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Abstract: An ionic porous aromatic framework is developed as a self-degraded template to synthesize
the magnetic heterostructure of γ-Fe2O3/WO3·0.5H2O. The Fe3O4 polyhedron was obtained with the
two-phase method first and then reacted with sodium tungstate to form the γ-Fe2O3/WO3·0.5H2O
hybrid nanostructure. Under the induction effect of the ionic porous network, the Fe3O4 phase
transformed to the γ-Fe2O3 state and complexed with WO3·0.5H2O to form the n-n heterostructure
with the n-type WO3·0.5H2O on the surface of n-type γ-Fe2O3. Based on a UV-Visible analysis,
the magnetic photocatalyst was shown to have a suitable band gap for the catalytic degradation
of organic pollutants. Under irradiation, the resulting γ-Fe2O3/WO3·0.5H2O sample exhibited a
removal efficiency of 95% for RhB in 100 min. The charge transfer mechanism was also studied.
After the degradation process, the dispersed powder can be easily separated from the suspension by
applying an external magnetic field. The catalytic activity displayed no significant decrease after five
recycles. The results present new insights for preparing a hybrid nanostructure photocatalyst and its
potential application in harmful pollutant degradation.

Keywords: porous aromatic framework; heterostructure; photocatalytic; ionic porous network

1. Introduction

The construction of a heterostructure catalyst with different semiconductor con-
stituents has become more popular in recent years [1–6]. This combination can improve the
efficiency of photocatalytic reaction activity by building an inner electric field to separate
charge carriers. It is extremely significant to utilize heterostructure photocatalysts to purify
water polluted by dyes because almost 20% of the world’s water pollution is caused by
dyes [7,8]. Additionally, heterogeneous photocatalysis shows effectiveness in degrading a
wide range of dyes into readily biodegradable compounds and eventually mineralizes them
into innocuous carbon dioxide and water [9–13]. Tungsten oxide (WO3), with a band gap
of 2.5–2.8 eV, is considered to be a possible catalyst due to its suitable response to the solar
spectrum in the near ultraviolet and blue regions, stable chemical properties in aqueous
solution, good oxidizing ability of the holes in the valence band, high resistance against
anodic photo-corrosion, and long-term stability during irradiation [14–16]. However, the
conduction band (0.5 eV vs. NHE, normal hydrogen electrode) is not negative enough to
consume photogenerated electrons for the oxygen reduction, leading to low photocatalytic
activity [17]. For the purpose of separating photogenerated electron–hole pairs to improve
the catalytic performance, several approaches have been developed in recent years, in-
cluding surface modification with noble metals, special morphologies/phase control, and
the formation of nanomaterial composites [18–20]. However, most strategies encounter
high costs and uncontrollable morphology with limited improvement of photocatalysis
performance, which hinders the practical application of WO3-based composites.
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γ-Fe2O3 is a stable form of iron oxide with a cubic structure, which has excellent
properties of strong magnetism; it is photocatalytic and has low toxicity and good biocom-
patibility. It can be widely used in the fields of electromagnetics, biology, water treatment,
and medicine [21–24]. It is a potential semiconductor that can be coupled with WO3.
In the past decade, efforts have been made to prepare γ-Fe2O3 under high-temperature
pyrolysis [25], sol-gel [26], gas phase deposition [27], combustion synthesis [28], and so
on. However, these processes are too complex and require too much energy. In recent
years, some researchers have utilized the method of phase transition to prepare compounds
because of high raw material utilization and the mild reaction conditions [29,30]. Fe3O4 is
a kind of common and cheap iron oxide, which has almost the same structure as that of
γ-Fe2O3. If we can use an in situ phase transition method to prepare γ-Fe2O3 from Fe3O4,
it will be cost effective. When the phase transition happens, Fe2+ occupies the octahedral
B position of cubic Fe3O4 oxidized to Fe3+ [31] The procedure leads to the formation of
oxygen vacancy, and so the new cubic γ-Fe2O3 is not stable. Then, it may need to be
connected with another compound such as n-type WO3 to form hybrid composites.

Several research works on connecting WO3 and Fe2O3 to form hybrid composites
have been reported. Bai et al. synthesized Fe2O3@WO3 by decoration of zero-dimensional
(0D) Fe2O3 nanoparticles on the surface of a three-dimensional (3D) WO3 hierarchical
framework via an impregnation method [32]. Li et al. reported a novel heterojunction
photoanode of a WO3@a-Fe2O3 nanosheet array prepared by multiple steps involving
hydrothermal growth, pyrolysis, and calcination [33]. Yin et al. first synthesized two-
dimensional WO3 nanoplates via a robust intercalation and topochemical conversion route.
Then, Fe2O3 NPs were formed in situ on the surfaces of WO3 nanoplates via microwave
heating followed by calcination to form hierarchical Fe2O3@WO3 nanostructures [34].
Although these composites showed better relevant chemical properties, the synthetic
procedure of these composites is always too complex to be extended to practical application.

Porous aromatic frameworks (PAFs) are emerging functional porous solids, known for
their ultra-large surface area (specific surface area > 6000 m2 g−1), tunable local structure,
and high thermal/chemical stability [35–38]. Due to their tailorable and intrinsic porous
structures, densely functionalized PAF samples have huge promise for extreme applica-
tions [39–43]. For instance, they can withstand strong acid/alkali, high oxidation, and
long-term biological durability, whilst exhibiting the highest selectivity, capacities, and
uptake kinetics for the capture of Hg2+, Nd3+, Cu2+, and Pb2+ from water [44–48]. In partic-
ular, molecularly imprinted PAF solids combining the channel- and specific site-abundant
PAFs showed record capacity and kinetics two to three orders of magnitude faster than re-
ported for remarkable polymers for uranium adsorption, which is considered an important
developmental milestone in the field of extracting uranium from seawater [47–50].

In this work, a quaternary pyridinium-type PAF sample (PAF-50) was adopted as
a self-degraded template [51,52]. Due to the highly charged network, WO4

2− anions
concentrated around the porous network and γ-Fe2O3/WO3·0.5H2O hybrid composites
were successfully prepared through a two-step hydrothermal method. This is the first
time utilizing phase transition to prepare γ-Fe2O3/WO3·0.5H2O with the help of PAF-50.
The morphologies and crystalline structure of γ-Fe2O3/WO3·0.5H2O were investigated
using SEM, TEM, and XRD, respectively. The samples were examined by using UV-Vis
diffuse reflectance spectra. Meanwhile, the photocatalytic property of the catalysts was
evaluated by decomposing RhB in aqueous solution under visible light irradiation. Re-
markably, the γ-Fe2O3/WO3·0.5H2O heterojunction was demonstrated to have remarkable
photocatalytic characteristics and good reusability compared with that of pure WO3.

2. Materials and Methods
2.1. Chemicals

The chemical and reagents were of analytical grade and used as such without any fur-
ther purification. All the chemicals viz. sodium tungstate (Na2WO4·2H2O), ferric acetylace-
tonate (C15H21FeO6), methylbenzene (C6H5CH3), rhodamine B (C28H31C1N2O3), oleic acid
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(C18H34O2), hydrazine hydrate (N2H4·H2O), hydrochloric acid (HCl), and absolute ethanol
(C2H5OH) were supplied by Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All
the solutions were prepared in deionized water obtained from an ultra-filtration system.

2.2. Synthesis of Fe3O4

The synthesis of Fe3O4 was based on the literature [53] using a low-temperature
hydrothermal method in a Teflon-lined stainless steel autoclave with a capacity of 50 mL:
0.035 mol/L ferric acetylacetonate in a mixture of toluene, and oleic acid (volume ratio of
20:10 mL) was added into 10 mL of hydrazine hydrate inside the Teflon-lined stainless steel
autoclave to form a two-phase reaction system. The obtained mixed solution was sealed
and then kept at 130 ◦C for 24 h. After reaction, the mixture was poured out by adding
ethanol and sonicated with several minutes, washed with ethanol with a magnet to reduce
the possibility of impurities in the products, and then dried in air.

2.3. Synthesis of γ-Fe2O3/WO3·0.5H2O Magnetic Hybrid Nanostructure

Hybrid photocatalysts were fabricated via a hydrothermal method using PAF-50 as a
self-degraded template. Briefly, 3 mmol Na2WO4·2H2O and 100 mg PAF-50 (precise type:
Cl-PAF-50) were dispersed in 30 mL deionized water; the pH value was adjusted between
4 to 5 by drop-wise addition of concentrated HCl solution under continuous stirring; after
adding the Fe3O4 obtained above, the mixture was transferred to autoclave and maintained
at 160 ◦C for 6 h. The collected sample was rinsed with deionized water and dried in air.

2.4. Materials Characterization

XRD (X-ray diffraction) patterns give information on the phase and crystallinity of
the as-prepared materials, which were collected on a Rigaku D/Max-2550 diffractometer
(Tokyo, Japan) equipped with Cu-Ka radiation (λ = 0.15418 nm) at a scanning range of
20–80◦ and scanning speed of 5◦/min. HRTEM images were obtained using a Tecnai
G220S-Twin transmission electron microscope (Hillsboro, OR, USA) at an accelerating
voltage of 120 kV, and the images were observed at 200 kV instead of 120 kV. XPS spectra
were performed on a Thermo ESCALAB 250 (Waltham, MA, USA) with Al Kα radiation at
θ = 90◦ for the X-ray sources; the binding energies were calibrated using the C 1s peak at
284.8 eV. UV-Visible solid absorbances of the samples were obtained using a PerkinElmer
Lambda950 UV-Visible solid spectrometer (Waltham, MA, USA) using BaSO4 as a reference.
The magnetic properties were investigated with a Quantum Design SQUID-MPMS-XL
(San Diego, CA, USA). Magnetic hysteresis loops were measured at 300 K under a magnetic
field up to 2 T.

2.5. Measurement of Photocatalytic Activity

The photocatalytic activity of the hybrid photocatalysts was evaluated by examining
the degradation of Rhodamine B (RhB) in aqueous solution. In a typical reaction procedure,
20 mg of the prepared sample is dispersed into 50 mL dye solution (20 mg/L) and continu-
ously stirred in dark overnight to allow comprehensive adsorption–desorption equilibrium.
The sample solutions are irradiated with 500 W xenon lamp, and then withdrawn at reg-
ular time intervals followed by separation with a magnet to remove the catalyst. Any
change in concentration of RhB was monitored using UV-Vis spectrophotometer during
the photoreaction process.

3. Results
3.1. Surface and Structure Characterization of Samples

Figure 1 shows the XRD patterns of pure Fe3O4 and γ-Fe2O3/WO3·0.5H2O samples,
respectively. As shown in Figure 1a, diffraction peaks (marked as #) are indexed to cubic
Fe3O4 (JCPDS No.: 65-3107). In Figure 1b, the peaks marked with the sample after being
loaded with Fe3O4 show diffraction peaks at (111), (311), (222), (400), (331), (422), (511),
(440), (531), (533), and (622), which matched well with WO3·0.5H2O (JCPDS No.:84-1851),



Molecules 2021, 26, 6857 4 of 14

whereas the peaks at (220), (311), (400), (422), and (511) (Marked as *) show diffraction
peaks located at γ-Fe2O3 (JCPDS No.: 39-1346). No additional peaks were observed in
the XRD pattern, confirming the purity of the products. In order to explore the effect
of template, we prepared γ-Fe2O3/WO3·0.5H2O in the absence of PAF-50. The results
(Figure 1c) showed that in the products Fe3O4 did not turn out to be γ-Fe2O3. We inferred
that PAF-50 played a role helping to oxidize Fe3O4 to γ-Fe2O3 and in accumulating metal
ions to form a complex [26,45,48].
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[57]. During this hydrothermal reaction, Fe3O4 has a phase transformation to Fe2O3. In 
Figure 2c, the W 4f binding energies of two peaks located at 35.7 eV and 37.8 eV corre-
spond to +6 valence of W. The whole spectra (Figure 2a) show that content of W is much 
higher than that of Fe. We can infer that WO3 covers the surface of FexOy during the syn-
thesis of hybrid nanostructure. Additionally, XPS is a surface-sensitive analytical tech-
nique [58]. Thus, the intensity of Fe 2p peak is weak. 
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Figure 1. (a) Indexed powder XRD pattern of the Fe3O4 products and ICDD files of Fe3O4; (b) indexed
powder XRD pattern of γ-Fe2O3/WO3·0.5H2O samples and ICDD files of γ-Fe2O3 and WO3·0.5H2O;
(c) indexed powder XRD pattern of the samples prepared in the absence of PAF-50.

XPS spectra were performed to determine the valence state of the elements. Figure 2b
shows the spectrum of Fe 2p; the locations at 711.1 and 724.8 eV correspond to Fe 2p3/2
and Fe 2p1/2 [54,55]. The satellite peak of Fe 2p3/2 for Fe2O3 is located approximately 8 eV
higher than the main Fe 2p3/2 peak. In addition, there appears to be another satellite peak
at 733.5 eV, which may be a satellite peak for Fe 2p1/2 [56]. The corresponding satellite
peak around 719.1 eV confirms the γ-Fe2O3 phase, which is consistent with the results
of XRD [57]. During this hydrothermal reaction, Fe3O4 has a phase transformation to
Fe2O3. In Figure 2c, the W 4f binding energies of two peaks located at 35.7 eV and 37.8 eV
correspond to +6 valence of W. The whole spectra (Figure 2a) show that content of W is
much higher than that of Fe. We can infer that WO3 covers the surface of FexOy during
the synthesis of hybrid nanostructure. Additionally, XPS is a surface-sensitive analytical
technique [58]. Thus, the intensity of Fe 2p peak is weak.
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Figure 2. XPS spectra of (a) γ-Fe2O3/WO3·0.5H2O; (b) Fe 2p; (c) W 4f.

Figure 3a,b show the representative images of Fe3O4 and γ-Fe2O3/WO3·0.5H2O. It
is evident from Figure 3a that Fe3O4 shows uniform and regular twelve faces with a size
range from 80 to 100 nm. There is no significant change after composed with tungsten. A
single particle was selected, and the relevant HRTEM image is shown in Figure 3c. The
edge coupled with the center presents a strong contrast, which further proves the formation
of well-defined products. There is more than one lattice overlap in the polyhedron, with
a lattice spacing of 0.297 nm corresponding to WO3·0.5H2O (JCPDS No.: 84-1851). In
addition, the obvious lattice spacing in the HRTEM image further confirms that the sample
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comprises two phases of γ-Fe2O3 and WO3 to form a hybrid structure, and the morphology
has no significant change after composition.
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3.2. Magnetism Measurement

Figure 4 shows the hysteresis loops of γ-Fe2O3/WO3·0.5H2O at 300 K with the applied
field ±2T. The saturation magnetization of the heterostructure increases with the field and
tends to slow until ±2000 Oe. From the enlarged part of the illustration, we can see that the
product is ferromagnetic with a residual magnetization (Mr) of 2.3 emu/g and a coercivity
(Hc) of 61.2 Oe [59]. The saturation magnetization (Ms) of 20 emu/g is less than that of the
bulk γ-Fe2O3 of 73.5 emu/g [60]. This is mainly due to the surface of the hybrid structure
being covered with hydrated tungsten oxide, which affects the morphology and the spin
density, which in turn affects the saturation magnetization.

3.3. Photocatalytic Activity

Both WO3 and γ-Fe2O3 are typical n-type semiconductors, and the n-n-type het-
erostructure has absorption in the ultraviolet region and visible region [61]. UV-Visible
spectrum analysis was used to explore the light response. As shown in Figure 5a, compared
with Fe3O4, the complex can absorb light in a larger wavelength range. The adsorption
band is at 300 to 600 nm, which can absorb ultraviolet and visible light. The light density
of the xenon lamp and solar light density is 120 mW/cm2 and 54 mW/cm2, respectively;
therefore, the 500 W xenon lamp was used as the light source in this experiment [62]. The
band gap of γ-Fe2O3/WO3·0.5H2O can be obtained from the plot of (αhν)2 versus hν by
extrapolating the strait portion of (αhν)2 to zero, as shown in Figure 5b. After calculation,
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the value was determined to be 1.8 eV, which is narrower than 2.64 eV of Fe3O4. A narrow
band gap is beneficial for the efficient utilization of visible light for photocatalysis [63].
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band gap of γ-Fe2O3/WO3·0.5H2O can be obtained from the plot of (αhν)2 versus hν by 
extrapolating the strait portion of (αhν)2 to zero, as shown in Figure 5b. After calculation, 
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Figure 4. Magnetization hysteresis (M-H) loops measured at 300 K (the inset is a partially enlarged
image of the curve).

Rhodamine B (RhB) was used to simulate pollutants in water under UV-Visible light
at room temperature. γ-Fe2O3/WO3·0.5H2O was dispersed, and the absorption spectrum
of the solution was tested. The curve of absorbance wavelength versus time is shown in
Figure 6a. The intensity of the absorption peak at 553 nm [64] gradually decreased with the
increase in time, and the absorption peak was blue shifted, which indicated that the ethyl
on RHB molecule was removed. The characteristic absorption peak of Rhodamine B could
hardly be seen at 100 min, and Rhodamine B was completely degraded.

From Figure 6b, the photocatalytic reactions over both Fe3O4 and γ-Fe2O3/WO3·0.5H2O
obey first-order kinetics. The degradation percentages of RhB only reached 62% and 1%
after photodegradation for 100 min under UV irradiation in the case of the presence of pure
Fe3O4 and in the absence of any catalysts, respectively, which are too low compared to that
of γ-Fe2O3/WO3·0.5H2O heterostructures (94.9%), revealing the significantly enhanced
photocatalytic properties of the γ-Fe2O3/WO3·0.5H2O heterostructures. This removal
efficiency is more than that of pure WO3 [65] or γ-Fe2O3 [66] according to relevant studies.
However, γ-Fe2O3/WO3·0.5H2O takes more time than Fe2O3/WO3 in the degradation of
RhB with the same concentration [32].

The composite catalyst is the key factor for this degradation reaction, which is mainly
due to the synergistic and coupling effects of Fe2O3 and WO3. When γ-Fe2O3 excited
by visible ultraviolet, the electron flow to the valence band of WO3, and the hole in the
valence band migrates from WO3 to γ-Fe2O3. At the same time, the internal electric
field also promotes the electron hole migration, and the formation of the heterostructure
promotes the separation of photo-generated electrons and hole pairs [67]. This can reduce
the recombination probability and reduce the energy needed for the transition, so it has
a better photocatalytic effect than single WO3 or γ-Fe2O3. However, the lower removal
efficiency as compared to the reported Fe2O3/WO3 may due to the water molecules in the
structure of γ-Fe2O3/WO3·0.5H2O.
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Rhodamine B (RhB) was used to simulate pollutants in water under UV-Visible light 
at room temperature. γ-Fe2O3/WO3·0.5H2O was dispersed, and the absorption spectrum 
of the solution was tested. The curve of absorbance wavelength versus time is shown in 
Figure 6a. The intensity of the absorption peak at 553 nm [64] gradually decreased with 
the increase in time, and the absorption peak was blue shifted, which indicated that the 
ethyl on RHB molecule was removed. The characteristic absorption peak of Rhodamine B 
could hardly be seen at 100 min, and Rhodamine B was completely degraded. 

Figure 5. (a) UV-Vis diffuse reflectance spectrum of Fe3O4 and γ-Fe2O3/WO3·0.5H2O; (b) (αhν)2

versus hv curves of Fe3O4 and γ-Fe2O3/WO3·0.5H2O.

The catalytic activities of the complex were measured by the photodegradation of RhB
for five recycles. After each cycle, fresh RhB solution was used for the next photocatalytic
experiment. Additionally, the photocatalyst was collected from the previous experiment
followed by washing and drying. It is shown in Figure 7 that the catalytic activity displayed
no significant decrease after five recycles with a period of 100 min. This indicates that
the stability of γ-Fe2O3/WO3·0.5H2O is excellent, and it can keep its high photocatalytic
activity after the photocatalytic reaction and recycling process [32,68].
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Figure 6. (a) Absorption spectrum of RhB solution in the presence of γ-Fe2O3/WO3·0.5H2O under 
UV-Visible light; (b) degrading efficiency at different times with various or without catalysts under 

Figure 6. (a) Absorption spectrum of RhB solution in the presence of γ-Fe2O3/WO3·0.5H2O under
UV-Visible light; (b) degrading efficiency at different times with various or without catalysts under
UV-Visible light. The purple curve and yellow curve are the pseudo-first-order models’ fitting curve.

In conventional photocatalysts, the photoinduced electrons and holes migrate ran-
domly, and the recombination of the charge carriers reduces the quantum yield in the
catalytic process. We can see in Figure 8 that when γ-Fe2O3 (as the primary light absorber)
forms a heterojunction with WO3 (as an electron acceptor), the band bending formed at the
interface between γ-Fe2O3 and WO3 impels the carriers to diffuse in opposite directions
until their Fermi levels reach equivalence [69]. As other studies have claimed that the
CB edge potential of γ-Fe2O3 (0.29 eV) is lower than that of WO3 (0.79 eV) [32,70,71],
upon irradiation, the ground-state γ-Fe2O3 and WO3 go to an exited state to produce
some electron–hole pairs because of their narrow band gaps. Therefore, the photo-excited
electrons on the CB of γ-Fe2O3 transferred to the CB of WO3. Additionally, the VB edge
potential of WO3 (2.60 eV) was found to be larger than that of the γ-Fe2O3 (2.20 eV), which
helps the photo-excited holes on the VB of WO3 transfer to the VB of γ-Fe2O3. The electrons
and holes transfer rapidly in the opposite direction due to the heterojunction-generated
inner electric field [72]. In this regard, the recombination rate of charge carriers is remark-
ably reduced, and the γ-Fe2O3/WO3·0.5H2O shows enhanced photoactivity for organic
pollution degradation under light.
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4. Conclusions

In conclusion, γ-Fe2O3/WO3·0.5H2O heterostructures were synthesized using an
ionic porous aromatic framework as self-degraded template and a facile low-temperature
hydrothermal growth method. The experimental results show that the structures are
composed of γ-Fe3O4 and WO3. The role of PAF-50 is to accumulate metal ion and oxidize
Fe3O4 to Fe2O3. Compared with Fe3O4, the complex can absorb light in a larger wavelength
range. The results of the degradation experiment revealed that product loading with
WO3 exhibited higher photocatalytic activity than with pure Fe3O4, and the degradation
efficiency reached 95% for the RhB solution after 100 min. After the degradation process,
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the dispersed powder can be easily separated from the suspension by applying an external
magnetic field. The charge transfer mechanism in γ-Fe2O3/WO3·0.5H2O shows that the
enhanced photocatalytic properties of the heterostructures are attributed to the larger
spectral range, a narrower band gap, and a lower recombination rate of electrons and holes.
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