra were recorded in chloroform-
d1. The frequency was locked against the deuterated solvent signal and the final spectra 
were referenced against the residual non-deuterated solvent signal (for 1H spectra) or the 
deuterated solvent signal (for 13C spectra). Chemical shifts are reported as δ (ppm) with 
respect to tetramethylsilane. The following multiplet abbreviations are used: s = singlet, d 
= doublet, t = triplet, td = triplet of doublets, m = multiplet, b = broad.  

Infrared spectra were recorded on a Shimadzu IRAffinity-1 instrument. GC-(EI)MS 
analysis was performed on an Agilent Technologies 7890A GC system connected to an 
Agilent Technologies 5975C inert XL EI/CI MSD triple axis-mass detector. The GC was 
equipped with a Rxi-5Sil MS column (30 m x 0.25 mm x 0.25 μm). Helium was used as the 
carrier gas (1.0 mL/min flow rate). The injector temperature was 320 °C and was operated 
in splitless mode.  

High resolution mass spectrometry (HRMS) was conducted at the University of Glas-
gow using a Bruker microTOFq High Resolution Mass Spectrometer. This instrument has 
an Electrospray (ESI) ion source coupled to a time-of-flight (ToF) analyser. 

3.2. Substrate Synthesis 
3.2.1. Preparation of 1-methyl-2-phenoxybenzene (1) 

 
This substrate was prepared according to a literature procedure.9 

1 1H NMR (400MHz, CDCl3) δ 7.32 – 7.26 (m, 2H), 7.25 – 7.23 (m, 1 H), 7.19 – 7.13 (m, 1 H), 
7.11 – 6.99 (m, 2H), 6.93 – 6.87 (m, 3H), 2.24 (s, 3H); 13C NMR (101MHz, CDCl3) δ 158.0, 
154.6, 131.6, 130.2, 129.8, 127.2, 124.1, 122.4, 119.9, 117.4, 16.3; ATR-IR νmax (neat)/cm-1 1582, 
1485, 1233, 1111, 874, 748, 691; GC-MS [m/z (%)] (11.33 min): 184.3 (99, [M]+), 165.2 (73), 
155.2 (60), 141.2 (100), 128.2 (51), 115.2 (76), 106.2 (80), 91.2 (88), 78.2 (89), 65.2 (96), 50.2 (73). 
Analytical data in agreement with those reported in the literature [29].  

  

This substrate was prepared according to a literature procedure [29].
1 1H NMR (400MHz, CDCl3) δ 7.32–7.26 (m, 2H), 7.25–7.23 (m, 1 H), 7.19–7.13 (m, 1 H),
7.11–6.99 (m, 2H), 6.93–6.87 (m, 3H), 2.24 (s, 3H); 13C NMR (101MHz, CDCl3) δ 158.0, 154.6,
131.6, 130.2, 129.8, 127.2, 124.1, 122.4, 119.9, 117.4, 16.3; ATR-IR νmax (neat)/cm−1 1582,
1485, 1233, 1111, 874, 748, 691; GC-MS [m/z (%)] (11.33 min): 184.3 (99, [M]+), 165.2 (73),
155.2 (60), 141.2 (100), 128.2 (51), 115.2 (76), 106.2 (80), 91.2 (88), 78.2 (89), 65.2 (96), 50.2 (73).
Analytical data in agreement with those reported in the literature [29].

3.2.2. Preparation of N,2-dimethyl-N-phenylaniline (52)
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This substrate was prepared according to a literature procedure [72]. To an oven-dried
pressure tube equipped with a stirrer bar was added NaOtBu (2.11 g, 22 mmol, 1.4 equiv.),
Pd2(dba)3 (73 mg, 0.5 mol %), BINAP (74 mg, 0.75 mol %), N-methylaniline 97 (2 mL,
19 mmol, 1.2 equiv.), and 2-bromotoluene 96 (1.93 mL, 16 mmol, 1 equiv.). The liquid
substrates were added last. The vial was flushed with a stream of argon and tightly capped.
The mixture was refluxed in a pre-heated oil bath at 130 °C for 24 h. The mixture was
allowed to cool to room temperature, taken up in ether (50 mL), filtered, and concentrated.
The crude product was then purified by column chromatography (100% hexane 3% EtOAc
in hexane) to afford N,2-dimethyl-N-phenylaniline 52 as a colourless oil (1.16 g, 37%).
52 1H NMR (400 MHz, CDCl3) δ 7.31–7.27 (m, 1H), 7.25–7.12 (m, 5H), 6.74–6.68 (tt,
J = 7.3 Hz, 1.0 Hz, 1H), 6.56–6.50 (dd, J = 8.8, 1.0 Hz, 2H), 3.22 (s, 3H), 2.15 (s, 3H); 13C
NMR (101 MHz, CDCl3) δ 148.7, 146.3, 136.3, 130.9, 128.5, 127.8, 127.0, 125.9, 116.3, 112.3,
38.5, 17.3; ATR-IR νmax (neat)/cm−1 3022, 2877, 1593, 1490, 1338, 1251, 1112, 746, 727, 691;
GC-MS [m/z (%)] (12.56) min: 198.3 (100, [M]+), 183.2 (89), 165.2 (62), 155.2 (66), 107.2 (63),
91.2 (97), 77.2 (93), 65.2 (96), 51.2 (82). Analytical data are in agreement with those reported
in the literature [73].
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3.3. Reactions of Substrates
3.3.1. Reaction of 1-methyl-2-phenoxybenzene 1 with KOtBu—Neat
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Substrate 1 (92 mg, 1.0 equiv., 0.5 mmol) and KOtBu (3.0 equiv., 1.5 mmol, 168 mg) were
sealed in a pressure tube in a nitrogen-filled glovebox. This experiment was carried out
neat and the contents subjected to the reaction conditions as is. The mixture was stirred at
130 ◦C for 18 h before the pressure tube was cooled to room temperature, opened to air and
diluted with water (50 mL). The organic products were extracted into Et2O (3 × 50 mL).
The combined organic phases were dried over Na2SO4, filtered and concentrated. Analysis
of the crude mixture afforded starting material 1 (34 mg, 35%) alongside traces of an
unidentifiable complex mixture.

3.3.2. Reaction of 1-methyl-2-phenoxybenzene 1 with KOtBu—in THF
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Substrate 1 (92 mg, 1.0 equiv., 0.5 mmol) and KOtBu (3.0 equiv., 1.5 mmol, 168 mg) were
added to a pressure tube, followed by THF (5 mL) in a nitrogen-filled glovebox. The tube
was sealed, removed from the glovebox, and the mixture stirred at 130 ◦C for 18 h. After
reaction, the pressure tube was cooled to room temperature, opened to air and diluted with
water (50 mL). The organic products were extracted into Et2O (3 × 50 mL). The combined
organic phases were dried over Na2SO4, filtered and concentrated. Analysis of the crude
mixture afforded starting material 1 (58.4 mg, 63%) alongside traces of an unidentifiable
complex mixture.

3.3.3. Reaction of N,2-dimethyl-N-phenylaniline 52 with KOtBu/Et3SiH—in THF
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1307, 1161, 729. HRMS (ESI): calculated for C14H16N ([M+H]+): 198.1277 found: 198.1277. 
NMR data are in agreement with those reported in the literature [75].  
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Et3SiH (3.0 equiv., 1.5 mmol, 240 μL) were sealed in a pressure tube in a nitrogen-filled 
glovebox. The contents of the pressure tube were stirred at 130 °C for 18 h before the 
pressure tube was cooled to room temperature, opened to air and diluted with water (50 
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phases were dried over Na2SO4 and concentrated in vacuo. The crude material was purified 
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Substrate 52 (99 mg, 1.0 equiv., 0.5 mmol), KOtBu (3.0 equiv., 1.5 mmol, 168 mg), and
Et3SiH (3.0 equiv., 1.5 mmol, 240 µL) were dissolved in THF (5 mL) and sealed in a
pressure tube in a nitrogen-filled glovebox. The contents of the pressure tube were stirred
at 130 ◦C for 18 h before the pressure tube was cooled to room temperature, opened
to air and diluted with water (50 mL). The organic products were extracted into Et2O
(3 × 50 mL). The combined organic phases were dried over Na2SO4 and concentrated
in vacuo. The crude material was purified using column chromatography (50% hexane
in toluene→ 100% toluene) affording 10-methyl-9,10-dihydroacridine 55 as a yellow oil
(10.8 mg, 10%) and 2-benzyl-N-methylaniline 56 as a yellow oil (15.4 mg, 14%).
55 1H NMR (400 MHz, CDCl3) δ 7.22–7.14 (m, 4H), 6.96–6.85 (m, 4H), 3.89 (s, 2H), 3.38 (s,
3H); 13C NMR (101 MHz, CDCl3) 143.8, 127.7, 127.0, 124.5, 120.7, 112.0, 33.4, 33.3 ATR-IR
νmax (neat)/cm−1 2922, 1635, 1595, 1494, 1460, 1367, 1178, 752; GC-MS [m/z (%)] (14.37 min):
194 (100, [M-H]+), 176 (42), 152 (14), 126 (4), 97 (9), 63 (10). Analytical data are in agreement
with those reported in the literature [74].
56 1H NMR (400 MHz, CDCl3) δ 7.32–7.26 (m, 2H), 7.24–7.18 (m, 2H), 7.16 (d, J = 7.3 Hz,
2H), 7.05–7.00 (d, J = 7.1 Hz, 1H), 6.77 (t, J = 7.4 Hz, 1H), 6.65 (d, J = 8.1 Hz, 1H), 3.87 (s, 2H),
3.53 (bs, 1H), 2.77 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 147.3, 139.4, 130.6, 128.8, 128.6,
128.0, 126.5, 124.7, 117.1, 110.1, 38.0, 30.9; ATR-IR νmax (neat)/cm−1: 3431, 2893, 1604, 1512,
1307, 1161, 729. HRMS (ESI): calculated for C14H16N ([M+H]+): 198.1277 found: 198.1277.
NMR data are in agreement with those reported in the literature [75].
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56 1H NMR (400 MHz, CDCl3) δ 7.32 – 7.26 (m, 2H), 7.24 – 7.18 (m, 2H), 7.16 (d, J = 7.3 Hz, 
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2H), 3.53 (bs, 1H), 2.77 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 147.3, 139.4, 130.6, 128.8, 128.6, 
128.0, 126.5, 124.7, 117.1, 110.1, 38.0, 30.9; ATR-IR νmax (neat)/cm-1: 3431, 2893, 1604, 1512, 
1307, 1161, 729. HRMS (ESI): calculated for C14H16N ([M+H]+): 198.1277 found: 198.1277. 
NMR data are in agreement with those reported in the literature [75].  
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Substrate 52 (99 mg, 1.0 equiv., 0.5 mmol), KOtBu (3.0 equiv., 1.5 mmol, 168 mg), and 
Et3SiH (3.0 equiv., 1.5 mmol, 240 μL) were sealed in a pressure tube in a nitrogen-filled 
glovebox. The contents of the pressure tube were stirred at 130 °C for 18 h before the 
pressure tube was cooled to room temperature, opened to air and diluted with water (50 
mL). The organic products were extracted into Et2O (3 x 50 mL). The combined organic 
phases were dried over Na2SO4 and concentrated in vacuo. The crude material was purified 
using column chromatography (50% hexane in toluene→100% toluene), affording 10-

Substrate 52 (99 mg, 1.0 equiv., 0.5 mmol), KOtBu (3.0 equiv., 1.5 mmol, 168 mg), and Et3SiH
(3.0 equiv., 1.5 mmol, 240 µL) were sealed in a pressure tube in a nitrogen-filled glovebox.
The contents of the pressure tube were stirred at 130 ◦C for 18 h before the pressure tube
was cooled to room temperature, opened to air and diluted with water (50 mL). The
organic products were extracted into Et2O (3 × 50 mL). The combined organic phases
were dried over Na2SO4 and concentrated in vacuo. The crude material was purified using
column chromatography (50% hexane in toluene→100% toluene), affording 10-methyl-
9,10-dihydroacridine 55 as a yellow oil (10.6 mg, 10%) and 2-benzyl-N-methylaniline 56 as
a yellow oil (6.8 mg, 7%).
Analytical data for 61 and 62 are in agreement with the corresponding data reported above.

4. Conclusions

In summary, subjecting o-tolylaryl ethers and amines to the Et3SiH/KOtBu system
yields rearranged products. o-Tolylaryl ethers undergo a concerted Truce–Smiles rearrange-
ment to yield diarylmethane products that is initiated by benzyl anions formed by two
competitive routes: a radical-polar crossover consisting of a hydrogen atom abstraction by
a trialkylsilyl radical 24a followed by a SET reduction via silyl radical anion 26a, and/or
the direct deprotonation of the ortho methyl group by the pentavalent silicate base that is
formed in situ.

O-Tolyl arylamines that are secondary, or that contain a labile group bonded to the ni-
trogen atom, result in the formation of dihydroacridine products through a radical pathway
when treated with the Et3SiH/KOtBu system. Tertiary amines form both dihydroacridines
and diarylmethanes through radical and anionic pathways respectively. Overall, this study
showcases how the reactive intermediates of the Et3SiH/KOtBu compete with one another
during the reaction mechanisms allowing for a broad range of chemical outcomes and
possibilities.

This research provides mechanistic detail on another of the expanding family of
transformations that can be achieved by KOtBu + Et3SiH. This reagent pair unusually
produces at least three silicon-based reactive intermediates, making determination of
mechanism both challenging and important; the knowledge from our study can contribute
to future understanding of the Grubbs–Stoltz system. In terms of the development of this
specific project, the results reported here allow us to plan the synthesis of more complex
substrates, e.g., based on 68. Knowing that a benzyl radical is the intermediate that cyclises
allows us to plan extended side-chains that will not intercept the benzyl radical before it
cyclises onto the target arene ring.
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