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Abstract: This review article highlights part of the research activity of the C’Durable team at IRCE-
LYON in the field of sustainable chemistry. This review presents a landscape of the work performed
on the valorization of lignocellulosic biopolymers. These studies intend to transform cellulose,
hemicellulose and lignin into valuable molecules. The methodology usually consists in evaluating
the behavior of the biopolymers in the absence of catalyst under various conditions (solvent, tem-
perature), and then to assess the influence of a catalyst, most often a heterogeneous catalyst, on the
reactivity. The most significant results obtained on the upgrading of cellulose and lignin, which
have been mainly investigated in the team, will be presented with an opening on studies involving
raw lignocellulose.

Keywords: wood; cellulose; lignin; biomolecules; acid catalysis; metal supported catalysis

1. Introduction

The use of biosourced reactants for the production on molecules of interest is of
definitive importance for the development of a green chemistry [1,2]. The C’Durable
team at IRCELYON has been involved for many years in the valorization of various
bioresources. We particularly use heterogeneous catalysis, which is a primordial tool to
implement sustainable procedures [3–6]. Initial works in the team focused on upgrading
first generation biomass like vegetable oils [7–10], starch [11–14], glycerol [15–21], simple
saccharides [22–31], and their furan derivatives [32–34]. Studies involving second gen-
eration biomass, especially lignocellulose (wood and grassy plants), have started more
recently and are now predominant. All the past and current research in this area has given
to our team a certain notoriety within the French catalysis and green chemistry commu-
nities [35]. We would like to present here an overview of the research performed in the
C’Durable team on the transformation of lignocellulosic biopolymers. We will focus on the
molecular aspects of the catalytic transformations through the main outputs coming from
recent projects. Most of them involved the valorization of single biopolymers constituting
lignocellulose which are cellulose and lignin. The use of raw lignocellulose has started
more recently; general strategies and perspectives for its catalytic transformation will also
be presented.

2. Transformation of Cellulose

Cellulose is the main component of lignocellulosic biomass [36]. It is a biopolymer
composed of glucosyl units and the most straightforward molecular transformation of cel-
lulose implies a depolymerization into glucose (Scheme 1). However, due to its structural
arrangement made of a dense H-bonds network, cellulose is almost chemically inert and
insoluble under usual conditions of solvent and temperature. If one excludes biotechno-
logical methods, such transformation into light products requires demanding conditions,
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like solvothermal treatments in the presence of a catalyst [37]. Catalysts for depolymeriza-
tion are usually Brønsted acids, either homogeneous (HCl, H2SO4, H3PO4) or heteroge-
neous. Several types of heterogeneous catalysts have been used like zeolites, heteropoly
acids [38], but best results were obtained with sulfonated materials. Here, research groups
of Zhang [39], Hara [40] and Onda [41] pioneered studies with sulfonated carbons while Ja-
cobs, Sels et al. [42] introduced sulfonated silica and carbon nanocomposites giving glucose
with yields over 50 mol%. Water is the adequate reaction medium due to compatibility
with formed products and its green solvent character [43,44]. However, due to the reaction
conditions to get significant conversion (temperatures over 150 ◦C on day scale), glucose is
rarely formed as sole product and always reacts to give 5-hydroxymethylfurfural (5-HMF)
then levulinic acid together with uncontrolled formation of soluble/insoluble oligomers
known as humins (Scheme 1) [45]. To try to overcome these issues, non-conventional
reaction media like ionic liquids [46], deep eutectic solvents [47], or activation methods like
ball-milling, non-thermal plasma and high frequency ultrasound have been successfully
introduced, even in the absence of acid catalyst, as demonstrated by Jérôme et al. [48].
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Scheme 1. Cellulose depolymerization in the presence of a Brønsted acid.

When a hydrogenating metal like Pd, Pd, Ru or Ni is present within the catalytic
system, and the depolymerization performed under H2, glucose is rapidly reduced to
sorbitol (Scheme 1), another molecule of great interest. Here, Fukuoka et al. reported
the first synthesis of sorbitol with 30 mol% yield over Pt/γ-Al2O3 catalyst [49]. Works
from Ruppert and Palkovits groups did follow, leading to a variety of catalytic systems
combining acid and metal functions increasing yields up to 70 mol% [50,51]. Besides,
Zhang et al. showed that when the reaction was performed at a higher temperature and in
the presence of supported Ni and tungsten carbides, C-C bond cleavages occurred leading
to ethylene and propylene glycol with combined yield up to 65 wt% [52].

2.1. Transformation of Cellulose in Water

When we initiated our research on cellulose transformation with heterogeneous
catalysts, we were first interested in evaluating the non-catalyzed reactivity of cellulose in
water, that was rarely investigated at that time. We observed for the first time that a reaction
temperature of 190 ◦C was sufficient to liquefy (i.e., dissolve and/or convert) cellulose up
to 60 wt% after 120 h, even in the absence of a catalyst [53]. This was possible thanks to
the water dissociation at this temperature providing protons in the reaction medium [54].
Nevertheless the latter presented less than 15 wt% of deep depolymerization products
(glucose, 5-HMF . . . ). Therefore this non-catalyzed reaction formed preferentially what
we name hydrosoluble oligomers and polymers (either as primary or as recondensation
products) and hydrochar (Scheme 2) [55].
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stated zirconia WOx-ZrO2 and alumina WOx-Al2O3. Yields are determined based on the 
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Scheme 2. Reaction pathway for non-catalyzed cellulose liquefaction (water 60 mL, Avicel cellulose
0.2–4 g, 175–200 ◦C, 0–120 h). Adapted from [56].

Moreover it appeared that the intrinsic characteristics of the cellulose are a parameter
influencing its reactivity and the morphology plays a role more important than polymer-
ization degree or particle size. Celluloses with a fiber structure, despite a much higher
polymerization degree (DP), react faster than those in particle forms (Figure 1) [56].
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Figure 1. Non-catalyzed liquefaction of celluloses of different characteristics (water 60 mL, Avicel
and Sigmacell celluloses 2 g, 190 ◦C). Liquefaction was determined by the difference between the
initial and residual mass of cellulose. Adapted from [56].

Then we assessed for the first time the behaviour of solid Lewis acids as catalysts
for the depolymerization of cellulose [57,58]. We studied the reaction in the presence of
tungstated zirconia WOx-ZrO2 and alumina WOx-Al2O3. Yields are determined based on
the amount of moles of initial glucosyl units C6H10O5, (nglucosyl units = mdry cellulose/162),
corrected by the number of carbons in the product. We observed a different reactivity than
that occurring with Brønsted acids (see Scheme 1). While the latter form preferentially
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levulinic acid, Lewis acids formed lactic acid as main product up to 30 mol% yield [59,60],
a possible monomer for biosourced plastics. This corresponds to the first report on the
formation of lactic acid from cellulose, even more with a water-tolerant heterogeneous
catalyst [61]. Indeed, studies reported at the same time by Taarning et al. described the
formation of lactic acid with zeolites from monomeric sugars only [62]. The reaction
mechanism supposedly involves the presence of vacant Lewis sites at the surface of the
catalyst able to promote dihydroxylation and carbon-carbon bond cleavages of the glucose
chains in addition to hydride transfers giving pyruvaldehyde as intermediate [60]. Note
that when lignocellulose was used as reactant in place of cellulose in same conditions,
very close results were obtained, showing that the presence of other wood components
may have no impact on the transformation of cellulose into lactic acid (see Section 4 for
more details) [63]. When WOx-ZrO2 or WOx-Al2O3 served as support for Pt, and the
transformation performed under H2, we observed the reduction of the intermediate to
acetol and propylene glycol through successive hydrogenation steps (Scheme 3) [64,65].
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Scheme 3. Reaction pathways of cellulose transformation in the presence of solid Lewis acids (water 65 mL,
Avicel cellulose 1.6 g, catalyst 0.68 g, 190 ◦C, 5 MPa 24 h). Yield = 100 × (nproduct/nglucosyl units) × (3/6).
Adapted from [60,64].

Interestingly, in the absence of Pt but still under H2 atmosphere, another different
route occurred forming 2,5-hexanedione as main product (Scheme 4) with WOx-ZrO2 [66].
This was possible from hydroxyl groups abstraction promoted by this catalyst under the
hydrothermal conditions as proven by quantitative Infra-Red spectroscopy analysis and
kinetic investigations [67]. This highlights the different mode of action of WOx-ZrO2 vs.
WOx-Al2O3 in the depolymerization of cellulose. That was the first report on direct 2,5-
hexanedione formation from cellulose, a molecule of high interest for green fuels aviation
synthesis by aldol condensation [68].

2.2. Transformation of Cellulose in Liquid and Supercritical Organic Solvents

The reactivity of cellulose in alcohols was studied with the aim of forming levulinic
esters as high-interest biosourced molecules for energy or chemical applications [69]. The
alcohol serves as reaction medium and esterifying agent. Levulinic esters are usually
obtained by esterification of levulinic acid in the presence of a variety of catalytic systems;
however, the possibility of forming these compounds from cellulose has been previously
demonstrated by Garves, however, without real further investigation since then [70].
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We showed that reacting cellulose in methanol under supercritical conditions led to
the deep liquefaction within few minutes, even in the absence of catalyst. The supercritical
conditions were necessary to get this very fast reactivity (Figure 2). The presence of the
solid Brønsted acid Cs2.5H0.5PW12O40, formed as expected methyl levulinate in 20 mol%
yield [71]. For such reactions the presence of 10 wt% of water in methanol enhanced the
overall reactivity.
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Figure 2. Cellulose transformation into methyl levulinate in supercritical MeOH (methanol 90 wt%
25 g, cellulose 0.35 g, catalyst if present 0.15 g). Yield = 100 × (nproduct/nglucosyl units) × (5/6). Adapted
from [71].

The reaction was extended to butanol to form butyl levulinates, and in this case we
did not observe the influence of these supercritical conditions on the global reactivity.
However, we demonstrated the importance of the butanol isomer on the formation of
the corresponding butyl levulinate. Here the primary butanols gave the best yields up to
50 mol%, both in the presence of H2SO4 or Cs2HPW12O40 (Figure 3) [72]. Note that tert-
butyl levulinate was formed as traces due to fast dehydration of tert-butanol preventing its
role of esterifying agent.
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0.5 g, H2SO4 0.125 g, 200 ◦C, 0.5 h). Yield = 100 × (nproduct/nglucosyl units) × (5/6). Adapted from [72].

With the aim of avoiding water formation during the esterification step with a more
efficient atom utilisation, we assessed butenes as esterifying agent. Previous study has
been reported by Dumesic et al. forming butyl levulinates in two-step procedures through
reactive extraction in the presence of sulfuric acid [73]. In our case, the challenge was to
find conditions able to accommodate all reagents for a one-step transformation. With the
use of H2SO4 in an organic solvent, iso-octane, we were able to form a levulinic ester from
the reaction of cellulose with an olefin (Scheme 5). Sec-butyl levulinate was formed in
a 19 mol% yield, higher than using the corresponding alcohol. Attempts to change iso-
octane to a biosourced solvent, γ-butyrolactone, led to the formation of sec-butyl levulinate,
with a 5 mol% yield. This confirms the difficulty to find suitable conditions for a highly
sustainable procedure [74].
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Finally, as a chemical application of butyl levulinates, with showed for the first time
their use as biosourced solvents for synthetic chemistry like C-C couplings. Vaccaro et al.
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previously demonstrated the ability of γ-valerolactone (GVL) as biosourced solvent for
this chemistry with therefore the potential to replace (toxic) organic solvents generally
used for such transformations [75]. However, since alkyl levulinates are the precursors
of GVL, it would be more interesting to use them directly as solvents. Here, n-butyl
levulinate showed to be as suitable as GVL or organic solvents for Heck C-C coupling, even
in the presence of a heterogeneous catalyst. The system solvent/catalyst has shown to be
completely recoverable and reusable compiling many requirements for a green synthetic
route (Scheme 6) [76].
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3. Transformation of Lignin

Lignin is another biopolymer constituting lignocellulose. Different from cellulose and
hemicellulose, which are polysaccharides, lignin is constituted of aromatic units linked
through a variety of bonds, each having a special reactivity. Indeed, the lignin structure
(Figure 4) is obtained from the polymerization of three aromatic alcohols (coniferyl, sinapyl,
and coumaryl), leading to a variety of compositions depending on the lignocellulose type
(soft or hard wood, grass plants, vegetal wastes . . . ).

Lignin can be a renewable source of aromatic chemicals, either for energy like toluene
and for chemistry like vanillin, and their derivatives. Therefore, the number of studies
has expanded rapidly during the past few years to valorise this biopolymer [77,78]. Its
selective transformation represents a great challenge and in addition to the fact that lignin
structure depends on its botanical origin, the extracted lignin is different than the native
one because the extraction method can create new bonds between aromatic moieties.
In consequence, and despite the fact that β-O-4 linkages correspond to half of the total
interunit bonds, it appears initially difficult to consider general rules for catalytic lignin
reactivity. Various methods of transformation into value-added molecules have been
assessed in the literature, from enzymatic to chemo and organometallic catalysis. As we will
see below, heterogeneous catalysis has also a role to play because it allows transformations
using relatively demanding conditions leading to a specific reactivity of lignin.

3.1. Transformation of Lignin under Neutral Atmosphere

Preliminary studies in the team consisted in comparing, under neutral atmosphere,
the solvolysis of lignins from different origins and extraction methods: a spruce-lignin
and a pine-lignin obtained from Kraft processes, a wheat straw-lignin obtained from Soda
process, and a wheat-straw lignin obtained from Organosolv (CIMV®) process [79]. After
full sample characterization by a variety of techniques, solvolysis was studied in EtOH-H2O
under continuous flow conditions at 225 ◦C under 8 MPa of N2, preventing char and foam
formation. Generally, after treating the reaction mixture three phases were obtained; the
Klason phase corresponding to non-liquefied lignin, the aqueous phase containing mainly
aliphatic water-soluble compounds, and the organic phase containing the target aromatic
products. We showed the importance of the amount of EtOH (up to a 50 wt% mixture) on
the content of monomeric organic products formed during the treatment. EtOH favours
lignin conversion and stabilises organic products in which guaiacol was predominant due
to β-O-4 bond cleavages (Figure 5). In these conditions, Kraft-spruce-lignin presented a
higher reactivity (up to 76% of conversion) due to its natural solubility in EtOH-H2O while
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the other lignins necessitated the addition of K2CO3. Globally, it appears that product
formation depends more on the origin of the lignins, rather than on their extraction process.
When the reaction was performed on Kraft-spruce-lignin but in a closed reactor, the nature
of the alcohol co-solvent had an impact on the amount of monomeric products. It increased
from 0.8 to 4.8 wt% in the presence of iso-PrOH due to the formation of alkylated guaiacol
species. After these non-catalyzed transformations, the influence of a supported metal
catalyst under similar conditions using H2O-iso-PrOH solvents in an autoclave reactor
was assessed. Pd/ZrO2 showed almost no influence on organic product formation, giving
4.4 wt% of aromatic products but increased significantly the total yield of organic products
mainly oligomerics from 45 to 54 wt%. Note that when using Pd(OAC)2 as soluble catalyst,
close results were obtained indicating in both cases the homogeneous nature of the reaction
from soluble Pd species leached from Pd/ZrO2. In the last case we supposed that leached
species performed primary depolymerization of lignin into monomers that further reacted
on supported Pd species [80].
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3.2. Transformation of Lignin under Oxidative Atmosphere

The reactivity of lignin in neutral conditions appears to give a very low amount
of value-added molecules. Therefore, main catalytic approaches for the up-grading of
lignin involve a reacting atmosphere, either reductive (H2) to produce deoxygenated
aromatics for energy use, or oxidative (O2, air) to produce oxygenated aromatics for fine
chemistry [81]. As far as heterogeneous catalysis is concerned, oxygenated aromatics
can be obtained particularly with perovskites [82], mixed-metal oxides such as FeCoO
as demonstrated by Barakat et al. [83], all giving global yields into aromatic aldehydes
(vanillin, syringaldehyde . . . ) in the 15–20 wt% range. Systems with supported metals
have also been investigated with Co, Au, and Pd. Sales et al. have extensively studied Pd
catalysts like Pd/γ-Al2O3, leading also around 10 wt% of aromatic aldehydes [84].
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Due to the molecular nature of the products obtained from the oxidative route, our
team has been involved in the oxidative depolymerization of lignin for many years, partic-
ularly in water solvent. Pursuing with Pd systems, we prepared new Pd catalysts based on
soluble PVP-stabilized or oxide supported nanoparticles (Pd/TiO2) (Figure 6). The homo-
geneous system was very efficient for the selective oxidation of benzyl alcohol as lignin
models such as vanillic and veratryl alcohols into the corresponding aldehydes into mild
conditions (80 ◦C, O2 flow) [85]. However, when applied to the oxidative depolymerization
of a Kraft-pine-lignin [86], despite enhancing the lignin conversion compared to the ab-
sence of catalyst, the two Pd-systems did not improve the formation of the target products
like vanillin and acetovanillone for which ones the yield remain low compared to catalyst
free oxidative lignin depolymerization (i.e., for softwood Kraft lignins: from 2.4 wt% for
non-catalyzed reaction to ca 2.2–2.5 wt% for Pd-catalyzed reactions) [87]. However, this
reflects only an apparent lack of Pd-catalyst activity. Indeed, we demonstrated that these
catalysts act more probably for oxidizing the Cα-OH (or Cγ-OH) junctions in β-O-4 bonds
according to our studies on benzyl alcohol, before base catalyzed reactions take place (i.e.,
retro-aldol, tautomerization . . . ) for breaking these bonds and delivering the expected
aromatics [86]. Additionally, Pd-catalysts seem to favor recondensation reactions, thus
enhancing the amount of Klason phase and, despite good reactivity in catalyzed reactions,
did not deliver further aromatics.

Catalysts based on other metals, also known for their oxidation features have been
employed (Figure 6). Here, we showed that Au/TiO2 had the tendency to further oxidize
formed aromatics into volatile molecules. Thus very low yields into vanillin (0.2 wt%)
were achieved. This result contrasts with that obtained when using Au nanoparticles in
suspension that deliver results close to what was observed with Pd [86]. Supporting Au
nanoparticles onto TiO2 seems to affect their activity. Pt/TiO2, unlike Pd catalysts, gave
slightly enhanced yields of vanillin (from 2.4 wt% to 3.4 wt% for softwood Kraft lignin)
and “syringaldehyde and vanillin” (from 4.6 wt% to 7.7 wt%, mainly on syringaldehyde).
A kinetic study with this last catalyst indicated that it preserved the lignin substructures
leading to a better yield of aromatics [88]. Later on, catalysts based on Cu have been
prepared and used for the oxidative depolymerization of Kraft-pine-lignin. Compared to
the non-catalyzed transformation, the presence of CuO/TiO2 did not affect the global lignin
liquefaction (remaining around 70%) but increased the amount of valuable oxygenated
aromatics especially vanillin formed up to 5 wt% in an autoclave reactor. In a continuous
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flow reactor this catalyst allows full lignin liquefaction with a higher aromatic molecule
yield but without enhancing vanillin yield [89,90].
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4. Transformation of Lignocellulose

As presented above, the selective transformation to molecules of interest of isolated
lignocellulosic biopolymers is in itself difficult. Our team reported interesting and promis-
ing results during the past decade but progress to enhance our initial results was far from
we could expect. There are possible reasons for that. Firstly, it is now well accepted that the
lignocellulose fractionation processes into isolated cellulose and lignin modify significantly
the structure of the native biopolymer and make it less reactive. This is clearly the case
for all commercial samples used in the studies described above. For example, commercial
celluloses are more crystalline than the native cellulose and are available with different char-
acteristics (morphology, polymerization degree, crystallinity). These parameters influence
the depolymerization and valorization efficiency. This explains why various pre-treatments
are often applied to cellulose to enhance reactivity. The drawback is an increase of the
heterogeneity of the solid reactant giving uncontrolled variabilities of the physico-chemical
features. This also true for lignin, for which the origin and extraction method impact
very much subsequent transformations. As a consequence, for both biopolymers data
comparison has become very difficult for the scientific community. Secondly, a limitation
relies on the difficulty to quantify the substrate conversion. Most of the studies on cellulose
or lignin reactivity monitor the reaction progress based on the mass of solid residue. This
can be mistaken in case of high molecular weight solid products (oligomers) formation
and/or the use of a solid catalysts present in the residue (char, Klason lignin). Also, soluble
oligomers present in product solution are usually not analyzed, hiding part of the products
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and distort data analysis. In consequence, it is of crucial importance to develop efficient
and rapid analytical tools to accurately assess the biopolymers reactivity from a conversion
and product yield point of view. In the case of cellulose, we attempted to improve this
point using Infra-Red spectroscopy to quantify the unconverted solid to get real kinetics of
conversion or applying liquid chromatography to analyse soluble oligosaccharide [67]. For
instance, these reliable tools demonstrated the impact of solid catalysts WOx/ZrO2 on the
initial rate of non-pre-treated cellulose conversion (see below).

The above comments give a clear idea on what can be the challenge with these
biopolymers within a native lignocellulosic matrix. Indeed, if the main advantage is to
have the biopolymers presumably more reactive, here come the potential issues of their
interference during their respective catalytic transformation to a specific product, for
instance impact on the accessibility to a heterogeneous catalyst, on poisoning of active
sites by uncontrolled conversion of the other biopolymers. Nevertheless several groups
are investigating the reactivity of raw biomass with heterogeneous catalysts. One can
cite Fukuoka et al. [91] and Zhang et al. [92,93], who applied catalytic systems to wood
reactivity to transform the carbohydrate biopolymers (cellulose and hemicellulose), into
sugar-derived products giving close yields without apparent conversion of the lignin
fraction. Wang et al. reported the valorization in a one-pot procedure with a single
catalyst of all components of a lignocellulosic substrate into polyols from carbohydrate
fractions, and cyclic alkanes from lignin [94]. While most of such studies try to valorize
the carbohydrate fraction, releasing degraded lignin for challenging subsequent reactivity,
Sels et al. developed the lignin-first concept of biomass transformation. This concept aims,
during lignocellulose deconstruction, at lignin stabilization when depolymerization for
example through hydrogenolysis for a more efficient catalytic valorization [95].

Another issue when the objective is the selective formation of a single product (or
more modestly on a family of products), is to be able to convert one biopolymer keeping
the others unchanged the most as possible, for parallel valorization. In this objective, again,
analytical methods are very important when using lignocellulosic substrates of different
nature depending on their origin and obtaining. Pertinent procedures for the preparation of
the sample (drying, milling, sieving), the determination of its exact composition (cellulose,
hemicellulose, lignin) before reaction and in solid reaction products are necessary in order
to monitor the transformation progress. Among others, techniques for sample preparation,
compositional analysis (acid hydrolysis combined to advanced Infra-Red spectroscopic
methods), structural analysis (DRX, TGA, NMR) are particularly mastered in our research
team [67,96]. The results we obtained on cellulose and lignin have participated to pave the
way to study the reactivity of lignocellulose as a whole.

We have presented above the peculiar case of lactic acid formation from pine wood
sawdust hydrothermal treatment in the presence of WOx-ZrO2 Lewis acid catalyst. Com-
pared to commercial cellulose, results showed similar kinetic profiles indicated that the
presence of other wood components like lignin did not affect the accessibility of the catalyst
to the carbohydrate fractions (intrinsic hindrance), nor poison the active sites responsible
for lactic acid formation. Moreover, a higher initial rate of product formation was observed
from wood (Figure 7) certainly due to the different feature of cellulose (fiber morphology,
lower crystallinity) and/or the contribution of hemicellulose in wood making its carbohy-
drate fraction more reactive [63]. Interestingly, it was shown by Infra-Red spectroscopy of
the solid residue that the lignin component remained unchanged, certainly contributing to
this result.

While the above result suggests that a fractionating pre-treatment is not always
necessary to get specific molecules from lignocellulose [97,98], our team is investigating an
original concept consisting in lignocellulose fragmentation in supercritical organic solvents
in the presence of a catalyst. The supercritical conditions of an organic solvent may allow a
partial selective conversion/liquefaction of lignocellulose components. Indeed, it is known
that supercritical fluids possess solvation properties different than those under usual state.
The solvation abilities of supercritical solvents can be tuned near the critical point by small
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change in the temperature, the fluid density. The composition and nature of the supercritical
fluid (pure solvent or mixture) is also of prime importance regarding the chemical nature
of the solid substrate to be solubilized. Thus, this methodology relies on the assumption to
selectively solubilize one of the wood components, (hemi)cellulose vs. lignin by choosing
the nature of the supercritical fluid and conditions. As an example, we investigated the
behaviour of pine wood sawdust in ethanol and heptane in supercritical state (critical
points 241 ◦C and 6.1 MPa, 267 ◦C and 27 MPa, respectively) at 280 ◦C in autoclave reactor.
Figure 8a shows that depending on the supercritical fluid, the biopolymers conversions are
different. For example, lignin was more converted than hemicellulose in ethanol at 280 ◦C
(10 MPa), and this was the contrary in heptane. In heptane, under the same conditions,
hemicellulose was completely converted vs. 40 wt% for cellulose and lignin. The product
families were also different, giving mainly bio-oils in ethanol (35 wt%) and bio-char in
heptane (40 wt%) (Figure 8b) [99].
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For a specific solvent, fine condition tuning such as the fluid density influences wood
conversion and product distribution. Treating pine wood with supercritical ethanol of
higher density led to more bio-oil and less bio-char, most likely explained by clustering
effect which may favour reaction between ethanol and the biopolymer fragments at the
expense of their recondensation (Figure 9) [100]. These results confirm that (partial) selec-
tive fractionation of lignocellulose is feasible by using a solvent of adequate polarity and
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functionality and playing around the reaction conditions, especially near the critical point
of the solvent.
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Figure 9. Pine wood conversion in supercritical ethanol at 250 ◦C. Influence of the fluid density
on the yields of bio-char, bio-oils, light products, and gases, in the absence of catalyst. Adapted
from [100].

In the absence of catalyst, the selective formation of liquid light products was clearly
not favoured, and the conversion/liquefaction mainly produced bio-oil up to 30 wt% of
initial substrate, using supercritical ethanol for example.

This is why the transformation strategy can also include the presence of a catalyst, at
the early stage of the fractionation, in order to drive a liquefaction into the formation of
a specific product. Some possibilities are presented in Figure 10. Studies are currently in
progress in the team to determine the influence of the characteristics of various solvents
and catalyst on the sequential lignocellulose component liquefaction and the nature and
composition of the products [101].
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Figure 10. Strategy for lignocellulose fractionation in supercritical solvents in the presence of a catalyst.

An additional possibility to perform more selective transformations is the use of a
semi-continuous flow reactor in which the solvent circulates through a fixed-bed formed
of reactant and catalyst. Advantages are the possibility to finely and independently tune
the temperature and pressure and to control more precisely the residence time under
certain conditions. This may impact favourably the selectivity of the transformation, for
example, by avoiding modification of products as observed in autoclave reactors [99], or
limiting successive reactions. We initiated this concept by reacting a fixed-bed of cellulose
or spruce wood maintained in an open tubular reactor (beforehand wet-impregnated with
0.1N solution of mineral acid) through the percolation of supercritical 2-butene (critical
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points 146 ◦C and 4.0 MPa) under various conditions. A yield up to 13 mol% of sec-butyl
levulinate (based on cellulose content) was achieved through a protolysis and esterification
sequence (Figure 11) [102,103]. Note the importance of the presence and nature of adsorbed
mineral acid on the efficiency of the reaction under these conditions.
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Figure 11. Biomass liquefaction and sec-butyl levulinate formation after treatment under super-critical 2-butene (flow
0.1 mL·min−1, reactant 2 g, 10 MPa He, 1.5 h).

5. Conclusions

This review describes the main advances obtained in the C’Durable team at IRCE-
LYON in the area of molecular transformation of lignocellulose biopolymers for the last
decade. Our goal is to form value-added molecules, using sustainable processes as much as
possible. In this view the use of heterogeneous catalysis is a tool with definitive advantages
to drive the reactivity towards robust and selective formation of products of interest. To
date we have been mainly working on cellulose and lignin transformation applying an
approach consisting in studying the non-catalyzed transformation, then the impact of
heterogeneous catalysts on the conversion and product formation. We had the chance to
face with many problematics that can be encountered in this field of research, giving us a
deep scientific and technical know-how to develop catalytic processes for the valorization
of this bioresource. Henceforth we try at present to apply all this knowledge to efficient
transformation of raw lignocellulose, which we believe is going to be one of the future
challenges in the field of green chemistry for a sustainable development.
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