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Abstract: Multi-drug resistance (MDR) bacterial pathogens pose a threat to global health and war-
rant the discovery of new therapeutic molecules, particularly those that can neutralize their viru-
lence and stop the evolution of new resistant mechanisms. The superbug nosocomial pathogen,
Pseudomonas aeruginosa, uses a multiple virulence factor regulator (MvfR) to regulate the expres-
sion of multiple virulence proteins during acute and persistent infections. The present study tar-
geted MvfR with the intention of designing novel anti-virulent compounds, which will function
in two ways: first, they will block the virulence and pathogenesis P. aeruginosa by disrupting the
quorum-sensing network of the bacteria, and second, they will stop the evolution of new resis-
tant mechanisms. A structure-based virtual screening (SBVS) method was used to screen druglike
compounds from the Asinex antibacterial library (~5968 molecules) and the comprehensive marine
natural products database (CMNPD) (~32 thousand compounds), against the ligand-binding do-
main (LBD) of MvfR, to identify molecules that show high binding potential for the relevant pocket.
In this way, two compounds were identified: Top-1 (4-((carbamoyloxy)methyl)-10,10-dihydroxy-
2,6-diiminiodecahydropyrrolo[1,2-c]purin-9-yl sulfate) and Top-2 (10,10-dihydroxy-2,6-diiminio-
4-(((sulfonatocarbamoyl)oxy)methyl)decahydropyrrolo[1,2-c]purin-9-yl sulfate), in contrast to the
co-crystallized M64 control. Both of the screened leads were found to show deep pocket binding and
interactions with several key residues through a network of hydrophobic and hydrophilic interac-
tions. The docking results were validated by a long run of 200 ns of molecular dynamics simulation
and MM-PB/GBSA binding free energies. All of these analyses confirmed the presence of strong
complex formation and rigorous intermolecular interactions. An additional analysis of normal mode
entropy and a WaterSwap assay were also performed to complement the aforementioned studies.
Lastly, the compounds were found to show an acceptable range of pharmacokinetic properties,
making both compounds potential candidates for further experimental studies to decipher their real
biological potency.

Keywords: Pseudomonas aeruginosa; multiple virulence factor regulator; asinex antibacterial library;
comprehensive marine natural products database; M64 control; binding free energies
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1. Introduction

Infectious diseases are a major reason for human disorders, particularly in low in-
come countries [1,2]. Infectious diseases have been the top cause of deaths around the
globe for a long time and have high economic costs [3,4]. Multi-drug-resistant bacterial
species emerged as a serious threat to public health and are classified by the World Health
Organization (WHO) as one of the top 10 health problems that humanity is currently
facing [5–7]. Antibiotic resistance, in particular, is of great concern in six highly virulent
bacterial species (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acine-
tobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp.) (commonly referred to
as ESKAPE pathogens) [6,8]. The design of new drugs against the mentioned antibiotic-
resistant bacterial pathogens involves a constant search and the unveiling of new chemically
diverse molecules to tackle ESKAPE pathogens requires more time [9].

Gram-negative bacilli of the genus Pseudomonas are found in freshwater, soil, and
marine environments [10]. P. aeruginosa is a frequent causative pathogen of nosocomial in-
fections such as bacteremia, pneumonia, urinary tract infections, meningitis, and damaged
mucous membranes or skin, the latter enabling pathogens to enter the blood circulation and
cause septicemia [11]. The infectious bacteremia caused by P. aeruginosa has a higher mor-
tality rate than other species of Pseudomonas due to its higher resistance spectrum against
many of the antibiotics [12]. It is a ubiquitous pathogen that has the natural ability to thrive
in moist environments and show resistance to many antiseptics and antibiotics, and thus, is
commonly found in hospital intensive care units [13]. The resistance is multifactorial and is
mediated by porins, penicillin-binding proteins, efflux pumps, chromosomal β-lactamases,
and aminoglycoside-modifying enzymes, all of which contribute to resistance against
antibiotics that are commonly used for treating P. aeruginosa infections [14]. The multi-drug
resistance in this pathogen has made it critical to come up with new antimicrobial drugs.

P. aeruginosa survives the action of antibiotics through the formation of dormant cells
known as antibiotic-tolerant/persister (AT/P) cells [15]. In these cells, the metabolic state is
suppressed, enabling tolerance to lethal antibiotic concentrations. It was demonstrated that
multiple virulence factor regulator (MvfR) plays a key role in the formation of AT/P cells
and the regulation of different virulence functions in P. aeruginosa [16]. In order to block the
function and to design anti-virulent drugs, the current study uses different applications of
computer aided drug design (CAAD) [17]. Computational approaches are of significant
importance in the process of drug discovery and development [18–20]. The search for
specific and selective novel drug targets against bacterial pathogens is an important step in
the design of new drug molecules to fight bacterial infections. This in silico study aims to
identify potential inhibitory molecules against P. aeruginosa that can be developed as drugs.
The objective is to screen high-affinity binders from antibacterial and natural databases.
Virtual screening was performed to prioritize the best-docked molecule for the MvfR,
followed by a biophysical analysis of molecular dynamics simulation and binding free
energies to validate the docking predictions. The findings of this study can help in the
identification of novel leads against nosocomial P. aeruginosa infections.

2. Materials and Methodology
2.1. Retrieval of MvfR and Preparation

Initially, the crystal structure of P. aeruginosa MvfR was retrieved from the protein data
bank (PDB) using the PDB ID of 6B8A [21]. The MvfR crystal structure was of 2.65 Å reso-
lution, and had an R-Value Free score of 0.251 and an R-Value Work score of 0.216 [16]. The
enzyme was visualized in UCSF Chimera version 1.15 [22], and was analyzed to prepare it
for the molecular docking study. The water molecules and associated co-crystallized ligand
(M64 compound) were deleted from the protein structure. The structure then entered the
energy minimization phase of 2000 steps: 1000 steps of the steepest descent algorithm (to
ease highly unfavorable clashes) and 1000 steps of the conjugate gradient algorithm (a
slower algorithm that is effective at reading the energy minimum). The said algorithms
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were run at a default step size of 0.02 Å. AMBER ff14SB [23,24] was used to assign charges
to the protein residues.

2.2. Ligands Library Preparation

In order to discover novel chemical entities of good safety and strong antibacte-
rial activity, valuable starting leads are indeed of significance. To obtain these, several
antibacterial libraries were utilized for use in structure-based virtual screening. The li-
braries employed in this study included the Asinex antibacterial library (~5968 molecules)
(http://www.asinex.com/?page_id=14/, accessed on 7 August 2021) and the comprehen-
sive marine natural products database (CMNPD) (~32 thousand compounds) [25]. Both
libraries were imported to FAFDrugs4 (https://mobyle.rpbs.univ-paris-diderot.fr/cgi-
bin/portal.py?form=FAF-Drugs3#forms::FAF-Drugs4, accessed on 8 August 2021) [26]
to be filtered based on Lipinski’s rule of five [27,28]. The filtered compounds were then
transferred to PyRx v0.8 [29] and converted into .pdbqt, and their energy was minimized
via an MM2 force field [30].

2.3. Structure-Based Virtual Screening (SBVS)

After preparing both the MvfR receptor and the drug libraries, SBVS was performed,
targeting the ligand-binding domain of MvfR, which was collectively formed by two
subdomains connected through antiparallel β-sheets. The ligand-binding domain was
hydrophobic and comprised active residues (Thr265 (X: 21.693 Å, Y: −20.196 Å and Z:
5.844 Å) and Leu189 (X: 15.868 Å, Y: −31.230 Å and Z 0.342 Å)) that were reported to be
in regular contact with the M64 co-crystallized compound [16]. Virtual screening of the
libraries was achieved using the AutoDock Vina program [31] and GOLD 5.2 [32], where
the grid box was centered at the above-mentioned residues with dimensions along the
XYZ axes of 25 Å. To be certain about the docking protocol, the co-crystalized ligand was
extracted and docked to the MvfR blindly. After confirmation of the docking method,
the ligand libraries were screened against the targeted pocket of the MvfR. The number
of poses generated for each compound was tuned to 100; these were clustered, and the
ones with the lowest binding energy scores and the greatest numbers of hydrophobic and
hydrophilic interactions were selected for complex formation. In total, 3 complexes were
selected, including one control (M64), for further analysis.

2.4. Dynamics Understanding Using Molecular Dynamics Simulations

Molecular dynamics simulations were performed to evaluate the binding mode of
the leads and the control. Docking results are usually not satisfactory and post-molecular-
docking analyses, including molecular dynamics simulation and binding free energies,
are widely applied to validate docking predictions [33–36]. The AMBER20 simulation
package [37] was used to perform all atom simulations. The Antechamber program [38]
was employed to recognize the atom type and bond type, to find the missing force field
parameters and provide similar substitutes, and to generate the topology files. This module
was considered to automatically generate drug molecules and protein input parameters
for simulation. Further, parametrization of the compounds and the MvfR was conducted
using AMBER GAFF [39] and the ff14SB force field [23], respectively. After preparation,
each complex was placed in a TIP3P water box of 12 Å dimensions (to ensure that the
box size was sufficient to allow proper complex dynamics and that the opposite parts
of the complex from the adjacent cells did not see each other), which was then treated
with a suitable number of Na+ counter ions (9 in total) to obtain a neutral charge system
(Figure 1). To prepare the systems for the production run, the complexes were subjected
to different phases of energy minimization, as follows: energy minimization for a total of
3000 steps (hydrogen atom energy minimization, water box energy minimization, complex
energy minimization, and non-heavy atom minimization) with different set restraints as
used previously [40]. The number of cycles of each energy minimization step was adjusted
according to the studied systems. Further, an NVT ensemble was used to gradually heat the

http://www.asinex.com/?page_id=14/
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systems from 0 to 300 K at a time interval of 2 femtoseconds for 20 ps, keeping a constraint
of 5 kcal/mol. During this phase, the temperature was kept constant through the use of
Langevin dynamics [41]. The SHAKE algorithm [42] was used to constrain the geometry
of bonds that involved hydrogen atoms. The systems were then equilibrated using a
two-femtosecond time step. After this, each system was treated at constant pressure
and temperature for 1 ns, at 1 bar pressure and 300K temperature. Another round of
equilibration was performed for 1 ns. The production run was performed for 200 ns. The
CPPTRAJ module [43] was applied to perform an analysis of the simulation trajectories in
order to evaluate the stability of the system structures.

Figure 1. Waterbox containing MvfR-Top-1 lead complex. The MvfR structure is shown via the green
cartoon, while Top-1 lead is represented by the green stick. The purple balls are Na+ ions while the
small red-white sticks are water molecules.

2.5. Analysis of Radial Distribution Function

The radial distribution function (RDF) is denoted by g(r) and was applied after molecu-
lar dynamics simulation to illustrate the variation in the density of interatomic interactions
with respect to time [44]. RDF was performed through the CPPTRAJ module of AMBER
considering only hydrogen bonds between the compounds and MvfR residues. The hy-
drogen bond interactions were examined using an in-house Visual Molecular Dynamics
(VMD) Perl script [45].

2.6. Binding Free Energies Calculation

Complexes were then subjected to the AMBER MMPBSA.py method to calculate the
net binding free energies of the complex, enzymes and compounds [46]. The net system
binding free energy was considered by subtracting the combined binding energy of the
enzyme and compound from the complex binding energy. From simulation trajectories,
1000 frames were picked at a regular time interval and investigated for molecular me-
chanical energies and solvation free energies. The binding free energy estimation was
conducted through two methods: MM-PBSA and MM-GBSA [47,48]. Statistically, both
methods estimate binding free energy as,

∆G net binding free energy = ∆G binding free energy of complex − ∆G receptor + ∆G ligand
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2.7. Normal Mode Analysis for Assessing Binding Entropy

The AMBER NMODE module was employed to compute the contribution of entropy
to the net binding MM-PB/GBASA energy of the complexes [49]. Only 10 frames of the
trajectories were analyzed.

2.8. WaterSwap Analysis

Further confirmation on the intermolecular stability of the MvfR-compound complexes
was achieved by estimating the absolute binding free energies using WaterSwap from the
Sire Package [50,51]. WaterSwap works on the idea of swapping ligand dimensions at the
active pocket of the enzyme with water molecules of equal volume and size from the explicit
environment. One thousand iterations were completed for each system, which is reported
to be enough to obtain converged binding energy values. The absolute binding free energy
was calculated using four efficient methods: thermodynamic integration (TI), free energy
perturbation (FEP), quadrature-based integration of TI, and Bennett’s acceptance ratio
(BAR) method. The stability of complexes was considered to be high if they had net energy
values <1 kcal/mol [52].

2.9. Pharmacokinetics Studies

The SwissADME [53] and pkCSM [54] online software applications were used to
predict the ADMET properties of the lead molecules.

3. Results and Discussion
3.1. Identification of Potential Leads

SBVS screening studies were performed at the active pocket of the MvfR enzyme
using two highly reliable docking software packages: AutoDock Vina and GOLD. The
results of both virtual screenings were then sorted on the basis of the docking function,
and top two leads (in comparison with the M64 control) were selected. Top-10 hits that
were virtually screened and had higher binding affinity binders for the targeted MvfR
are tabulated in Table 1. The top two hit compounds: (4-((carbamoyloxy)methyl)-10,10-
dihydroxy-2,6-diiminiodecahydropyrrolo[1,2-c]purin-9-yl sulfate) and 10,10-dihydroxy-2,6-
diiminio-4-(((sulfonatocarbamoyl)oxy)methyl)decahydropyrrolo[1,2-c]purin-9-yl sulfate
were consistently observed to have excellent binding; therefore, they were considered for
additional computational analysis. Selection of these compounds in complex with MvfR
was conducted considering their structural stability in molecular dynamics simulations
and MM-GBSA analysis. The 50-ns MD simulation validated the stability of the docked
conformation of the lead compound with MvfR, and the structural deviations of the Cα

atoms were plotted against time as the RMSD (presented in Section 3.3). Contrary to the
control M64, the screened lead–MvfR complexes were stable and followed a somewhat
similar RMSD trend within 2 Å. Small numbers of frames from the molecular dynamics
simulations were then selected to estimate the MM–GBSA binding free energy for further
validation of the binding strength of the lead molecules for MvfR. The estimated net
MM–GBSA binding free energies of Top-1, Top-2 and control M64 were −24.15 kcal/mol,
−45.47 kcal/mol and −68.89 kcal/mol, respectively.
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Table 1. GOLD fitness score and binding free energy of compounds for the MvfR enzyme.

# Docked Complexes Gold Score AutoDock Binding
Energy Value

1

Top-1

61.4 −9.18

2

Top-2

59.2 −9.0

3

Top-3

58.4 −9.14

4

Top-4

57.2 −8.4

5

Top-5

56.3 −9.10

6

Top-6

56.2 −7.88
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Table 1. Cont.

# Docked Complexes Gold Score AutoDock Binding
Energy Value

7

Top-7

55.3 −7.37

8

Top-8

54.4 −7.19

9

Top-9

54.3 −7.01

10

Top-10
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3.2. Leads and Control Binding Conformation and Interactions

The AutoDock binding free energy score and GOLD fitness score of the control were
−8.14 kcal/mol and 55.14, respectively. The majority of the interactions produced by M64
with MvfR residues were hydrophobic and were similar to those reported previously. In our
study, we found that the M64 formed a closed-distance hydrogen bond with Gln102 through
the central chemical moiety oxygen atom. This finding is in line with the co-crystallized
structure, which is a strong indicator of the soundness of the docking methodology applied
herein. The rest of the M64 structure, including Ala10, Ile57, Thr74, Hie92, Ser93, Ile94,
Asn114, Arg117, Pro118, Phe129, Trp142, Ala145, Pro146, Leu162, Ser163, and Thr173, was
strongly entangled by van der Waals residues. Along with this, several pi–alkyl, pi–sigma
and pi–pi stack interactions could be noticed between M64 and MvfR (Figure 2A). M64 is a
highly competitive antagonist and has an enhanced affinity for MvfR than natural binding
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substrates. The Top-1 lead, in contrast to M64, produced a higher number of hydrogen
bonds than van der Waals and other chemical contacts. The AutoDock binding energy of the
compound was −9.18 kcal/mol and its GOLD fitness value was 61.4. The 10,10-dihydroxy-
2,6-diiminiodecahydropyrrolo[1,2-c]purin-9-yl sulfate region, in particular, dominated the
bindings and favored the compounds that showed hydrogen bonding with active pocket
residues such as Gln102, Ser104, Asn114, and Arg117. The opposite carbamic acid chemical
moiety of the compound favored the formation of hydrogen bonds with Asp172. The van
der Waals interactions of this compound involved the residues Ile57, Ile103, Leu116, Pro118,
Val119, Trp142, Gly143, Ile144, Ile171, and Thr173 (Figure 2B). The Top-2 compound had a
GOLD score of 59.2 and a binding energy value of -9.0 kcal/mol. Similarly to Top-1, Top-2
dominated its interactions with the MvfR through hydrogen bonds. The compound formed
hydrogen bonds with Gln102, Leu105. Asn114, Leu115, Arg117, and Val119. The rest of the
interactions can be seen in Figure 2C. Overall, the docking study predicted that the lead
compounds and the control would favor binding to the same ligand-binding domain and
produce interaction networks of the same kind.

Figure 2. Binding conformation of leads (Top-1 (tan stick) and Top-2 (sky blue stick)) and control (magenta stick) with
respect to MvfR (shown in blue cartoon). Residue level interactions of control (A), Top-1 (B) and Top-2 (C).
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3.3. Deciphering Conformational Dynamics

The initial 50 ns of the molecular dynamics simulation was extended to 200 ns to obtain
confidence values of the complexes’ stability and the strength of leads’ interactions with the
MvfR. Different analyses conducted on the simulation trajectories of the leads and control
trajectories are presented in Figure 3. Molecular dynamic simulation is a highly useful
technique for determining the time-dependent stability of the ligand–receptor interactions
and docked conformation. Different statistical analyses based on Cα atoms were performed,
such as the radius of gyration (Rg) [55], the root mean square deviation (RMSD) [56] and
root mean square fluctuations (RMSF) [57]. Analyses were started by calculating the RMSD
for all three complexes by superimposing all frames of the molecular dynamics simulation
over the initial docked conformation, and a plot was generated for the entire simulation
time using the XMGRACE software [58]. From Figure 3A, consistent stability of the systems
could be witnessed and the systems’ RMSD were close to the 2 Å mark throughout the
simulation time. This indicates that the leads were enjoying the affinity inside the active
pocket of the MvfR, similarly to that of the co-crystalized M64, and were strongly attached
to the active side residues via hydrophobic and hydrophilic interactions. The different
interactions that allowed stable binding of the compounds at the enzyme’s active pocket are
mentioned in Table 2 and the Radial Distribution Function section. For compound 1, Leu71,
Tyr73, Arg197, and Leu200 were reported to be in consistent contact with the ligands,
while Ser104, Leu115, Arg117, Ser163, Gln190, and Ile194 were reported for compound 2.
Due to the stable binding conformation of the compounds during the simulation time, the
interacting residue pattern remain mostly the same and did not experiences any major
shifts. Next, RMSF analysis was performed on the Cα atoms, visualizations of which are
shown in Figure 3B. All the systems’ residues revealed highly stable RMSF values and were
within the range of <2 Å with the exception of a few 3 Å spikes. It was observed that the
loop regions of MvfR represented high fluctuations in the presence of compounds/control;
however, they were still in an acceptable range and allowed proper accommodation of
the leads/control inside the pocket for enhanced docked stability. Lastly, the MvfR’s
compactness and structure equilibrium were tested in the presence of the leads/control by
means of Rg analysis of the Cα atoms. As can be noticed in Figure 3C, all three systems
were in good equilibrium (<19 Å). The lead complexes, in particular, were more stable than
the control complex. In summary, the simulation analysis confirmed the stability of the
systems and identified the compounds as suitable candidates for further experiments in
order to unravel their real affinity for the MvfR.

Figure 3. Molecular dynamics simulation trajectories analysis to evaluate the stability of the complexes’ dynamics as a
function of time. (A) RMSD analysis. (B) RMSF analysis sand radius of gyration analysis (C) of MvfR in the presence of
co-crystallized control, Top1 and Top2 compounds.
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Table 2. Occupancy of hydrogen bonds formed between the leads and the MvfR enzyme.

Donor Acceptor Occupancy (%)

Control

LIG204-Side-N3 LEU115-Main-O 0.13%

TYR166-Side-OH LIG204-Side-O3 0.19%

LIG204-Side-N3 ASP172-Main-O 4.06%

THR173-Side-OG1 LIG204-Side-N4 0.98%

LYS174-Side-NZ LIG204-Side-O3 0.01%

TYR73-Side-OH LIG204-Side-C8 0.01%

TYR166-Side-OH LIG204-Side-C6 0.01%

LIG204-Side-N3 TYR166-Side-OH 0.02%

LIG204-Side-N3 GLU167-Side-OE1 0.09%

LIG204-Side-N3 GLU167-Side-OE2 0.01%

LIG204-Side-N2 ARG117-Main-O 0.15%

LIG204-Side-N2 LEU115-Main-O 0.01%

Top-1

TYR166-Side-OH LIG204-Side-O18 0.48%

LIG204-Side-N17 THR173-Side-OG1 0.82%

LYS174-Main-N LIG204-Side-O19 1.81%

LYS174-Side-NZ LIG204-Side-O19 0.33%

LIG204-Side-N16 ASN114-Main-O 0.13%

LIG204-Side-N12 ASP172-Main-O 0.15%

TYR166-Side-OH LIG204-Side-O22 0.23%

LIG204-Side-N12 THR173-Side-OG1 0.01%

TYR166-Side-OH LIG204-Side-O23 0.02%

TYR166-Side-OH LIG204-Side-O21 0.06%

LIG204-Side-N17 ASP172-Main-O 0.14%

TYR166-Side-OH LIG204-Side-O25 0.01%

LIG204-Side-N12 ASP172-Side-OD1 2.38%

LIG204-Side-N15 ASP172-Side-OD2 3.11%

LIG204-Side-N17 ASP172-Side-OD1 0.10%

TYR73-Side-OH LIG204-Side-N11 0.01%

LIG204-Side-N11 TYR73-Side-OH 0.06%

TYR73-Main-N LIG204-Side-O19 3.09%

LIG204-Side-N17 LEU200-Main-O 4.27%

LIG204-Side-N17 LEU203-Side-OXT 3.56%

LIG204-Side-N11 TYR73-Main-O 2.12%

ARG201-Side-NH2 LIG204-Side-O20 0.09%

LIG204-Side-N12 LEU200-Main-O 0.76%

LIG204-Side-N15 LEU71-Main-O 2.22%

ARG201-Side-NH1 LIG204-Side-O20 0.01%

ARG201-Side-NH1 LIG204-Side-O25 0.14%
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Table 2. Cont.

Donor Acceptor Occupancy (%)

LIG204-Side-N15 ARG197-Main-O 0.34%

LIG204-Side-N17 LEU203-Main-O 1.29%

LIG204-Side-N17 ARG201-Main-O 0.05%

LIG204-Side-N16 THR74-Side-OG1 0.03%

ARG201-Side-NH2 LIG204-Side-O18 0.06%

ARG201-Side-NH2 LIG204-Side-O21 0.06%

ARG201-Side-NH1 LIG204-Side-O21 0.02%

ARG201-Side-NH1 LIG204-Side-O22 0.05%

LIG204-Side-N15 THR74-Main-O 0.01%

ARG201-Side-NH1 LIG204-Side-O18 0.04%

ARG201-Side-NH1 LIG204-Side-O23 0.03%

LIG204-Side-N11 TYR73-Side-CD2 0.01%

ARG201-Side-NH2 LIG204-Side-O22 0.01%

ARG201-Side-NE LIG204-Side-O18 0.01%

TYR73-Side-OH LIG204-Side-O19 0.05%

LIG204-Side-N15 ASP172-Side-OD1 0.97%

LIG204-Side-N12 ASP172-Side-OD2 0.02%

LIG204-Side-N17 ASP172-Side-OD2 0.01%

LIG204-Side-N15 TYR73-Side-CG 0.01%

LIG204-Side-O23 ASP172-Side-OD1 0.71%

LIG204-Side-O23 ASP172-Side-OD2 0.25%

LYS75-Side-NZ LIG204-Side-O23 4.95%

LYS75-Side-NZ LIG204-Side-C1 7.03%

LIG204-Side-N15 TYR73-Side-OH 0.23%

LYS75-Side-NZ LIG204-Side-N16 0.61%

LIG204-Side-N16 THR74-Main-O 0.07%

LYS75-Side-NZ LIG204-Side-N11 0.57%

LYS75-Side-NZ LIG204-Side-O20 0.22%

LIG204-Side-N12 TYR73-Side-CD2 0.08%

LIG204-Side-N12 TYR73-Side-CG 0.01%

LYS75-Side-NZ LIG204-Side-N13 0.02%

LIG204-Side-O22 ASP172-Side-OD2 0.15%

TYR73-Side-OH LIG204-Side-N15 0.01%

LIG204-Side-N12 TYR73-Side-CE2 0.01%

LIG204-Side-O22 ASP172-Side-OD1 0.02%

LYS75-Side-NZ LIG204-Side-O21 0.07%

LIG204-Side-N11 TYR73-Side-CB 0.01%

LYS75-Side-NZ LIG204-Side-O18 0.02%

LIG204-Side-N17 TYR73-Side-CD2 0.01%

LIG204-Side-N11 ASP172-Side-OD2 0.01%
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Table 2. Cont.

THR74-Side-OG1 LIG204-Side-N11 0.01%

ARG201-Side-NE LIG204-Side-O20 0.02%

Top-2

SER104-Side-OG LIG204-Side-O19 15.02%

SER163-Side-OG LIG204-Side-O18 5.49%

LIG204-Side-N13 LEU115-Main-O 1.27%

LIG204-Side-N16 ASN114-Main-O 0.14%

LIG204-Side-O26 LEU115-Main-O 0.01%

SER163-Side-OG LIG204-Side-O21 42.57%

GLN102-Side-NE2 LIG204-Side-O25 0.07%

SER163-Side-OG LIG204-Side-O22 2.19%

GLN102-Side-NE2 LIG204-Side-O19 0.29%

SER104-Side-OG LIG204-Side-O24 10.23%

GLN102-Side-NE2 LIG204-Side-O24 1.74%

TYR166-Side-OH LIG204-Side-O20 18.22%

SER104-Side-OG LIG204-Side-O23 4.27%

ILE144-Main-N LIG204-Side-O19 0.01%

TYR166-Side-OH LIG204-Side-O22 16.34%

GLN102-Side-NE2 LIG204-Side-O23 1.74%

LIG204-Side-O26 ARG117-Main-O 0.52%

ARG117-Main-N LIG204-Side-O26 0.14%

LIG204-Side-N15 VAL78-Side-CG2 0.02%

TYR166-Side-OH LIG204-Side-O21 6.73%

TYR166-Side-OH LIG204-Side-O18 5.83%

ILE94-Main-N LIG204-Side-O18 1.08%

ILE94-Main-N LIG204-Side-O22 1.31%

ILE94-Main-N LIG204-Side-O21 0.65%

SER93-Side-OG LIG204-Side-O22 0.03%

SER93-Side-OG LIG204-Side-O21 0.04%

LIG204-Side-N17 ASP172-Main-O 0.04%

LIG204-Side-N17 THR173-Side-OG1 0.03%

3.4. Analysis of the Hydrogen Bonds

In order to find out the occupancy of hydrogen bonding between the ligand molecules
and the protein, we performed hydrogen bond analysis [59]. These interactions determined
the intermolecular specificity and were important to stabilize the ligand–protein complexes.
The formation of hydrogen bonds for control, Top-1 and Top-2 was plotted using a cut-
off of 3.0 Å and a 20-degree cut-off angle in Visual Molecular Dynamics v.1.93 (VMD).
The numbers of hydrogen bonds formed by control, Top-1 and Top-1 with the enzyme
during the simulation time are shown in Figure 4. The occupancy of different hydrogen
bonds formed by Top-1 and Top-2 leads with MvfR are listed in Table 2. The control,
Top-1 and Top-2 leads were found to form 12, 68, and 28 hydrogen bonds, respectively,
with the MvfR. Several key residues already predicted by molecular docking studies were
unveiled to play crucial roles in ligand binding throughout the length of the simulation
time. Several previous studies reported the importance of hydrogen bonds while designing
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new drug molecules against a given biological target [60,61]. For example, Khalid et al. [24]
demonstrated several key residues of soluble guanylate cyclase H-NOX domain with
ligand molecules.

Figure 4. Number of hydrogen bonds produced by compounds with the enzyme during simulation time.

3.5. Radial Distribution Function (RDF) Analysis

Furthermore, the RDF analysis was conducted using strong intermolecular interactions
between MvfR and the compounds to understand the intensity of interactions versus time.
RDF has been frequently employed in studies to highlight the critical intermolecular inter-
actions that are key in the recognition and binding of good affinity binders [9,57,62]. Several
residues were filtered that favored continuous contacts with the compounds throughout
the simulation time (Figure 5). These interactions were plotted in terms of density versus
distance. In the case of Top-1, residues such as Leu71, Tyr73, Arg197, and Leu200 were
among the high-density interactions with MvfR, while, in the case of Top-2, Ser104, Leu115,
Arg117, Ser163, Gln190, and Ile194 were among the high-density residues that were in
consistent interactions. Interactions that remained constant after specific time periods are
not provided while those of bond distance variations are plotted.
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3.6. Assessment of MM-GB/PBSA Binding Free Energies

The estimation of binding free energy via the MM-PBSA and MM-GBSA gives reliable
predictions about a compound’s affinity for a given biological macromolecule [47,48]. Both
of the mentioned techniques are widely employed in drug design processes because of
their low computational demands and the fact that the results can be easily correlated to
experimental results [63]. Both of the methods have been regularly employed to validate
molecular dynamics simulations and docking predictions [64–66]. Complete results of
the binding free energies of the complexes are tabulated in Table 3. For both the lead
and control complexes, electrostatic and van der Waals energy were revealed to play a
critical role in binding, as predicted by the docking findings. The control was found to
show higher van der Waals domination in net interactions compared to the lead molecules,
which exhibited higher electrostatic contributions as well equal contributions from van
der Waals energy. The solvation energy in the case of the control was found to be more
dominated by non-polar energy, whereas, for the leads, the polar solvation energy was
three times more stabilized than the non-polar solvation energy. Overall, the net binding
energies of the systems were very high, thus demonstrating the stability of the systems.
The net binding free energies of the systems are in following order: control (MM–GBSA
(−41.7 kcal/mol), MM–PBSA (−31.6 kcal/mol)), Top-1 (MM–GBSA (−76.3 kcal/mol),
MM–PBSA (−80.8 kcal/mol)), and Top-2 (MM–GBSA (−143.8 kcal/mol), MM–PBSA
(−149.1 kcal/mol)). For Top-1, electrostatic energy was found to be predominant in the
docking studies as the hydrogen bond distances were very close, mostly within 3 Å.
The hydrophobic interactions were also reported to equally favor the stable binding of
compounds and played a key role, along with hydrophilic interactions, in holding the
compound conformation at the active pocket. Both MM/GBSA and MM/PBSA agree
on the significant electrostatic contribution and equally favorable binding of the van der
Waals energy. In dynamics simulation analysis, the same findings were revealed, where
both the hydrophilic and hydrophobic interactions (as shown in Table 2 and RDF analysis)
remained critical for the stability of the RMSD plot. In case of Top-2, the van der Waals
energy dominated over the electrostatic energy by a very low margin; the same was
observed in the docking analysis. The van der Waals and other hydrophobic interactions
pushed the more electronegative chemical moieties of the compound towards the inside of
the pocket. This resulted in good interaction networks of both the electrostatic and van der
Waal contacts. The binding conformation stabilities and binding interaction profiles of the
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compounds with the enzyme remained consistent in all of the analyses performed in this
study, all of which classified the compounds as strong binders of MvfR.

Table 3. Estimated net binding energies (in kcal/mol) of complexes at different time steps of molecular dynamics simulation
trajectories.

Compound

MM/GBSA

∆G Binding ∆G
Electrostatic

∆G Bind
Van Der

Waals

∆G Bind
Gas Phase

∆G Polar
Solvation

∆G
Non-Polar
Solvation

∆G
Solvation

Control −41.7 −6.9 −54.6 −61.6 26.5 −6.6 19.9

Top-1 −76.3 −30.6 −25.1 −55.7 −17.4 −3.2 −20.6

Top-2 −143.8 −23.4 −39.9 −63.3 −75.0 −5.5 −80.5

MM/PBSA

Control −31.6 −6.9 −54.6 −61.6 34.6 −4.6 30.0

Top-1 −80.8 −30.6 −25.1 −55.7 −22.5 −2.6 −25.1

Top-2 −149.1 −23.4 −39.9 −63.3 −81.9 −3.9 −85.8

3.7. MvfR Hotspot Residues

Further analysis was conducted to determine the key hotspot residues of MvfR that
contributed significantly in terms of binding and holding the leads/control at the active
pocket. Identification of hotspot residues was performed in many previous studies to
report key interactions between ligands and residues that were vital in stabilizing the
ligands at the docked site [57,67]. The net MM-GBSA binding energies of the systems were
decomposed into residues of the MvfR, and only the common residues that were critical
in binding the ligands were shortlisted, as shown in Table 4. Gln102, Asn114, Arg117
and Val199 were common in all complexes and were found to be major contributors to
the ligand interactions. Gln102 was a key hydrogen bonding residue and was reported
previously in hydrogen-bonding interactions with ligand leads. It was observed that the
rest of the residues involved both hydrogen bonding as well as van der Waals interactions.

Table 4. Critical hotspot residues that contributed heavily in the interactions with the MvfR residues.

Residue Control Top-1 Top-2

Gln102 −2.1 −6.88 −8.14

Asn114 −3.4 −7.01 −6.40

Arg117 −1.8 −5.78 −8.49

Val119 −2.8 −6.41 −9.78

Asp172 −1.74 −2.87 −9.14

3.8. Calculating Binding Entropy

To compensate for the missing approximation of binding entropy in MM-PBSA and
MM-GBSA, the entropy calculation was implemented via normal mode in the AMBER
package. As the calculation was very slow, only a limited number of frames were analyzed.
The net entropy of the systems was in the following order: control (−8.89 kcal/mol), Top-1
(−10.10 kcal/mol) and Top-2 (−11.00 kcal/mol).

3.9. Evaluation of WaterSwap Absolute Binding Free Energy

Although the MM-PBSA and MM-GBSA methods are very successful in determining
free energies, they have several limitations; therefore, another validation method, Wa-
terSwap, was applied in the study. The WaterSwap-based binding free energy values,
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calculated using different algorithms, are illustrated in Figure 6. Both of the lead molecules
were disclosed as better binders than control M64. As can be seen, the net WaterSwap
energies calculated the using algorithms for all three systems differed by no more than
1 kcal/mol, which demonstrated highly converged systems.

Figure 6. Binding energy values (kcal/mol) calculated by different methods in WaterSwap.

3.10. Leads Pharmacokinetics

Unfavorable pharmacokinetics of compounds in the process of drug discovery can
lead to drug failure, and thus, can increase the time and cost involved in the development
of potent and safe drugs [53,54]. For this purpose, pharmacokinetics predictions are
important in the early stages of drug development using available in silico tools to enhance
the chances of selecting the correct molecules for development. Medicinal chemistry
focuses on drug absorption, and this was evaluated as the first step in these in silico
studies. It was observed that both compounds were highly water soluble, as predicted by
the ESOL, Ali and SILICOS-IT methods in the SWISSADME server. For this reason, the
compounds are excellent candidates in terms of oral bioavailability. Further, the compounds
had no Pan-assay interference compounds (PAINS) structure; thus, they targeted one
specific biological target and had one desired effect [68]. From a synthetic chemistry
perspective, the compounds had a good synthetic accessibility score of ~5, meaning they
will be easy to synthesize in future experimental analyses. The compounds also had high
gastrointestinal absorption and did not act as substrates for the P-glycoprotein transporters.
The transdermal deliveries of the compounds are also predicted to be very good, making
them suitable for skin-related products. They had volume distribution values that indicated
their low tissue distribution as compared to their distribution in the plasma. Likewise, they
also had low fraction unbound values, which indicate that they could lower their serum
protein binding affinities and could enhance their distribution efficiency through the cell
membranes. The blood–brain barrier crossing abilities of drugs are important in terms of
evaluating their side effects and toxicity, as well as the efficiency of their pharmacological
action in the brain [69]. These compounds had poor blood–brain barrier penetration, and
thus, they could not move through the central nervous system easily. Additionally, they
did not inhibit the detoxification of cytochrome P450, and thus, were involved in the
oxidation of xenobiotics to help in their removal. The renal and hepatic clearance of the
compounds were projected to be ~0.53 log mL/min/kg. This total clearance of compounds
is an important factor in terms of evaluating their bioavailability and calculating the rate
of dosage for their steady-state concentration. They were found to be AMES non-toxic
based on their LD50 values during oral administration to rats, and were anticipated to
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demonstrate no sensitization of the skin and to not inhibit hERGI and hERGII, which can
reduce the likelihood of QT syndrome development. Detailed pharmacokinetic data of
both lead molecules are tabulated in Table 5.

Table 5. Detailed pharmacokinetic data of lead molecules.

Property Model Name Predicted Value
Top-1

Predicted Value
Top-2 Unit

Absorption Water solubility −2.892 −2.892 Numeric (log mol/L)

Absorption Caco2 permeability −0.601 −0.673 Numeric (log Papp in
10−6 cm/s)

Absorption Intestinal absorption (human) 0 0 Numeric (% Absorbed)
Absorption Skin Permeability −2.735 −2.735 Numeric (log Kp)
Absorption P-glycoprotein substrate Yes Yes Categorical (Yes/No)
Absorption P-glycoprotein I inhibitor No No Categorical (Yes/No)
Absorption P-glycoprotein II inhibitor No No Categorical (Yes/No)
Distribution VDss (human) 0.01 −0.005 Numeric (log L/kg)
Distribution Fraction unbound (human) 0.382 0.387 Numeric (Fu)
Distribution BBB permeability −2.587 −2.775 Numeric (log BB)
Distribution CNS permeability −7.316 −6.425 Numeric (log PS)
Metabolism CYP2D6 substrate No No Categorical (Yes/No)
Metabolism CYP3A4 substrate No No Categorical (Yes/No)
Metabolism CYP1A2 inhibitor No No Categorical (Yes/No)
Metabolism CYP2C19 inhibitor No No Categorical (Yes/No)
Metabolism CYP2C9 inhibitor No No Categorical (Yes/No)
Metabolism CYP2D6 inhibitor No No Categorical (Yes/No)
Metabolism CYP3A4 inhibitor No No Categorical (Yes/No)
Excretion Total Clearance 0.348 0.34 Numeric (log ml/min/kg)
Excretion Renal OCT2 substrate No No Categorical (Yes/No)
Toxicity AMES toxicity No No Categorical (Yes/No)
Toxicity Max. tolerated dose (human) 0.439 0.438 Numeric (log mg/kg/day)
Toxicity hERG I inhibitor No No Categorical (Yes/No)
Toxicity hERG II inhibitor No No Categorical (Yes/No)
Toxicity Oral rat acute toxicity (LD50) 2.482 2.482 Numeric (mol/kg)

Toxicity Oral rat chronic toxicity
(LOAEL) 6.023 4.58 Numeric (log

mg/kg_bw/day)
Toxicity Hepatotoxicity No No Categorical (Yes/No)
Toxicity Skin sensitization No No Categorical (Yes/No)
Toxicity T. Pyriformis toxicity 0.285 0.285 Numeric (log ug/L)
Toxicity Minnow toxicity 7.668 8.464 Numeric (log mM)

4. Conclusions

Computer aided drug design is an integral part of modern drug discovery and has
played a significant role in the development of drugs that are in clinical trials and in clinical
use [17]. In this study, we identified two leads against MvfR of P. aeruginosa, which, as
with the co-crystallized M64, had high binding affinity for the relevant enzyme. Addition-
ally, the compounds met prominent druglike rules and had good pharmacokinetics and
acceptable safety. The docking and subsequent molecular dynamics simulations revealed
the formation of strong interactions by the compounds with active pocket residues and
significant conformation stability. There were multiple van der Waal and hydrogen bond
interactions of the compounds with the hotspot residues of the pocket, which resulted
in increased intermolecular affinity. In particular, strong van der Waals interactions and
hydrogen bonding was observed between all the screened molecules and MvfR residues
(Gln102, Asn114, Arg117, Val119 and Asp172). These residues were present in all the
crystal structures of the MvfR in P. aeruginosa and formed bonds with co-crystallized
ligands [16]. These residues are conserved among the different MvfR and are considered
to be key for enzyme functionality [16]. Thus, there are fewer chances for the enzyme to
escape the compound’s action. In addition, the compounds revealed favorable druglike
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and lead-like properties and were reported to have good pharmacokinetic profiles. This
also increases the chances of the compounds reaching the market. Since these compounds
showed promising results and are easily available from commercial sources, they can be
used in further quick in vivo experiments to determine their real binding affinity and MvfR
inhibition potential. Moreover, it is suggested that the anti- P. aeruginosa activity of the
compounds be investigated to affirm that the molecules do not infer with the essential
biological pathways of the pathogens and do not harm bacterial cells. This will ensure that
the compounds will only de-weaponize the pathogen and will not mediate the evolution of
new resistant mechanisms. To summarize, these screened compounds provide promising
starting structures in the search for novel anti-virulent compounds against the superbug P.
aeruginosa. Although very stringent criteria for docking score functions, as well as for the
dynamics simulations and binding free energy methods, were applied for the compounds
in this study, the shortlisting and selection of stable conformations can still be undertaken
with confidence, and the selection of the ligand conformation can be enhanced via such
approaches as using virtual screening rather than docking-based screening in long-length
traditional molecular dynamics simulations [70,71], thoroughly analyzing the binding of
free energies throughout the frames of simulations, using the hybrid QM/MM approach
for further enhancing the prediction of stable conformation accuracy [72], using the Se-
lective Ligand-Induced Conformational Ensemble (SLICS) method [73], using different
analytical methods such as axial frequency distribution (AFD) [74] and the Binding Free
Energy-Based Footprint Pharmacophore Model method [75], etc.
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