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Abstract: Nifuroxazide is an antidiarrheal medication that has promising anticancer activity against
diverse types of tumors. The present study tested the anticancer activity of nifuroxazide against
Ehrlich’s mammary carcinoma grown in vivo. Furthermore, we investigated the effect of nifuroxazide
on IL-6/jak2/STAT3 signaling and the possible impact on tumor angiogenesis. The biological
study was supported by molecular docking and bioinformatic predictions for the possible effect of
nifuroxazide on this signaling pathway. Female albino mice were injected with Ehrlich carcinoma
cells to produce Ehrlich’s solid tumors (ESTs). The experimental groups were as follows: EST control,
EST + nifuroxazide (5 mg/kg), and EST + nifuroxazide (10 mg/kg). Nifuroxazide was found to
reduce tumor masses (730.83 ± 73.19 and 381.42 ± 109.69 mg vs. 1099.5 ± 310.83) and lessen
tumor pathologies. Furthermore, nifuroxazide downregulated IL-6, TNF-α, NFk-β, angiostatin, and
Jak2 proteins, and it also reduced tumoral VEGF, as indicated by ELISA and immunohistochemical
analysis. Furthermore, nifuroxazide dose-dependently downregulated STAT3 phosphorylation (60%
and 30% reductions, respectively). Collectively, the current experiment shed light on the antitumor
activity of nifuroxazide against mammary solid carcinoma grown in vivo. The antitumor activity
was at least partly mediated by inhibition of IL-6/Jak2/STAT3 signaling that affected angiogenesis
(low VEGF and high angiostatin) in the EST. Therefore, nifuroxazide might be a promising antitumor
medication if appropriate human studies will be conducted.
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1. Introduction

Cancer and cancer-related morbidity as well as mortality poses a global public health
burden. In 2020, 19.3 million new cancer cases were reported, and female breast cancer
was the most commonly diagnosed form of cancer worldwide [1]. Signal transducers and
activators of transcription (STAT) is known as a transcription factor family that plays key
roles in the signaling of cytokine pathogenesis of several cancers [2,3]. Interleukin-6 (IL-6)
promotes the phosphorylation of STAT3 protein by janus tyrosine kinase (Jak). STAT3
activation had critical effects on normal cellular processes including cell proliferation and
angiogenesis [4–6]. This pathway has been previously implicated in tumorigenesis [7,8].
In breast cancer, the Jak/STAT pathway has been shown to be altered [9–11]. Jak/STAT3
increases breast cancer stem cells and cancer chemoresistance by the regulation of lipid
metabolism. Hence, the inhibition of Jak/STAT3 signaling mitigates the breast cancer stem
cells’ identity and the expression of various lipid metabolic genes [12]. In addition, the
approach through which IL6/STAT3 regulates breast cancer development is thought to be
by promoting Jak and angiogenesis signaling, which has been documented recently [13–15].

Following tumor growth, the tumor cells express specific cytokines that regulate
intracellular signal transduction and promote the resistance of tumor cells to chemothera-
peutic drugs [16,17]. Indeed, angiogenesis is crucial for tumor growth, and the vascular
endothelial growth factor (VEGF) has an essential function in tumor development [4]. The
abnormal activation of STAT3 signaling is associated with VEGF overexpression [18,19].
Therefore, targeting Jak2/STAT3 signaling is an important therapeutic option in cancer
treatment that may help reduce angiogenesis.

Nifuroxazide is an oral nitrofuran antibiotic that is often used as antidiarrheal. Never-
theless, nifuroxazide was shown to be a potent inhibitor of breast cancer growth metastasis
through decreasing the count of lung myeloid derived suppressor cells without significant
cytotoxicity [20]. Furthermore, it enhances the anti-proliferative activity against colorectal
and melanoma cancers [21]. The role of the IL-6/Jak/STAT3 pathway in chemotherapeutic
drug-induced cytotoxicity and cell apoptosis has been previously reported [22,23]. Ni-
furoxazide acts as an effective inhibitor of the STAT3 signaling pathway by reducing Jak2
autophosphorylation in cancer cells [24,25].

Ehrlich’s tumor is an undifferentiated malignant mammary adenocarcinoma in mice [26,
27]. The undifferentiated solid form of Ehrlich’s tumor renders this model beneficial in
cancer studies, so it had beneficial use for studies of chemotherapy studies and tumor mod-
els [28]. These aspects have encouraged attention in finding a novel antitumor agent [29,30].

Although nifuroxazide, an oral antidiarrheal agent, was documented as a STAT3
inhibitor [31], the putative antitumor activity of nifuroxazide against Ehrlich’s solid tumors
(ESTs) has not yet been elucidated yet. In addition, the inhibition of IL-6/Jak2/STAT3
signaling was studied as a suggested molecular mechanism that mediates inhibiting angio-
genesis. Molecular docking helped to explore the binding mode of nifuroxazide into the
SH2 domain of the STAT3 molecule, while bioinformatic study assessed the importance of
STAT3 signaling pathways and illustrated key players in its signal transduction toward
angiogenesis.

2. Results
2.1. Molecular Docking Study

To analyze the binding mode of nifuroxazide into the SH2 domain of STAT3, we
performed molecular docking simulation using the published crystal structure of this
transcription factor in complex with DNA (PDB ID: 1BG1) [26]. The STAT3 binding cleft
includes three pockets: the pTyr705 binding site, which is polar and basic, the hydrophobic
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Leu706 site, and a sub-pocket formed by Ile597, Leu607, and Ile634 [32] (Figure 1). Ni-
furoxazide was predicted to bind into the pTyr705 site, replacing the polar interactions
with its nitro group and showing similar polar contacts with Ser613 backbone and Lys591.
The latter nicely anchors the ligand by forming H bonds with the carbonyl, the hydrazone
nitrogen, and the nitro group of the ligand (Figure 1A). The other side of the compound,
the phenyl group, fits into the sub-pocket close to Ile597 and Ile634. It is stabilized in
this pocket via a bidentate H bond with Arg595. It is noteworthy that the pTyr705 site is
known to be essential for inhibitor binding, and the nitro group of nifuroxazide represents
the key binding moiety [33]. However, our data demonstrate that the ligand was able to
occupy only two of the three pockets forming the binding cleft (Figure 1B). This could
rationalize, at least in part, the suboptimal micromolar potency of this compound toward
STAT3. Nevertheless, this compound is a promising lead for repurposing. We can envision
an optimized ligand with a third arm that can extend to reach the Leu706 site in a similar
fashion to the recently published crystal structure of phosphonic acid derivative SD36
(6NJS) [34].
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Figure 1. Molecular docking for nifuroxazide. (A) Proposed binding model of nifuroxazide in the
binding cleft of STAT3. The ligand is displayed as cyan sticks, and the important protein residues are
displayed as gray sticks with a cartoon backbone. (B) Surface representation of the STAT3 binding
cleft showing the three binding pockets discussed.

2.2. Bioinformatic Study

To highlight the importance of the STAT3 signaling pathways and illustrate key play-
ers in its signal transduction, we performed bioinformatic analysis using the STRING
database [34]. It is a comprehensive database of experimentally determined as well as
predicted protein–protein interactions, whether they are physical (direct) or indirect ones.
In this database, each protein–protein interaction is given a “score” based on seven “evi-
dence channels”. These channels, indicated by colored lines or edges in Figure 2, represent
experimental evidence, database citation, gene neighborhood, fusions, or co-occurrence,
appearance in literature text, co-expression, and protein homology. Analysis of STAT3
revealed its extensive interaction with VEGFA, EGFR, IL6, JAk1, JAk2, and JAK3 proteins
(Figure 2). As shown in Figure 2, the experimental evidence refer to the direct interaction of
STAT3 with all of these signaling proteins (pink edges). In addition, the curated databases
used in STRING, such as BioGRID, HINT, and APID, refer to the association of these
proteins (cyan edges). STRING analysis indicates that STAT3 is co-expressed with JAK1,
JAK2, and EGFR.
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Figure 2. Network of protein–protein interaction as represented by the STRING database. The
nodes refer to the proteins under study, while the edges represent the evidence channels used in the
prediction. The edges are color-coded, as shown in the legends section of the figure.

It is worth noting that as noticed in the STRING analysis, STAT3 is known to relay
signals from growth factor receptors in the plasma membrane such as VEGFA to regulate
gene expression in the nucleus. We did not observe a direct connection between VEGFA
and the JAK3, while the connection with JAK1 and JAK2 is suggested by literature evidence
(text mining, green edges) without experimental evidence.

2.3. In Vivo Experiment
2.3.1. Ehrlich’s Solid Tumor Model

The biggest mass of the grown solid tumors was detected in the EST control group
(1099.5 ± 310.83 mg, Figure 3A). Treatment with nifuroxazide (5 or 10 mg/kg) reduced the
corresponding tumor mass in a dose-dependent manner, indicating potential antitumor
activity (730.83 ± 73.19 and 381.42 ± 109.69 mg, P < 0.05, Figure 3A). Calculating the
percentage change in body masses in the experimental group revealed non-significant
differences among the study groups (Figure 3B).
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Figure 3. Impact of nifuroxazide treatment on solid tumor masses and percentage change in body
masses. (A) tumor mass & (B) % change in body mass. Data are mean ± SD and evaluated by
one-way ANOVA and Bonferroni’s test at p < 0.05 (n = 6). * Versus the EST control, $ Versus the EST +
Nifuroxazide (5 mg/kg) group.
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2.3.2. Relative Gene Expression of Il-6, Jak2, Total STAT3, and VEGF in Solid Tumors

Treatment with nifuroxazide (5 or 10 mg/kg) significantly downregulated the expres-
sion of IL-6, Jak2, and VEGF compared to the EST control group. However, the mRNA
expression of total STAT3 was not significantly changed upon treatment with any of the
nifuroxazide doses (Figure 4).
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2.3.3. Impact of Nifuroxazide on Tumoral Il-6, Jak2, Total STAT3, TNF-α, NF-Kb, VEGF,
and Angiostatin

The EST control group showed a high tumoral content of IL-6, Jak2, and STAT3
(Figure 5A–C). The level of IL-6, Jak2, TNF-α, NF-kβ, and VEGF were significantly re-
duced in the EST + Nifuroxazide (5 and 10 mg/kg) groups in a dose-dependent manner
(Figure 5A,B,D–F). Importantly, the intratumoral angiostatin level was increased upon
treatment with nifuroxazide (Figure 5G). On the other hand, the total STAT3 level was not
significantly reduced by nifuroxazide treatment compared to the EST group (Figure 5C).

2.3.4. Nifuroxazide Downregulated the Phosphorylated STAT3 to Total STAT3

We used immunoblotting to analyze the impact of nifuroxazide treatment on the
phophso-STAT3 (p-STAT3) and total STAT3 (t-STAT3) protein expression. Our results
indicated that nifuroxazide treatment (5 or 10 mg/kg) reduced the relative p-STAT3/t-
STAT3 in the EST+ nifuroxazide (5 or 10 mg/kg) groups compared to the EST control group
(Figure 6A,B). Supplementary Figure S1 shows WB gels for each of the measured markers.
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Figure 5. ELISA assays for IL-6, JAK2, STAT3, TNF-α, NF-kB, VEGF, and angiostatin in the solid tumors. (A) IL-6, (B) JAK2,
(C) STAT3, (D) TNF-α, (E) NF-kB, (F) VEGF, and (G) angiostatin, Column charts demonstrate data as mean ± S.D at P less
than 0.05. * Versus the EST control, $ Versus the EST + Nifuroxazide (5 mg/kg) group.

2.3.5. Histopathological Profile of the EST Model

Solid tumors stained with H&E showed different degrees of necrosis among the
different experimental groups (Figure 7A–C). Our results demonstrate that nifuroxazide
significantly increased the necrotic area in the EST + Nifuroxazide (5 and 10 mg/kg) in a
dose-dependent manner Statistical analysis for the measured precise necrosis areas revealed
dose-dependent significant increases in the necrosis area by nifuroxazide doses (Figure 7D,
p < 0.05).
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Figure 6. Western blot analysis for phosphorylated and total STAT3. (A) photomicrograph repre-
senting the Western blot results for the selected proteins in the EST group (1), EST + Nifuroxazide
(5 mg/kg) (2) and EST + Nifuroxazide (5 mg/kg) (3). (B) Column chart for phosphorylated STAT3
relative to total STAT3. First, both proteins were normalized to the tumor β–actin level, and then,
the relative phosphorylation was calculated. Data are mean ± S.D. and compared at P less than 0.05.
* Versus the EST control, $ Versus the EST + Nifuroxazide (5 mg/kg) group.
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Figure 7. Necrotic areas in the solid Ehrlich tumors stained by hematoxylin and eosin. (A) EST
control group shows widespread and focal necrotic areas and apoptotic cells, (B) EST + Nifuroxazide
(5 mg/kg) shows partial necrosis (C) EST + Nifuroxazide (10 mg/kg) shows maximal necrosis.
(D) Column chart representing the percentage of necrotic area, data are mean ± S.D. and compared
at P less than 0.05. * Versus the EST control, $ Versus the EST + Nifuroxazide (5 mg/kg) group.
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In the EST control mice, the solid tumors showed pathological manifestations of
active tumorigenesis including multiple mitotic spindles and frequent tumor giant cells
(Figures 8A and 9A). However, nifuroxazide treatment significantly improved the patho-
logical profile in a dose-dependent manner in the EST + Nifuroxazide (5 or 10 mg/kg)
groups showed little appearance for these pathologic manifestations and therefore took
lower scores for these parameters (Figure 8B,C and Figure 9B,C, p < 0.05).
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Figure 8. Microscopic pictures of H&E stained sections from tumor masses showing extensive areas
of mitosis. (A) The EST group shows extensive mitosis (arrows), while a marked reduction in mitosis
was observed in the EST + Nifuroxazide 5 or 10 treated groups (B,C). X: 400, bar 25. (D) Column
chart representing the percentage of mitotic area, data are mean ± S.D. and compared at P less
than 0.05. * Versus the EST control, $ Versus the EST + Nifuroxazide (5 mg/kg) group. EST: Ehrlich
solid tumors.
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Figure 9. Microscopic pictures of H&E stained sections from tumor masses showing giant cells.
Extensive areas of giant cells (arrows) appear in the EST group (A), while giant cells were decreased
in the EST + Nifuroxazide 5 mg/kg groups (B). A marked reduction in the giant area was observed in
group treated with EST+Nifuroxazide 10 (C). X: 400. (D) Column chart for giant cell area percentage,
data are mean ± S.D. and compared by one-way ANOVA and Bonferroni’s test at P less than 0.05.
* Versus the EST control, $ Versus the EST + Nifuroxazide (5 mg/kg) group. EST: Ehrlich solid tumors.
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2.3.6. Immunohistochemical Staining for VEGF in the Solid Tumors

Our results demonstrate the upregulation of VEGF expression in the EST control group
indicating active angiogenesis (Figure 10A). In contrast, nifuroxazide treatment significantly
decreased the VEGF immunopositively in the EST + Nifuroxazide (5 or 10 mg/kg) groups
showed mild–moderate staining for VEGF (Figure 10B,C). Statistical analysis indicated
significant decreases in VEGF immunostaining area in EST + Nifuroxazide (5 or 10 mg/kg)
groups compared to the EST control group (p < 0.05, Figure 10D).
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Figure 10. Photomicrographs for sections from tumors immunostained for VGEF. Images show high positive staining in EST
(arrow heads) (A). A significant reduction in VGEF level was detected in nifuroxazide-treated groups (B,C) as evidenced by
a weaker brown staining (arrow heads). IHC counterstained with Mayer’s hematoxylin. X: 100, bar 100 (A1, B1, and C1),
X400 (A2, B2, and C2), bar 25. (D) Bar char representing the normalized VEGF immunopositively, data are mean ± S.D. and
compared at P less than 0.05. * Versus the EST control, $ Versus the EST + Nifuroxazide (5 mg/kg) group. EST: Ehrlich solid
tumors, VEGF: vascular endothelial growth factor.
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3. Discussion

Despite various therapeutic approaches, 5–11% of breast cancer patients suffer from
metastasis [35]; this micro-metastasis is often resistant to systemic therapies. Hence, the
development of innovative new medications for preventing tumor growth and metastasis
is urgently needed [20]. STAT3 overexpression is closely associated with breast cancer
development [36]. In addition, the activation of STAT3 was correlated with poor prognosis
in breast cancer patients. Therefore, targeting STAT3 might be beneficial for medicating
breast cancer [25]. In the current study, we assumed that the STAT3 inhibitor, nifuroxazide,
may suppress the growth of solid Ehrlich carcinomas grown in mice.

In the current study, nifuroxazide was evaluated for its potency against mammary
solid tumors in vivo. It was found that nifuroxazide produced a dose-dependent antitumor
activity against the growth of EST. Nifuroxazide is a gastrointestinal antibiotic that is mainly
utilized for treating infectious colitis and diarrhea [37]. Accumulating evidence suggests the
potential anticancer capacity of nifuroxazide through the inhibition of STAT3-dependent
gene expression [20,21,38].

The current docking simulation indicated that nifuroxazide was able to occupy only
two of the three pockets forming the binding cleft. This could partly explain the suboptimal
micromolar potency of this compound toward STAT3. Nevertheless, nifuroxazide can be
repurposed. We can predict an optimized ligand with a third arm that can extend to reach
the Leu706 site in a similar fashion to the recently published crystal structure of phosphonic
acid derivative SD36 (6NJS) [34].

The results obtained from this study demonstrated that nifuroxazide significantly and
dose-dependently decreased the tumor mass in the EST model in mice. These results are
matched with those obtained previously [25,39]. Similarly, nifuroxazide was reported to
produce breast cancer cell apoptosis and prevent pulmonary metastasis in 4T1 cells grown
in mice [20] via inhibition of STAT3. Moreover, nifuroxazide was reported to prevent
proliferation, cell migration, and encouraged apoptosis in several melanoma cell lines [21].
Again, nifuroxazide has been shown to suppress cell formation, cause apoptosis, and
impair the migration and invasion of various colorectal cancer cell types [38], osteosarcoma
cells [40], and thyroid papillary carcinoma cells [41]. Furthermore, nifuroxazide was
reported to inhibit the STAT3 signaling, which enhances antitumor immunity and reduces
colorectal cancer metastasis [38].

The current results demonstrated that nifuroxazide significantly reduced the mRNA
expression and protein levels of IL-6, Jak2, and VEGF levels in the solid tumor homogenates.
In addition, Western blot analysis indicated that the phosphorylation of STAT3 was reduced
significantly in the solid tumors in mice treated with nifuroxazide. The current study
confirmed that nifuroxazide lowered the protein level and mRNA expression of IL-6. IL-6
is a cytokine that plays many functions. It is produced by many cells such as epithelial
cells, macrophages, dendritic cells, T cells, and B cells [42]. The biological actions of IL-6
are complementary to the immune system, and abnormal IL-6 production is related to the
development of various diseases. Furthermore, IL-6 overproduction is thoroughly linked
to neoplastic diseases such as sarcoma in Kaposi, myeloma multiple, renal carcinoma,
and prostate cancer [43]. As a consequence, inhibiting IL-6 may be helpful in diseases
characterized by excessive IL-6 production [44].

Consistently, IL-6 is known to play a crucial role in STAT3 activation in breast can-
cer [45]. IL-6 activates STAT3 in an autocrine manner through the IL-6 receptor and Jak
kinases. Then, the activated STAT3 stimulates the transcription of specific genes that
promote the malignant cellular transformation [25]. In different types of human cancers,
Jak2/STAT3 signaling is continuously triggered and stimulates tumorigenesis and metasta-
sis by facilitating the expression of cell cycle regulators and angiogenic factors [46,47]. In
accordance, targeting STAT3 or its signaling by nifuroxazide has also been documented
to cause breast cancer cell apoptosis in 4T1 cells grown in mice [20] via the inhibition of
STAT3. Our study is in agreement with a recent study [48] that reported that nifuroxazide
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reduced colon ulcer in an acetic acid-induced ulcerative colitis model via modulating the
IL-6/STAT-3/Wnt axis.

The current study demonstrated that the tumoral VEGF immunopositively was de-
creased in the nifuroxazide-treated groups. Taken together, it is plausible to speculate
that nifuroxazide treatment decreases tumor angiogenesis via the inhibition of the IL-
6/Jak2/STAT3 pathway. IL-6, produced by tumors or tumor-infiltrating cells, binds to
its target receptor IL-6R and leads to Jak2/STAT3 activation. Then, activated STAT3 is
translocated by an importin-dependent mechanism to the nucleus, where it stimulates the
target gene transcription. Activated genes include VEGF as well as IL-6. The overexpres-
sion of IL-6 creates a positive feedback loop that in turn causes the continuous activity
of STAT3 [41]. Since STAT3 phosphorylation inhibition was consistent with inhibiting
in vivo breast cancer cell development by nifuroxazide [49], in our opinion, modulation
of the Jak2/STAT3 signaling pathway by nifuroxazide declares the availability of drug-
combination options that is matched with [50], who studied that phytocompounds target
the JAK/STAT signaling pathway for cancer therapy.

Nitazoxanide and tizoxanide are family members to nifuroxazide. Nitazoxanide was
reported to suppress the production of IL-6 in stimulated macrophages. In another study,
the efficacy of nitazoxanide on IL-1β, IL-6, and TNF-α was assessed in vitro [51]. Tizox-
anide was found to decrease cytokine production due to lipopolysaccharide-stimulated
macrophages. Furthermore, tizoxanide significantly blocked their genes’ transcription [44].

Previous studies suggested that Jak2 induction of Jak2 activity upstream of STAT3
in breast cancer cells is a crucial step for the estrogen (ER)-dependent progression of
cancer [52]. Furthermore, Jak inhibition was proved to be a possible therapeutic option for
postmenopausal osteoporosis [53]. Hence, Jak2/STAT3 inhibition by nifuroxazide in mice
may be additionally explained by the reduction in the level of ER that contributed to its
antineoplastic effect.

Moreover, our results demonstrated that nifuroxazide, a STAT3 inhibitor, increased the
intratumoral necrotic areas and downregulated the tumoral VEGF production. In addition,
nifuroxazide improved the cancer-induced histopathologic findings, including the spread
of giant cells and mitosis picture. Hence, our results provided evidence that ESTs grown in
mice produce STAT3, which promotes angiogenesis. Similar to our results, the antitumor
effect of nifuroxazide was previously reported in several mouse tumor models including
mice bearing A375 melanoma tumors [21], a cancer colon model (CT26 bearing mice) [54],
and an orthotopically-implanted hepatocellular carcinoma model [55]; these studies indi-
cated that the antineoplastic effects of nifuroxazide are mediated via inhibiting the STAT3
activity. Moreover, our result, in line with [56], informed that nifuroxazide had potent
suppression on STAT3, which provided antitumor and anti-inflammatory effects. Nifurox-
azide has also been documented to cause breast cancer apoptosis and prevent pulmonary
metastasis in mice via the inhibition of STAT3 [20]. Moreover, nifuroxazide prevented the
proliferation, cell migration, and encouraged apoptosis in several melanoma cell lines [21].
Nifuroxazide has been shown to suppress cell formation, cause apoptosis, and impair the
migration and invasion of various colorectal cancer cell types [38], osteosarcoma cells [40],
and thyroid papillary carcinoma cells [41]

To the best of our knowledge, this is the first report that describes the anti-angiogenic
function on nifuroxazide; the current research is the first to study the effect of nifuroxazide
on angiogenesis in an EST mammary carcinomas model using VEGF as an angiogenic
biomarker. In the same context, nifuroxazide was reported to possess a marked inhibitory
effect on the release of VEGF in an orthotopically-implanted hepatocellular carcinoma
model. The authors of the previous study concluded that this effect may be related to the
lowest expression level of p-STAT3 and the lowest tumor weight [55].

Indeed, a strong association between neovascularization signaling with STAT3 has
been previously documented. Activated STAT3 can translocate to the nucleus where it
activates the transcription of VEGF mRNA, leading to VEGF upregulation and subsequent
angiogenesis [57]. Tumor cells secreting VEGF trigger tumor vessel hyperplasia, promote
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tumor cell proliferation, and prevent tumor apoptosis [58,59]. In agreement, VEGF was
downregulated by chemotherapeutic agents that diminish the tumor growth [60].

Angiogenesis comprises the proliferation, migration, and maturation of vascular
endothelial cells. In addition to its importance in the development and wound healing,
it is a fundamental mechanism for the tumor growth, being a characteristic feature and
hallmark of malignancy [61]. It has a crucial role in pathologic angiogenesis, and its
expression is directly associated with poor patient prognosis [62,63]. Therefore, targeting
the VEGF is a potential goal during the innovation of novel cancer therapies.

TNF-α was one of the critical mediators of the inflammatory response [64] and angio-
genesis response [65,66]. The higher cytokine (TNF-α) level in Ehrlich’s carcinoma-bearing
animals might be due to oxidative stress. TNF-α serves as a tumor promoter factor because
it encourages cancer cell growth, proliferation, angiogenesis, and metastasis via the NFkB
signaling pathway [67,68].

Angiostatin is a naturally occurring endogenous angiogenesis inhibitor found in
humans and numerous other animal species. It is a plasminogen proteolytic fragment
recovered from tumor-bearing mice [69]. Angiostatin decreases tumor metastasis by
reducing blood vessel creation and is thought to restrict endothelial cell migration and
prevent tumor growth [70]. As a result, a thorough knowledge of the angiogenic pathway
offers the possibility of yielding effective therapies for the advancement of cancer therapies.

More than 300 angiogenic inhibitors have been identified up to now, with more
than 80 medicines generated from them in various stages of clinical development [71,72].
Vanucizumab and nesvacumab successfully suppressed tumor growth and demonstrated
anti-angiogenic effects [73–76]. Moreover, in the Ehrlich ascites carcinoma model, an
acridine derivative exerts anti-angiogenic effects and cell cycle arrest [77]. So, to suppress
tumor formation, innovative angiogenic therapeutic targets must be identified, as well
as novel medications developed as alternative or in combination with existing therapies.
According to previous evidence [21,38,78], angiogenesis can be inhibited by blocking STAT3
inhibitors by nifuroxazide.

The safety of nifuroxazide was reported previously in mice bearing tumors when
the authors did not observe any prominent adverse effects such as toxic death or loss in
body weight. The authors declared that there was no blood system abnormalities nor
identified pathology in various organs including the liver, the heart, the spleen, and the
kidney by microscopic examination in mice that received nifuroxazide therapy; they also
excluded any possible elevations in liver enzymes or serum creatinine levels or blood
cells [20]. Consistently, the safety of nifuroxazide was reported in human [24]. Certainly,
nifuroxazide is a relatively old medication with well-known safety; hence, the current
study offers a novel opportunity and therapeutic venue for counteracting solid mammary
carcinomas utilizing nifuroxazide.

4. Materials and Methods
4.1. Chemicals

Nifuroxazide (Batch #1603105414) was obtained in form of a canary yellow powder
from Hikma Pharma (6th of October City, Egypt); it was administrated as oral suspension
in 0.5 % carboxymethylcellulose.

4.2. Molecular Docking

Nifuroxazide was sketched in the Molecular Operating Environment (MOE; ver. 2014)
and minimized using the MMFF94 force field with the default cutoff and a distance-
dependent dielectric constant to a gradient of 0.001 kcal/mol/Å2 [55]. The 2.25 Å crystal
structure of STAT3 in complex with DNA (PDB ID: 1BG1) was used for the docking
simulation. The protein was first processed using the “Protein Preparation” wizard and
the “Protonate 3D” tool within the MOE software to add hydrogens and correct any errors
in the structure. Then, the minimized ligand was docked into the putative binding cleft of
STAT3 utilizing the Dock module in MOE software. Specification of the binding site was
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performed using the side chain of Arg609 within the critical pTyr705 binding site. Docking
was achieved by the default settings and the Triangular Matcher method. Docking poses
were visually examined by Pymol graphical software (Version 2.0, Schrodinger, LLC, NY,
USA) [79].

4.3. Bioinformatics Study

The STRING database (https://string-db.org, accessed on 1 October 2021) was em-
ployed to simulate the interaction network of STAT3 with other cellular proteins. Briefly,
we selected “Protein by Name”, Homo sapiens as the organism, and performed the search.
The “network” of nodes represents the proteins connected by edges, thus referring to the
seven channels of evidence linking these proteins. These edges are color-coded to denote
each element of evidence used to determine the connection. We used the default settings of
a median confidence level (0.400) and a Max Number of Interactors to Show of 10 in the
first shell only.

4.4. In Vivo Antitumor Activity against Solid Ehrlich’s Tumors
4.4.1. Animals

Twenty-one female Swiss albino mice, with body weight range 18–26 g, were housed
in polyethylene cages at temperature equals 25 ± 5 ◦C and normal light/dark cycles
with food and water available ad libitum. The mice were allowed 11 days to acclimatize.
The animal experiment was approved by the Institutional Research Ethics Committee
(Approval # 201906RA4).

4.4.2. Ehrlich’s Ascites Carcinoma Cell Line and Tumor Inoculation in Female Mice

Ehrlich’s carcinoma cells were obtained from by the National Cancer Institute in Cairo.
Before inoculation, counting of the Ehrlich’s ascites carcinoma cells was done using a
Trypan blue exclusion test [80]. Following acclimatization, the abdominal fur was shaved,
and 0.2 mL of Ehrlich cells (2.5 × 106 cells) were inoculated bilaterally at the top ventral
mammary sites to form ESTs [81].

4.4.3. Experimental Design

The mice were allocated into groups (7 mice per group). Group 1 included the EST
control group in which mice served as the untreated positive control group, as designed in
previous studies [29,82,83]. Groups 2 and 3 included the nifuroxazide-treated mice (5 and
10 mg/kg), in which mice with ESTs received nifuroxazide treatment (5 and 10 mg per kg,
respectively) by an oral gavage tube for 3 weeks starting from day 8 after tumor inoculation.
The doses of nifuroxazide were selected based on previous studies [31,84]. The dose range
for the antitumor effect of nifuroxazide in rodents ranges from 25 to 50 mg/kg for 12 days
for oral use [38] or about 10 mg/kg for injection for 7 days [55] or 10 and 50 mg/kg for
injection for 7 days in mice [20].

The usual human dose for nifuroxazide is 200 mg x 4 times a day for 3 days. In the
present study, nifuroxazide (5 and 10 mg/kg) was used, and this can be translated to the
human equivalent dose by using the Reagan–Shaw method [85]. According to the formula,
the human equivalent dose (mg/kg) = animal dose (mg/kg) 6 animal (km)/ human (km).
Km for human adults is 37, while for a 20 g mouse, it is 3. Thus, the human equivalent of
murine dose of 5 and 10 mg/kg are 28.35 and 56.7 mg for an average size of a 70 kg adult
human. Therefore, all the selected doses in the present study are still below the maximum
dose for humans.

4.4.4. Sample Collection

After finishing the experiment, mice were weighed and the percentage of increase
in body mass was calculated. Then, mice were sacrificed by cervical dislocation under
anesthesia. The two tumor discs were dissected from each mouse, and their weight was
recorded. The right tumor disks were fixed in phosphate-buffered formalin for 18–24 h at

https://string-db.org
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room temperature for histopathology and immunohistochemistry. The left tumor disks
were immediately frozen at −80 ◦C for subsequent assays.

4.4.5. Relative Gene Expression

In order to investigate the relative expression of IL-6, Jak2, STAT3, and VEGF, RNA
was extracted using Promega SV Total RNA Isolation System (Madison, WI, USA) and
reverse transcribed with high-capacity cDNA Reverse Transcription Kit (Applied Biosys-
tems, Waltham, MA, USA) according to the manufacturer’s protocol. Real-time PCR was
performed using a SYBR Green PCR Master mix (Fermentas, Waltham, MA, Applied
Biosystems, USA). The relative expression of each target gene was determined by the com-
parative threshold method (2-∆∆Ct) normalized to the housekeeping gene glyceraldehyde
3-phosphate dehydrogenase (GAPDH) [54,86]. Primer sequences are detailed in Table 1.

Table 1. Primer sequence for the selected genes.

Primer Sequence

GAPDH
Forward 5′-CATCACTGCCACCCAGAAGACTG-3′

Reverse 5′- ATGCCAGTGAGCTTCCCGTTCAG-3′

IL-6
Forward 5′-TACCACTTCACAAGTCGGAGGC-3′

Reverse 5′-CTGCAAGTGCATCATCGTTGTTC-3′

Jak2
Forward 5′-GCTACCAGATGGAAACTGTGCG-3′

Reverse 5′-GCCTCTGTAATGTTGGTGAGATC-3′

STAT3
Forward 5′-AGGAGTCTAACAACGGCAGCCT-3′

Reverse 5′-GTGGTACACCTCAGTCTCGAAG-3′

VEGF
Forward 5′-CAGGCTGCTCTAACGATGAA-3′

Reverse 5′-CAGGAATCCCAGAAACAACC-3′

4.4.6. Assessment of IL-6, Jak2, STAT3, and VEGF

Tumor pieces were homogenized in RIPA buffer using Teflon homogenizer on ice
(ART-MICCRA D-S, Heitersheim, 79423, Germany), and homogenates were cleared via
centrifuging at 3000 rpm for 10 min (Sigma 3K30, Sigma-Aldrich Chemie Gmbh). IL-6, Jak2,
STAT3, TNF-α, NF-kB, VEGF, and angiostatin were assessed in the tumor lysates by ELISA
using the following kits (IL-6 (cat# EK0411, Boster Biological Technology, Pleasanton,
CA, USA), Jak2 (cat# MBS7251994, MyBiosource, Shanghai, China), total STAT3 (cat#
MBS2500929, MyBiosource, Shanghai, China), TNF-α (SEA133Mu, Cloud-Clone Corp.,
Fernhurst Dr., Katy, TX, USA), NF-kB (SEB824Mu, Cloud-Clone Corp., Fernhurst Dr., Katy,
TX, USA), VEGF (cat# SEA143Mu, Cloud Cone Corp., Katy, TX, USA) and angiostatin
(LS-F6507, LS Bio, Seattle, WA, USA) on an automated ELISA reader at 450 nm (Stat Fax
2100, Ramsey, MN, USA).

4.4.7. Western Blot Analysis for p-STAT3 and Total STAT3

Total proteins were extracted from frozen tumors using RIPA buffer supplemented
with protease inhibitor. Then, proteins were resolved on a SDS-PAGE and moved to
polyvinylidene difluoride (PVDF) membrane [87]. Blocking of the membranes was achieved
by using 3% bovine serum albumin in Tris-buffered saline with Tween 20 (TBST80) 60 min
at room temperature. Next, membranes were incubated in primary mouse specific rabbit
monoclonal antibodies against STAT3 (#4904, 1:2000), rabbit monoclonal antibodies against
P-STAT3 (#9145, dilution 1:2000), and mouse monoclonal antibodies against β-actin (#3700,
dilution 1:1000) from Cell signaling technology, Danvers, MA, USA) overnight at 4 ◦C. Then,
membranes were incubated with horseradish peroxidase-conjugated secondary antibody
(Novus Biologicals, Centennial, CO, USA). Blots were detected with a chemiluminescent
kit (Bio-Rad catalog #170-5060) and imaged (ImageQuantTMLAS500, GE Healthcare Life
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Sciences). The intensity of target proteins was normalized to the β-actin protein using
Image-J1.52p (NIH, Bethesda, MD, USA).

4.4.8. Tumor Pathology

The formalin fixed paraffin-embedded (FFPE) tumor specimens were sectioned at
4 µm, stained by hematoxylin and eosin (H + E), and examined by a light microscope [82,88].
Analysis was carried out by ImageJ (NIH, Bethesda, MD 20814, USA).

4.4.9. Immunohistochemistry for Vascular Endothelial Growth Factor

Tumor sections (4 µm thickness) were deparaffinized in xylene and rehydrated in
descending ethanol series. Following antigen retrieval, sections of rabbit polyclonal anti-
VEGF antibody (diluted as 1:500, cat# GTX102643, Gene Tex, Irvine, CA, USA) were kept for
16 h at 4 ◦C and a secondary biotinylated antibody was kept for 1 h. The immune interaction
was visualized by Power-Stain™ 1.0 Double Stain kit I (Genemed Biotechnologies, San
Francisco, CA, USA) following the manufacturer’s protocol and counterstained with
Mayer’s hematoxylin. Negative control sections were prepared by adding the primary
antibody with phosphate-buffered saline. Photomicrographs were taken at x 10 and x
40 magnification by an optical Olympus microscope (Tokyo, Japan) coupled to PC-driven
digital camera (Olympus E-620). Image quantification of the 10x images was achieved by
the ImageJ MacBiophotonics program (NIH, Bethesda, MD, USA).

4.5. Statistical Analysis

Data were collected and presented as mean ± standard deviation (S.D.). The differ-
ence between variables was assessed by one-way analysis of variance (ANOVA), and the
Bonferroni’s test for pair-wise group comparison. Results were analyzed by version 19
of SPSS (SPSS Inc., ver 19, Chicago, IL, USA) and tested for the possibility of Gaussian
distribution by applying the K-S test. The significance level was fixed at p < 0.05.

5. Conclusions

In brief, we have shown that nifuroxazide therapy significantly reduced mammary
solid tumors grown in mice via inhibiting angiogenesis; this was—at least partly—mediated
by the inhibition of IL-6/Jak2/STAT3 signaling. In fact, nifuroxazide was able to occupy
only two of the three pockets forming the binding cleft. Therefore, it would be beneficial
to alter the nifuroxazide structure to occupy all three pockets in STAT3 to develop a
more potent derivative. Taken together, nifuroxazide might be a promising treatment for
mammary carcinomas.

Supplementary Materials: The following are available online, Figure S1. Western blot gels for the
measured proteins.
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