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Abstract: Graphene aerogels have attracted much attention as a promising material for various
applications. The unusually high intrinsic thermal conductivity of individual graphene sheets
makes an obvious contrast with the thermal insulating performance of assembled 3D graphene
materials. We report the preparation of anisotropy 3D graphene aerogel films (GAFs) made from
tightly packed graphene films using a thermal expansion method. GAFs with different thicknesses
and an ultimate low density of 4.19 mg cm−3 were obtained. GAFs show high anisotropy on average
cross-plane thermal conductivity (K⊥) and average in-plane thermal conductivity (K||). Additionally,
uniaxially compressed GAFs performed a large elongation of 11.76% due to the Z-shape folding
of graphene layers. Our results reveal the ultralight, ultraflexible, highly thermally conductive,
anisotropy GAFs, as well as the fundamental evolution of macroscopic assembled graphene materials
at elevated temperature.

Keywords: graphene aerogel film; anisotropic material; thermal conductivity

1. Introduction

Graphene, a monolayer of sp2 bonded two-dimensional (2D) carbon atoms, has gained
attention over recent years [1]. The 3D graphene architectures of aerogels, foams, and
sponges hold the advantages of low density, high porosity, high specific surface area, and
stable mechanical properties [2–5]. Compared with conventional aerogels, anisotropic
GAs have a higher degree of controllability in microstructure with direction-dependent
functions. The direction-dependent physical properties make anisotropic GAs ideal for
thermal shock resistance, electromagnetic interference shielding, magnetic, catalytic, and
optoelectronic applications [6–9]. Graphene aerogels (GAs) thus far are generally prepared
by the integration of individual graphene sheets and a template-directed approach [10].
The priority for fabricating GAs in bulk form is to avoid the stacking of graphene sheets.
Integrating of individual graphene sheets from the graphene oxide (GO) dispersion needs
to precisely manipulate the gelation, reduction, or cross-linking process. The balance of
supramolecular interactions, including hydrogen bonding, π-π stacking, electrostatic inter-
action, and coordination, brings great difficulty on controlling the aerogel structure [11–13].
Methods based on oriented structured templates like directional-freezing [6], polymer
templating [7], calcium ion-assisted unidirectional-freezing [8] have been used to make
anisotropic GAs. However, the morphology of GAs produced by the template-directed
approaches is determined by templates, polymers or metallic substrates, removal of which
always causes collapse of the as-formed pore structure of graphene networks [14].

The thermal conductivity of single-layered graphene measured by the noncontact
Raman spectroscopy technique is in the range of~3000–5300 W m−1 K−1 at room tem-
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perature [15]. It shows excellent potential as thermal management material for electronic
devices [16]. To exploit the high thermal conductivity, graphene is generally in the form of
macroscopic assemblies like 2D films and 3D foams. For macroscopic assembled graphene
materials, their thermal conductivities are determined by sheet size, defects, assembly
pattern, packing density, thermal boundary resistance, orientation, and structure conti-
nuity. When it comes to 3D assembled graphene materials, however, GAs usually are
expected to be isotropic and thermal insulating: owing to the loosely packed networks
of graphene sheets, which exhibit sizeable thermal boundary resistance at graphene–
graphene, and graphene–air interfaces [17]. Using traditional sheet assembly and CVD
growth approaches, GAs typically demonstrated low thermal conductivity from 4.7 × 10−3

to 1.7 W m−1 K−1 [18–21]. It is still a great challenge to fabricate GAs with oriented struc-
tures and high thermal conductivity.

The present study demonstrates ultralight, ultraflexible, anisotropic and highly ther-
mally conductive graphene aerogel films (GAFs). Utilizing the opposite process of sheet-
assembly, we employed a thermal expansion method starting from tightly packed graphene
films. The resulting GAFs still kept the film appearance in the macroscopic view, forming
a microscopic 3D porous network, reaching an ultralight weight of 4.19 mg cm−3. We
studied the impact of thermal treatment on the structural change of graphene sheets and
the evolution of their packing situation. We proposed a mechanism for forming 3D GAF
architectures relating to the interlayer accumulation and expansion due to the decomposed
gas. The GAFs show highly anisotropic conductive properties. The cross-plane thermal
conductivities (K⊥) were only 0.3–0.7 W m−1 K−1 due to the relatively low densities. The
K|| value showed a rapid increase from 8.98 to 53.56 W m−1 K−1 along the in-plane
direction, when the density increased from 40.32 mg cm−3 to 150.49 mg cm−3. Besides,
compressed GAFs with a thickness of 19 µm showed an ultrahigh elongation of 11.76%
during the tensile test. This high-temperature thermal expansion is convenient access to the
unique oriented 3D architectures of GAFs and attracts anisotropic thermal performances.

2. Materials and Methods
2.1. Materials

Graphene oxide (GO) was purchased from Hangzhou Gaoxi Technology Co. Ltd.
(Hangzhou, China). Other chemical reagents were all analytical grade and used as received.
GO dispersion was prepared using deionized water (18.2 M
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cm).

2.2. Preparation of GAFs

GO films were prepared by vacuum filtration of graphene dispersion. The thickness
could be controlled easily by adjusting the amount of GO dispersion. The GO film was
fixed on a Teflon plate, soaked in 40% of the HI solution, and reduced to 12 h at 80 ◦C.
Then the RGO film was rinsed with water, saturated sodium bicarbonate solution, water
and ethanol solution, and dried in a vacuum of 100 ◦C for 12 h to obtain the reduced
graphene film.

Heat treatment was carried out using a high-temperature graphitized furnace, and
the RGO is placed in a graphite box, put into the medium frequency high-temperature
graphite chemical furnace under the protection of argon heating treatment, heating up to
the target temperature and kept for a time (500 ◦C, 1000 ◦C, 1500 ◦C and 2000 ◦C for 2 h;
3000 ◦C for 0.5 h). GAFs were compressed using vertical oil pressure jacks that hold for 1 h
at 50 MPa.

2.3. Characterization

SEM images were obtained using a Hitachi S4800 field emission SEM system. XRD
patterns were collected on a Philips X’Pert PRO diffractometer equipped with Cu Kα

radiation (40 kV, 40 mA) with an X-ray wavelength (λ) of 1.5418 Å. Raman spectra were
taken on a Renishaw in Via-Reflex Raman microscopy at an excitation wavelength of
532 nm with less than 1 mW laser power and 10 s integration time. The tensile tests were
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carried out on an HS-3002C mechanical testing system. GO, and graphene films were cut
to 3 mm wide films. Both ends of the individual film were fixed onto clamps made by two
PDMS slices with gauge lengths of 10 mm, respectively. A loading rate of 2 mm min−1

was applied in all mechanical tests. SEM images of the fracture section determined the
cross-section area. Thermal diffusivity was measured by a Netzsch LFA 457Gerätebau
GmbH, Wittelsbacherstr.laser flash thermal diffusivity apparatus. The thermal conductivity
of the GAFs was determined according to Ref. [22].

3. Results and Discussion

The thickness of the annealed graphene film increased with the processing tempera-
ture. The cross-sections of graphene films annealed at various temperatures are presented in
Figure 1. At 500 ◦C, the film showed a loose and layered structure with obvious interspace
different from original graphene films. This interlayer spacing continuously expanded to a
bubble structure at 1000 ◦C (Figure 1B). The system of bubbles is enclosed gas chambers
composed of stacked multilayer graphene. The cross section of the graphene film annealed
at 1500 ◦C showed a more significant porosity than the film annealed at 1000 ◦C. When the
annealing temperature reached 2000 ◦C, the chamber wall became bumpy and exhibited
large bubbles within the structures. At 2500 ◦C, stacked multilayer graphene cracked into
plenty of smaller-sized bubbles. The final loose and porous structure formed accompanied
more bubble walls bursting at 3000 ◦C (Figure 1F).
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Figure 1. (A–F) SEM images of the cross-sections of graphene films after different annealing tempera-
tures. (G) Raman spectra and (H) XRD patterns of GO films, HI-reduced GO films, and graphene
films treated under different annealing temperatures.

The annealing process on graphene films was followed by Raman spectroscopy
(Figure 1G, detailed data are listed in Table S1). The ID/IG value increased when the
original GO films were reduced by HI acid and annealed below 1000 ◦C, implying the
increased amount of “unorganized” carbon in the samples [23]. Then the ID/IG value
decreased to 0.16 at the annealing temperature of 1500 ◦C. The D band was barely observed
at 2000 ◦C or higher due to the regain of conjugated areas. The 2D band centered at 2694
and 2692 cm−1 for GO and HI-reduced GO, respectively, just as it did for the monolayer
graphene but with a larger linewidth [24]. The wavenumbers of 2D band upshifted to
2741 cm−1 with the increasing annealing temperature, indicating the graphic structure’s
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effective recovery. The 3000 ◦C treatment extensively repaired the conjugated system of
graphene and resulted in defect-free graphene [25]. The evolution of Raman spectra with
increasing treating temperature represents the formation of a turbostratic stacking order in
the direction perpendicular to the layer plane for the final GAFs.

X-ray diffraction (XRD) patterns show that the 2θ peak values of graphene films in-
crease with the annealing temperature. Meanwhile, the corresponding d-spacing gradually
approaches the value of graphite. Detailed information for GAFs annealed from 500 ◦C to
3000 ◦C are obtained in Figure 1H and Table S1. The XRD patterns show 2θ peaks ranging
from 25.35◦ to 26.52◦, corresponding to d-spacing from 3.51 Å to 3.35 Å and crystalline
domain size from 5.29 nm to 27.94 nm. d-spacing of the final GAFs (3.35 Å) is close to
pristine natural graphite (3.35 Å). Raman and XRD results demonstrate that graphene films
gradually regained their conjugated areas, accompany with decrease of d-spacing during
the high-temperature thermal annealing.

Compared with the glistening flexible dense HI-reduced graphene film in Figure S1A
left, graphene films annealed at 3000 ◦C become loose, porous and metal-gray with no
glistening. The graphene film expanded about 25-fold in the thickness direction from
40 µm to 1 mm, while the film’s 15.1% diameter decrease was also observed. The volume
of the GAF was increased by 1800% (measured density of 23 mg cm−3), while it still kept
the film appearance in macroscopic view. Besides, resulted GAFs showed an ultimate
ultralight weight of 4.19 mg cm−3. Vertical expansion results in diameter shrinkage,
because the conformation of sequential horizontal stacked graphene layers transformed
into deformation along the in-plane direction. Observed from the SEM images of a film
cross-section was made by tear opening, the GAFs burst into a loose and porous structure
(Figure S1). Graphene sheets in the same layer still kept stacking on each other and formed
a wave-shaped deformation along the in-plane direction.

This expansion could be mainly ascribed to the generation and development of
H2O and CO2 evolved during thermal annealing. By monitoring the weight loss of the
graphitization, apparent weight loss of HI-reduced graphene films reaching 30 wt.% was
observed. The elemental analysis data indicate that the HI-reduced graphene films still
kept some of the oxygen-containing groups (Table S1). These groups would decompose
during thermal annealing. Besides, reduced graphene has a molecular shielding effect,
which results in the isolation and accumulation of decomposed gases. With increasing
temperature, the concentrated gases reached a high pressure of solid power to expand
against the packed graphene layers until gases leak through the films (Figure 2). At higher
temperatures over 2000 ◦C, graphene sheets could gain more energy to overcome the
interlayer van der Waals forces [26]; thus, relaxation, slippage, stretching, and buckling of
graphene sheets occurred [27]. At 3000 ◦C, the gas constraint in the stacked chamber walls
reached the pressure to break interlayer packing, giving smaller pores (Figure 1F).
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As the expansion mechanism discussed in this paper, the reduction of film thickness
should lower the possibility of forming stacked graphene that blocks gas emissions and
encloses gas chambers. Therefore, films with different thicknesses were also treated by
the same procedure to study the expansion process. As shown in Figure 3, HI-reduced
graphene films with thicknesses of 2 µm, 5 µm and 40 µm annealed at 3000 ◦C were
expanded to 3 µm (150%), 20 µm (400%) and 1 mm (2500%). Even the graphene film
of 2 µm gained a 50% thickness increase, and the porous structure is more like a gas
chamber in 40 µm annealed graphene film. Aggregation and expansion of released gas
during the high-temperature annealing caused the loose and porous structure of GAFs.
Compared with graphene aerogels that prepare by bottom-up strategies, the thermal
expansion method in this work has many advantages. Firstly, graphene in GAFs would
regain the conjugated structure ensuring its further applications; secondly, graphene sheets
in GAFs showed a much higher orientation due to the layered structure of original films;
in addition, GAFs offer a very regular microstructure.
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Figure 3. SEM images of cross-sections of GAFs with thicknesses of (A,B) 1 mm, (C,D) 20 µm, and
(E,F) 3 µm.

The high annealing temperature of 3000 ◦C makes graphene sheets regain their conju-
gate structure (domains), which are highly flexible and easy to stack. GAFs with different
thicknesses were compressed into compact films using the method for making graphite de-
vices. The compression was carried out using a plate vulcanizing machine under 100 MPa
pressure. Compressed GAFs showed high flexibility (Figure 4). Even when the film was
folded in half, the surface of compressed GAF can be recovered by smoothing. Tensile
tests revealed ultimate strains of 11.76%, 6.05%, and 5.17% for compressed GAFs with
thicknesses of 19 µm, 5 µm, and 3 µm, respectively (Figure 4F). The stress-strain curve of
3 µm compressed GAFs exhibited apparent steplike periodic features, while the 19 µm film
also produced a steplike curve on a much smaller scale (Figure S2). Cross-sectional images
of compressed GAFs illustrate the multilayer graphene of gas chambers piled up with
large-scale bending and Z shape folding under compression (Figure S3). The ultrahigh
elongation and flexibility are mainly originated from the stretching and unfolding of the
deformed graphene sheets.

Compressed GAFs are very different from traditional graphite films made by com-
pression molding. Firstly, the compressed graphene films are smooth and uniform with
a silvery metallic luster, while graphite films are black. Secondly, the graphene film is
very flexible, while the graphite film is fragile with insufficient flexibility. Thirdly, in the
microcosmic view, compared with the unoriented graphite crystalline domain in graphite
films, graphene layers in GAFs are highly oriented in the vertical direction, which is more
evident in thicker ones (Figure S4). The layered structure of compressed GAFs is indistinct,
other than the instinct layered structure of graphene oxide or HI-reduced graphene films.
Large graphene sheets regained a conjugated structure and displayed higher flexibility and
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toughness, which resulted in the slippage and haul out. The flexibility and compressibility
of GAFs make it an ideal shape-compatible material for thermal interfacial conducting.
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Single-layered graphene has an extremely high thermal conductivity of 5300 W m−1 K−1.
Practically, macroscopic graphene aerogels are usually thermally insulating because of
the high porosity and low air cross-convection. Statistically, graphene sheets in normal
3D monoliths are oriented randomly, which results in isotropic thermal diffusivity in
macroscopic graphene aerogels. In this study, high-temperature thermal annealing and
expanding results in an anisotropic structure and thermal transport properties. The final
GAFs formed a structure in which graphene layers are continuously paralleled in the
vertical direction and enclose many air chambers. The incorporation of lateral orientation
and high structural integrity contributes to the enhancement of phonon transmission in the
lateral plane for thermal transport.

The anisotropy of thermal conductivity was characterized using the laser flash method.
Among non-steady-state methods, laser-flash thermal diffusivity measurement is widely
used for its low limitation on sample size, rapid and stable measurement, simple calcu-
lation process, adjustable laser pulse energy and width, strong applicability, and wide
measurement temperature range. The temperature-dependent in-plane and cross-plane
thermal diffusivities (α|| and α⊥) for a GAF with a thickness of 1 mm and a compressed
graphite plate from 25 ◦C to 500 ◦C are shown in Figure 5A,B. Over the whole temper-
ature range, the thermal conductivity in both directions decreased monotonically. The
measured values were 75.1 mm2 s−1 (α||) and 421.5 mm2 s−1 (α||) for GAF at 25 ◦C, while
23.5 mm2 s−1 (α⊥) and 106.3 mm2 s−1 (α||) for GAF at 25 ◦C. The anisotropy (α⊥/α||)
decreased monotonically from 5.61 at 25 ◦C to 4.52 at 500 ◦C. In contrast, the compressed
graphite plate showed slightly higher α|| than α⊥, and, thus, very low anisotropy α⊥/α||
from 1.29 to 1.07. This result indicates that the GAFs possess a highly aligned structure and
exhibit much higher anisotropy than the isotropic compressed graphite plate.
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The density-dependent thermal performance for GAFs was further studied using a
stepwise uniaxial compression. The cross-plane thermal diffusivities (α⊥) fluctuated at
60–120 mm2 s−1 without evident tendency till the thickness of GAFs decreased below the
detective limit (Figure 5C). Meanwhile, the calculated cross-plane thermal conductivities
(K⊥) were only 0.3–0.7 W m−1K−1 due to the low densities of 4~10 mg cm−3. On the other
hand, the α|| value rapidly increased from 293.46 to 448.23 mm2s−1, and the corresponding
thermal conductivities (K||) were from 8.98 to 53.56 W m−1K−1 with the density increasing
from 40.32 to 150.49 mg cm-3 (Figure 5D). The in-plane thermal conductivities linearly
increased with increasing densities. The anisotropy coefficient of thermal conductivities
(K||/K⊥) was 29.93 for GAF of 40.32 mg cm−3 and 76.51 for GAF of 150.49 mg cm−3.
Final compressed GAFs had a thermal conductivity of 734 W m−1 K−1 at a density of
1.59 g cm−3. Besides, the electrical conductivity of the compressed GAFs was ~105 S m−1,
much higher than that of HI-reduced graphene films [1].

4. Conclusions

In summary, 3D graphene aerogel films (GAFs) prepared from tightly packed graphene
films were successfully developed by a facial high-temperature thermal expansion method.
The isolation, accumulation, and expansion of decomposed gases combined with relaxation,
slippage, and buckling of graphene sheets at 3000 ◦C gave a loose and porous structure to
the GAFs. The 3D graphene film architecture exhibits an ultralight weight of 4.19 mg cm−3,
anisotropy coefficient of thermal conductivity (K||/K⊥) ranging from 29.93 to 76.51, and an
ultrahigh elongation of 11.76% for 19 µm-thick graphene films after uni-axial compression.
The ultralight, ultraflexible and highly thermally conductive anisotropy of GAFs should
lend them to many applications in thermal interfacial conducting, electromagnetic shielding
and energy storage.
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Supplementary Materials: The following are available online. Figure S1: Graphene film reduced by
HI solution and Graphene film after carbonization under 3000 ◦C with loose and porous structure,
Figure S2: Cross-section of a GAF annealed at 3000 ◦C with a loose and porous structure that made
by tear opening, Figure S3: Stress-strain curves of compressed GAFs with thicknesses of 3 µm, 5 µm
and 19 µm, Figure S4: Cross-section of compressed GAFs that illustrates Z-shape folding formed by
compression of multilayer graphene of gas chambers, Figure S5: Cross-section of a pressed graphene
film with highly compacted and oriented structure, Table S1: Detailed data of Elemental analysis,
XRD and Raman for GO and GAFs at the different annealing temperature.
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