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Abstract: This study aimed to develop a HPLC/DAD method in order to determine and quantify the
reduced glutathione (GSH) and oxidized glutathione (GSSG) levels in rat brain. Due to the presence
of the thiol group (-SH), GSH can interact with the Ellman′s reagent (DTNB), with which it forms a
reaction product through which the level of GSH can be quantified, using the DAD detection system.
Chromatographic separation was achieved after a derivatization process by using a mobile phase
acetonitrile (A) and phosphate buffer (20 mM, pH = 2.5) (B). The compounds of interest were detected
at 330 nm using a chromatographic C8 column. The method of determination met the validation
criteria, specified by the regulatory bodies. The applicability of the method was demonstrated in a
chronic toxicology study of central nervous system (CNS), following different treatment regimens
with haloperidol.

Keywords: oxidative stress; glutathione; brain; liquid chromatography; diode array detector

1. Introduction

Glutathione (GSH) is a tripeptide (L-γ-glutamyl-L-cysteinyl-glycine) that exhibits
many biological roles, including the protection against reactive oxygen and nitrogen
species (ROS and RNS). Thus, the GSH antioxidant pathway is one of the most important
and well-represented components of the endogenous antioxidant system [1]. At the same
time, the cysteine residue, reactive thiol (-SH) group, present in its chemical structure, is
responsible for the antioxidant effect by neutralizing the ROS and RNS [2,3].

GSH is involved in many processes, such as defense and preservation of the organ-
ism, prevention or delay of age-related diseases onset, given the proportional increase
of free radicals with aging [4]. It is found mainly in its reduced form (GSH) because the
enzyme responsible for converting the oxidized form (GSSG) is induced by oxidative stress.
Therefore, GSH/ GSSG ratio is considered an indicator of oxidative status [5,6]. It has been
observed that the inherited enzyme defects related to GSH are very rare; in contrast, the
inbalances in GSH homeostasis associated with the increase of the oxidative stress levels in
central nervous system (CNS) are common in neurodegenerative diseases [7].

Low levels of GSH/ GSSG ratio are incriminated in the onset of diseases such as
cancers [8,9], diabetes [10], CNS disorders: Parkinson’s, Alzheimer’s disease [11–13], or
disorders that appear following psychotropic drug abuse [14]. GSH also accomplishes
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a variety of functions at cellular level, which could explain the correlation between the
depletion of this antioxidant molecule and the pathogenesis of neurodegenerative diseases.

In order to determine the concentrations of GSH, different analytical methods were
applied: spectrophotometry [15], liquid chromatography tandem mass spectrometry
(LC-MS) [16], or gas chromatography-mass spectrometry (GC-MS) [17]. Despite their
advantages in terms of preparation time or analysis speed, there are important disadvan-
tages that cannot be disregarded: lack of specificity (spectrophotometry) or high costs.

Along with malondialdehyde, which is another important marker of oxidative stress [18],
the quantification of GSH/GSSG ratio can be used in estimating the oxidative status in
multiple genetic or drug-induced diseases. To avoid the bias generated by the interaction
between Ellman’s reagent (5,5′-dithio-bis(2-nitrobenzoic) acid, DTNB) and another molecule
(cysteine), and with the attempt to obtain as close GSH and GSSG values as the real ones, this
study aims to validate a simple method of determination of GSH and GSSG levels in brain,
with applicability in preclinical studies.

The chromatographic analysis of the analytes resulting from GSH with DTNB reac-
tion (Figure 1) was performed with a high-performance liquid chromatographic (HPLC)
system coupled with a diode array detector (HPLC/DAD). The main disadvantage of
the photometric technique, frequently employed for the GSH measurement in biological
samples, is the lack of specificity, because other thiol containing molecules, such as cysteine
for example, could lead to false readings [19]. Furthermore, in photometric techniques
it is difficult to obtain a high-quality blank, since both the reagent used and the sample
can have a certain interfering color. Another disadvantage of the photometry used for
GSH measurements is the low detectability, along with a narrow limit of concentrations
that can precisely and accurately be measured. Due to these reasons, a chromatographic
technique, such as the HPLC, could solve these problems by improving the detectability
and the concentration range that can be used without further sample preparation pro-
cess (dilution for example). Furthermore, with the possibility of separating interfering
substances and the use of DAD “peak purity” test, the specificity could also be increased.
From Figure 1 it can be seen that thiol interference could not be also avoided by HPLC, if
the 2-Nitro-5-mercapto-benzoic acid (NMB) is measured as in the photometric technique.
However, by following the GSH-DTNB peak, which lacks visible light absorption but has
UV light absorption properties, a very good specificity could be attained, since even thiol
interference could be avoided by chromatographic separation.
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Indeed, more time and higher costs could be needed for the chromatographic tech-
nique, but the significant improvement in the detectability, concentration, and the possibil-
ity to detect a GSH specific compound rather than a -SH specific compound justifies the
importance of this research.

2. Results

In this analythical method, validation parameters are represented by: linearity, selec-
tivity, accuracy, precision, lower limit of quantification (LLOQ), stability, and robustness.



Molecules 2021, 26, 6590 3 of 10

All of these parameters were verified in accordance with the guidelines presented by the
regulatory bodies (FDA 2018) [20].

2.1. Chromatographic Conditions

The chromatographic separation of GSH, after GSH derivatization, was evaluated by
using a mobile phase consisted of acetonitrile (A) and phosphate buffer (20 mM, pH = 2.5)
(B). The elution gradient is presented in Table 1. The injection volume was 50 µL and
a retention time of 6.22 ± 0.06 was obtained. The flow rate was set at 1 mL/min and
the analytes were detected at 330 nm by a DAD (range: 200–700 nm) detector using a
chromatographic column Zorbax Eclipse XDB-C8, 5 µm, 4.6 × 150 mm. The GSH-DTNB
reaction occurs at room temperature in 10 min. The reduction of GSSG occurs at 80 ◦C after
60 min of incubation in the presence of DTNB.

Table 1. Brief presentation of the mobile phase elution gradient program.

Time (min) Phosphate Buffer,
20 mM, pH = 2.5 (%) Acetonitrile (%) Flow (mL/min)

0 98 2 1
19 50 50 1

19.1 98 2 1
21 98 2 1

2.2. Linearity and LLOQ

The linearity of the method was verified using an analytical curve on seven concentra-
tion levels, evaluated in triplicates. The derivatization reaction was performed for each
level of concentration used for the analytical curve. The analytical curve for the GSH
is described by the linear equation: y = 1562x − 350.11 with a determination coefficient
r2 = 0.997 (Figure 2A), while analytical curve for GSSG is described by the linear equation:
y = 2124.4x − 1493.4, and r2 = 0.996 (Figure 2B). y represents the analyte peak area and x is
the concentration, as shown in Table 2.
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Table 2. Validation results of the analytical factors of HPLC method.

Analytical Factor GSH GSSG

LLOQ (µg/g brain) 0.50
rLLOQ (%) 97.11 98.86

LLOQrec (µg/g brain) 0.50 0.50
rLLOQrec (%) 85.47 108.78

Slope 1562 2124.4
Y-intercept −350.11 −1493.4

Determination coefficient (r2) 0.997 0.996
Analytical range (µg/g brain) 0.50–50

Retention time 6.22 ± 0.06
rLLOQ, relative lower limit of quantification; LLOQrec, recovery corrected LLOQ; rLLOQrec (%), relative
recovery-corrected LLOQ;

2.3. Selectivity

In order to verify the selectivity, three samples were injected, prepared in triplicates
according to the procedure described in Section 4.3. Sample preparation with the following
modification: DTNB without GSH, DTNB with GSH, and brain sample with GSH and
DTNB. At the retention time of the GSH-DTNB complex there are no overlapping peaks;
the peak of interest has a corresponding purity, as can be seen in Figure 3.
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2.4. Accuracy

Quality control (QC) samples at LLOQ concentration were spiked in order to deter-
mine accuracy and precision. For each QC level, five replicates were analyzed in one run
for the intra-day procedure.

Accuracy was evaluated based on GSH percentage and GSSG percentage recovered
from the matrix. Results of accuracy for the intra- and inter-day precision for GSH and
GSSG at LLOQ and QC levels are presented in Table 3.
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Table 3. Accuracy and precision of reduced glutathione (GSH) and oxidized glutathione (GSSG) in
lower limits of quantification and quality control samples.

Conc. (µg/g Brain)
Intra-Day Inter-Day

Mean RSD % Accuracy % Mean RSD % Accuracy %

GSH
0.5 0.57 1.47 113.62 0.57 1.62 113.85
15 14.27 6.73 95.15 13.28 6.56 88.54
40 45.12 7.69 112.79 45.33 7.04 113.32

GSSG
0.5 0.45 0.15 90.88 0.49 9.74 97.45
15 16.73 3.33 111.55 15.72 14.52 104.81
40 44.03 5.79 110.08 42.48 13.38 106.20

2.5. Precision

Concerning the evaluation of inter-day precision, it has been evaluated in two different
days, using five replicates for each QC level and at LLOQ concentration, respectively. The
intra- and inter-day precision results were expressed as RSD%. The results for GSH and
GSSG at LLOQ and three QC levels are presented in Table 3.

Both for intra- and inter-day analysis, the precision (RSD%) of QC samples was ≤15%
and the accuracy ranged ±15%. These results demonstrated the fact that the method is
reproducible for the determination of GSH and GSSG in rodent’s brain, considering that
accuracy and precision were found to be within acceptable limits.

2.6. Stability

The stability of the QC samples was stored at room temperature for 12 h and 24 h,
respectively, both in five replicates was assessed; brain samples were stored at−80 ◦C prior
to the analysis. For GSH samples, the analytical recovery varied between 87.18–114.78%
after 12 h and between 94.86–118.29% after 24 h at room temperature (25 ◦C). For GSSG
samples, the analytical recovery varied between 87.88–111.45% after 12 h. The results are
illustrated in Table 4.

Table 4. Stability assessment for samples stored at room temperature for 12 and 24 h, respectively.

Parameters

Stability for Samples Stored at Room Temperature

Conc. (µg/g Brain)
0.5 15 40

12 h 24 h 12 h 24 h 12 h 24 h

GSH
Mean 0.63 0.54 16.39 16.89 39.34 43.97

Rec *, % 110.04 94.86 114.78 118.29 87.18 97.44
RSD% 4.92 10.17 5.41 0.34 12.23 2.26

GSSG
Mean 0.51 - 14.71 - 87.88 -

Rec *, % 111.45 - 87.88 - 92.93 -
RSD% 0.52 - 4.27 - 8.33 -

* Recovery, average of three concentrations.

2.7. Robustness

The robustness of the method was evaluated with the performance of variations
in two important chromatographic parameters: mobile phase pH and flow rate, which
were modified throughout the analysis. All of the tests were performed at three levels of
concentration of 0.5, 15, and 40 µg/g for GSH in five replicates. Results are listed in Table 5.
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Table 5. Robustness of the method by variation of two chromatographic parameters (mobile phase
ratio and mobile phase pH value).

Conc.
(µg/g Brain) Retention Time (min) ± RSD, % Peak Purity (%) ± RSD, %

Mobile phase pH value

2.3
0.5 6.95 ± 0.06 99.25 ± 1.12
15 6.95 ± 0.05 98.03 ± 2.12
40 6.95 ± 0.04 98.16 ± 0.99

2.5
0.5 6.24 ± 0.03 96.42 ± 1.22
15 6.21 ± 0.08 99.81 ± 0.78
40 6.21 ± 0.06 99.68 ± 0.73

2.7
0.5 6.96 ± 0.04 98.16 ± 1.36
15 6.95 ± 0.03 98.98 ± 1.43
40 6.95 ± 0.09 98.64 ± 2.43

Flow (mL/min)

0.9
0.5 7.80 ± 0.02 98.37 ± 1.27
15 7.78 ± 0.10 99.17 ± 2.54
40 7.77 ± 0.09 98.98 ± 2.77

1.0
0.5 6.24 ± 0.05 99.36 ± 2.44
15 6.21 ± 0.05 98.13 ± 1.87
40 6.21 ± 0.08 99.07 ± 2.89

1.1
0.5 6.72 ± 0.06 99.15 ± 1.72
15 6.68 ± 0.03 99.67 ± 1.99
40 6.64 ± 0.03 98.17 ± 2.48

3. Discussion

Measurement of GSH in biological samples is of high importance in the study of
oxidative stress and exogenous substances or pathological conditions associated with
oxidative state [21,22].

It is well known that GSH has a low stability in the biological samples, because after
the blood or the tissue is devoided by the normal oxygen supply, reactive species are
formed, and those species could quickly oxidize the available reduced glutathione (GSH).
This process makes the measurement of GSH in biological samples a challenge. Frequently,
GSH is photometrically measured following a derivatization with the Ellman′s reagent
that forms a non-specific colored compound with the thiol groups [23]. Due to this fact,
one can be certain on measuring thiol groups, not only GSH. In our paper, we developed
an HPLC-UV method that was able to detect not the generally formed colored compound
by the thiol groups with the Ellman’s reagent, but the non-colored but UV absorbing
compound formed after this reaction.

Our method has significant advantages over the most commonly used photometric
method in the following parameters:

• specificity: using photometry we can be sure about the thiol molecule content of the
sample, not GSH in a specific way. Furthermore, photometry does not easily allow a
double blank: native color of the sample + native color of the reagents. This problem
can be achieved by column separation;

• detectability: lower limits of GSH can be detected by the use of the HPLC method;

The increased temperature leads to the reduction of oxidized glutathione (GSSG),
and reaction of the newly formed GSH with the Ellman’s reagent is possible by reacting
the brain sample with the Ellman’s reagent at room temperature and high temperature
(about 80 ◦C) to measure the GSSG content of the sample. This is an important step
in evaluating the oxidative stress level, not because the absolute value of the GSH and
GSSG is important but because of the ratio of the two components [24]. After the method
development, on a number of 40 rats we measured the native GSH and GSSG content and
the GSH/GSSG ratio.
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The performance of the analytical method (validation) was measured according to
international requirements [20]; therefore, one can consider valid any brain GSH/GSSG
evaluation made with our method.

Indeed, sample preparation in the HPLC technique is not less time consuming than
the photometric method, but is certainly less “sample consuming”. This makes room
for analysis of very low quantity samples. Furthermore, the more time needed for the
chromatographic analysis compared with the very fast and easy reading on a photometer is
well compensated by the increased specificity and detectability that we have shown during
our method validation.

GSSG does not react with Elman’s reagent directly. However, at high temperature
(80 ◦C), Elman’s reagent reduces GSSG to GSH, and then the same reaction as in the case of
GSH–Ellman’s reagent occurs. The reduction ratio of GSSG to GSH has high importance
when GSSG is desired to be measured in biological samples. Reduction ratio of GSSG to
GSH was measured after heating the samples for 60 min at 80 ◦C.

The newly analytical method, developed by our team, was succesfully applied in
detection of GSH and GSGG from rat brain samples in a pharmacological experiment
that can change the level of the oxidative stress in rodent’s brain. Average concentra-
tions of GSH and GSSG in untreated (blank) animals was 24.82 ± 1.68 µg/g brain and
6.54 ± 3.09 µg/g brain, respectively. It can be seen that the newly developed method is
able to easily and precisely quantify the concentration of the compound of interest in the
desired biological matrix.

4. Materials and Methods
4.1. Chemicals and Reagents

All chemicals and reagents used in this study were of analytical purity, being pur-
chased from different providers: acetonitrile was purchased from VWR International,
SAS, Fontenay-sous-Bois, France, anhydrous disodium phosphate (Na2HPO4), and 85%
phosphoric acid solution (H3PO4) were purchased from Merck KGaA (Darmstadt, Ger-
many). The Ellman’s reagent, trichloroacetic acid (TCA), ethylenediaminetetraacetate
(EDTA-Na2) powder, sodium chloride (NaCl) powder, phosphate buffer solution (PBS),
GSH and GSSG powders were all purchased from Sigma-Aldrich (Darmstadt, Germany).
Ultra pure water was obtained using the Milli-Q purification system (Merck Millipore
Corporation, Burlington, MA, USA).

4.2. Preparation of Solutions

For GSH stock solution (5 mg/mL) preparation, 5 mg of reduced glutathione were
dissolved in 1 mL of ultra pure water. GSSG stock solution (5 mg/mL) was obtained by
dissolving 5 mg of oxidized glutathione in 1 mL of ultra pure water.

Working solutions for GSH and GSSG at 9 levels of concentration (25, 50, 250, 500, 750,
1000, 1500, 2000, 2500 µg/mL) were obtained by succesive dillution of the stock solutions
with ultra pure water. Seven (GSH, GSSG) triplicate samples for linearity (0.5-50 µg/g) and
three QC samples were prepared (LLOQ, 15 µg/g, 40 µg/g) in five replicates.

The derivatization reaction with the Ellman’s reagent was applied individually to
each sample, after the preparation of the calibration curve solutions.

4.3. Sample Preparation

With the aim of obtaining as accurate results as possible, for optimization of sample
preparation and avoiding unnecessary prolongation of sample preparation which could
influence the final results, we applied an automated homogenization method using the
IKA Ultra-Turrax Tube [18].

Twenty Wistar male rats, weighing 400–500 g, were placed in individual plastic cages.
The animals were maintained on a 12:12 h light dark cycle and fed ad libitum. Afterwards,
the animals were decapitated under anesthesia with ketamine and xylazine in a dose
mixture of ketamine (100 mg/kg) and xylazine (10 mg/kg) in order to collect the brain
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samples. After brain samples extraction, these were immediately immersed in liquid
nitrogen and stored at −80 ◦C until analysis.

In order to analyze GSH and GSSG, brains were homogenized using IKA Ultra-Turrax
Tube Drive and then divided in equal quantities. 1g of each GSH and GSSG brain sample
was then spiked with 10 µL of working solution, and then 3 mL of PBS were added. Samples
were vortexed for 1 min, and immediately after they were centrifuged (10,000× g for 10
min). Following centrifugation, 500 µL supernatant was collected and 500 µL Ellman’s
reagent was added to the supernatant. The GSSG samples were then heated for 60 min at
80 ◦C in the TS-100S, Thermo-Shaker (BioSan, Riga, Latvia). The GSH samples were not
subjected to the heat-treatment, but instead they were left at room temperature for 10 min.

To both GSH and GSSG series of samples, 300 µL TCA 20% was added and then the
samples were centrifuged at 13,000× g for 10 min. After centrifugation, the supernatant
was collected and transferred into HPLC vials.

4.4. Determination of the Degree of Reduction of Oxidized Glutathione

Following the reaction between Ellman’s reagent and GSH, a GSH-DTNB reaction
product is obtained. Thus, the quantification of GSSG levels requires the calculation of the
difference between the total glutathione (TG) and GSH. The determination of TG can be
done by reducing GSSG to GSH.

This method presents and advantage of chemical nature from the sample preparation
point of view, because the reduction of GSSG will occur in the presence of Ellman’s reagent
at 80 ◦C, without the necessity of additional reducing compunds and preparation steps.
The validation of this reduction process required the preparation of the samples in three
different conditions:

1. Condition 1: Biological samples spiked with GSSG heated at 80 ◦C for 60 min;
2. Condition 2: Biological samples spiked with GSH heated at 80 ◦C for 60 min;
3. Condition 3 (control condition): Biological samples spiked with GSH stored at room

temperature for 10 min;

The calculated differences between the two conditions (Condition 1 and 2) reflect the
degree of GSSG reduction. The reduction degree of GSSG to GSH is presented in Table 6.

Table 6. Determination of the degree of reduction of oxidized glutathione.

Conc. (µg/g Brain) Percentage of Reduction (%) SD (+/−%)

0.5 108.79 7.80
1 90.19 6.33
5 111.10 9.72
10 113.91 10.49
15 114.60 4.64
20 112.35 9.38
35 113.35 11.29
40 103.40 7.74
50 91.66 10.31

4.5. Instrumentation

The validation of the present method was performed using a HPLC Merck system:
quaternary pump Merck Hitachi L-7100, auto sampler Merck Hitachi L-7200, column
thermostat Merck Hitachi L-7360, DAD Merck Hitachi L-7455, interface Merck Hitachi
L-7000, solvent degaser Merck Hitachi L-7612, software D-7000 HSM-Manager (Hitachi
Corporation, Westford, MA, USA)

4.6. Study Application

The method was succesfully applied in a chronic CNS toxicity study, following differ-
ent haloperidol treatment regimens, in order to demonstrate the applicabilty. The brains
were rapidly removed, frozen in liquid nitrogen, and stored at −80 ◦C. The preparation of
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the samples was performed according to the steps presented in Section 4.2 Preparation of
Solutions, and for the analysis, the discussed method was applied.

4.7. Ethical Considerations

All of the experimental procedures were in accordance with the European Directive
2010/63/UE and the study was granted the approval of the Ethics Committee of Scien-
tific Research of the George Emil Palade University of Medicine, Pharmacy, Science and
Technology of Târgu Mures, (approval no. 533/2019) and National Sanitary Veterinary and
Food Safety Authority (approval no. 42/2020).

5. Conclusions

In this article, an analytical method for quantifying the level of GSH and GSSG in
the neural matrix (brain) was validated. In this regard, the analysis was performed using
a C8 type chromatographic column and an elution gradient. Regarding the validation
parameters examined, they were found to be in accordance with the regulatory guidelines
and regulations (FDA 2018).

The developed method in this study is applicable in research studies that focus on
quantification of GSH and GSSG levels in rodent brains, as markers of oxidative stress,
with different etiologies.
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