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Abstract: Background: Periodontitis is characterized by excessive osteoclastic activity, which is
closely associated with inflammation. It is well established that MAPK/NF-kB axis is a key signaling
pathway engaged in osteoclast differentiation. It is stated that that biphasic calcium phosphate (BCP)
and platelet-rich fibrin (PRF) have significant antiostoeclastogenic effects in chronic periodontitis.
Objective: We aimed to elucidate the synergetic effect of PRF/BCP involvement of the nuclear
factor kappa–light–chain–enhancer of activated B cells (NF-kB) and the mitogen-activated protein
kinase (MAPK) signaling pathway in osteoclast differentiation in chronic periodontitis. Methods: We
induced osteoclast differentiation in vitro using peripheral blood mononuclear cells (PBMCs) derived
from patients with chronic periodontitis. We assessed osteoclast generation by tartrate-resistant acid
phosphatase (TRAP) activity, proinflammatory cytokines were investigated by ELISA and NF-κB,
and IKB by immunoblot, respectively. MAPK proteins and osteoclast transcription factors were
studied by Western blot analysis and osteoclast transcriptional genes were assessed by RT-PCR.
Results: The results showed that the potent inhibitory effect of PRF/BCP on osteoclastogenesis
was evidenced by decreased TRAP activity and the expression of transcription factors, NFATc1,
c-Fos, and the osteoclast marker genes, TRAP, MMP-9, and cathepsin-K were found to be reduced.
Further, the protective effect of PRF/BCP on inflammation-mediated osteoclastogenesis in chronic
periodontitis was shown by decreased levels of proinflammatory cytokines, NF-kB, IKB, and MAPK
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proteins. Conclusions: PRF/BCP may promote a synergetic combination that could be used as a
strong inhibitor of inflammation-induced osteoclastogenesis in chronic periodontitis.

Keywords: osteoclastogenesis; MAPK; NF-kB; periodontitis; platelet-rich fibrin; biphasic calcium
phosphate

1. Introduction

Periodontitis is an infectious chronic inflammatory disease which is caused by pe-
riodontal pathogenic bacteria affecting the periodontal tissues leading to tooth loss [1].
Despite eliciting an immune response, periodontal tissues also primarily provoke the host
inflammatory response to Porphyromonas gingivalis, involving the recruitment of inflamma-
tory cells, production of cytokines, osteoclast activation, and bone resorption [2].

The inflamed periodontium consists of various immune and nonimmune cells that
interact with bacterial constituents such as LPS to generate interleukins, such as IL-1β, IL-6,
and TNF-α which act as an autocrine factor to cause chronic periodontal inflammation. In
periodontal inflammation, elevated levels of inflammatory mediators are found in tissues
leading to alveolar bone resorption [3].

Inflammatory gene expression is induced by intracellular signal transduction mech-
anisms. Inflammatory signaling pathways are controlled by mitogen-activated protein
kinases (MAPK) from the cell surface to the nucleus [4]. Three well-characterized subfami-
lies of MAPK pathways include: (1) The c-Jun N-terminal kinase (JNK) pathway; (2) the
extracellular signal-related kinase (ERK1/2) pathway; and (3) the p38 MAPK pathway.

MAPK activates various transcription factors such as activator protein-1 (AP-1) and
NF-kB, substrate proteins for phosphorylation, including the “downstream” cytoskeletal
elements, nuclear receptors, cell death receptors, and serine/threonine kinases [5]

Cell differentiation and movement, gene expression, embryogenesis, mitosis, metabolism,
programmed death, and many other cellular activities are regulated by MAPK [6]. The p38
MAPK pathway is vital to signal stress, inflammatory, and infectious stimuli; and it is also
involved in the control of essential processes including cell proliferation, differentiation,
and migration [7]. The c-Jun N-terminal kinases (JNKs) belong to a family of stress-activated
protein kinases that are associated with the transactivation of c-Jun by phosphorylating the
N-terminal serine residues [8]. Growth factors and inflammatory cytokines also activate
JNKs [9]. JNKs and ERKs regulate cell proliferation and cell death.

MAPK are implicated in the regulation of osteoclast activation along with the ex-
pression of inflammatory mediators. Osteoclast differentiation is mainly regulated by the
interplay of RANKL/RANK [10]. Rapid phosphorylation and activation of MAPK are
mainly regulated by RANKL, and this activates transcription factors such as a nuclear fac-
tor of activated T cell 1 (NFATc1), c-Fos, OPG and tumor necrosis factor receptor-associated
factor-6 (TRAF 6), thereby regulating the gene expression for osteoclast differentiation [11].

The application of regenerative materials has shown a promising result on osteoclast
differentiation [12]. However, the role of PEF/BCP in inhibiting the MAPK signaling
pathway has not been evaluated thus far.

Platelet concentrate, most widely known as platelet-rich fibrin (PRF) is derived from
autologous blood which is rich in growth factors. PRF is extensively used in the manage-
ment of periodontal intrabony defects, furcation defects, maxillofacial surgical procedures,
and regenerative procedures [12]. Zhang et al. demonstrated the favorable effects of PRF
membranes in alveolar ridge preservation [13]. PRF facilitates angiogenesis, cell prolifera-
tion, and differentiation, which in turn leads to new bone and tissue regeneration [14]. In
addition, a previous study reported an impact of leukocyte and platelet-rich fibrin (L-PRF)
exudate on bone regeneration when incorporated with the poly(Lactide-co-glycolide)
(PLGA) [15]. Recent studies also stated that the formation of osteoclasts can be inhibited
with PRF membranes from hematopoietic progenitors in bone marrow cultures [16,17].
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In the era of tissue engineering and regeneration, biphasic calcium phosphate has
emerged and contributed immensely. According to Silva et al., BCP has shown a great
impact on the migration of macrophages and secretion [18]. Osteointegration and bone
formation in periodontal defects were noted when biphasic calcium phosphate was used
synthetically as fabricated bone graft [19]. One of the advantages of calcium phosphate is its
osteoinductive and osteoconductive property which aids in the osteogenic differentiation
of mesenchymal stem cells [20,21]. Balaguer et al. demonstrated that plasma clotted around
BCP microparticles showed an osteogenic property that could be used for the treatment of
bony defects [22].

We recently demonstrated in vitro that in chronic periodontitis patients, the ostoeoclas-
tic effect was inhibited through the promotion of the proteolytic cascade of apoptosis when
treated with PRF/BCP [23]. In this study, we hypothesized that inhibiting the MAPK/NF-
kB signaling strategy would provide a novel antiosteoclastogenic target in periodontitis
progression. Earlier studies described the role of several natural MAPK pathway inhibitors
such as myricetin, luteolin, morin, fisetin, and panduratin A from medicinal plants on
osteoclastic differentiation and periodontal inflammation [24,25]. No past studies have
reported the molecular effect of PRF and BCP on influencing the MAPK/NF-Kbaxis, IL-6,
IL-1β, TNF-α, transcription factors, and osteoclastic marker genes

Hence, in the present study, we aimed to elucidate the synergistic effect of PRF/BCP on
the markers for inflammation and osteoclast differentiation by suppressing the MAPK/NF-
kB axis in chronic periodontitis in vitro.

2. Materials and Methods
2.1. Materials and Reagents

Bone BCP (SigmaGraft, CA, USA) is comprised of 40% beta-tricalcium phosphate
(β-TCP) and 60% hydroxyapatite (HA). The reagents included were 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT), Dulbecco’s Modified Eagle’s Medium (DMEM),
TRI reagent, trypan blue. All other chemicals of research-grade were obtained from
Sigma-Aldrich, Inc (St. Louis, MO, USA). The heat-inactivated fetal bovine serum (FBS)
was procured from GIBCO Grand Island, New York, USA. RANKL was obtained from
Sigma-Aldrich (St. Louis, MO, USA) and M-CSF from BioVision, (Milpitas, CA, USA). The
bicinchoninic acid (BCA) protein assay kit was purchased from Thermo Fisher Scientific
(Rockford, IL, USA) and the primary antibodies (1:1000 dilutions) NF-κB, NFATc1, c-Fos,
TRAF 6, ERK, p-ERK, JNK, p-JNK, P38, and p-P38 were supplied by Santa Cruz, CA, USA.
Secondary antibody, β-actin was purchased from Santa Cruz (USA).

2.2. Study Design

The patients were recruited from the Department of Periodontology during the period
from July 2015 until February 2016. Fifteen generalized chronic periodontitis individuals,
both male and female, within the age range of 35–45 years were selected according to the
criteria mentioned below. The human subject’s ethics board of MAHER, Chennai, India
approved the study (“Institutional Review Board”, Protocol No: MU-128-IEC-2015). The
research was conducted at par with the 1975 Declaration of Helsinki 1975, as revised in
2013. The written consent was obtained from the subjects who were willing to participate
in the study.

2.3. Inclusion and Exclusion Criteria

According to the criteria, both male and female patients aged 35–45 years with more
than 5 mm of clinical attachment loss in 30% or more sites with at least 20 teeth remaining in
the oral cavity were included as generalized chronic periodontitis (AAP 1999 classification)
patients and became part of our investigation [26]. These patients were nonsmokers
and had no previous history of other systemic diseases. Moreover, they were also not
treated for chronic periodontitis for the past 6 months. Patients under antibiotic and
anti-inflammatory therapy were excluded from the study. From the selected chronic
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periodontitis (CP) patients, the PBMCs were isolated and divided into four groups based
on the treatment with PRF/BCP. The first group (CP) remained untreated, the second group
(CP+BCP) was treated with BCP alone, the third group (CP+PRF) was treated with PRF
alone, and the fourth group (CP+PRF/BCP) was treated with PRF/BCP in combination.

2.4. Preparation of PRF and BCP

Five ml venous blood from chronic periodontitis subjects was collected and transferred
to 10 mL sterile glass centrifuge tubes with centrifugation at 3000 rpm for 12 min (R-4C,
REMI, Maharashtra, India). In the middle of the tube, a fibrin clot was formed between
the red corpuscles and acellular plasma. The serum was squeezed out from the clot using
sterile gauze, and a resistant autologous platelet-rich fibrin membrane was obtained. The
membrane was then cut into fragments. PRF membranes were then minced to a size of 1 × 1
cm for the further analyses. The BCP grafting particles, composed of 60% hydroxyapatite
and 40% β-tricalcium phosphate were purchased commercially (SigmaGraft, CA, USA).

The minced PRF threads were added to BCP and the PRF/BCP mixture was used for
treating the cells. The PRF/BCP mixture was prepared as 1 mL/well using the DMEM
medium and added to the wells. BCP (60 µg/mL) was dissolved in stored acellular plasma
and the culture medium was used to adjust the concentration of the drug.

2.5. Monocytes Isolation from Whole Blood

Five ml of peripheral blood was collected from the antecubital vein for analysis from
chronic periodontitis patients. Mononuclear cells were obtained from diluted peripheral
blood (1:2 in phosphate-buffered saline (PBS)), which was layered over Ficoll–Paque
(Sigma-Aldrich, Inc., USA), and it was further centrifuged at 1700 rpm for 30 min at room
temperature. The solution was then washed and resuspended in Dulbecco’s Modified
Eagle Medium (DMEM) (Sigma-Aldrich Inc., USA) containing 10% fetal bovine serum (FBS)
(GIBCO Grand Island, New York, NY, USA). Consequently, these cells were calculated in a
hemocytometer using trypan blue.

2.6. Osteoclasts Generation and Differentiation

PBMCs were plated in 24-well plates at a density of 1 × 105 cells per well in 2 mL
of DMEM medium, containing 10% FBS (FBS; HyClone), penicillin (100 µg/mL), and
streptomycin (100 µg/mL) and allowed to adhere overnight. The next day, the medium
was semidepleted and replaced with a fresh osteoclastogenic differentiation medium
containing 25 ng/mL M-CSF (BioVision, Milpitas, CA, USA), 40 ng/mL RANKL (Sigma-
Aldrich Inc., USA), 1 µM dexamethasone, and 2 mm L-glutamine. The cells were allowed
to be re-fed twice a week by withdrawing half of the medium and replacing it with fresh.
The cells were harvested, separated, and then divided into four different groups where
BCP, PRF, and PRF/BCP mixtures were added in six parallel wells, the CP group was the
control and they were cultured for 21 days and stained for tartate resistant acid phosphatase
(TRAP) activity. All the experiments were performed in triplicate for error elimination and
authenticity of the results.

2.7. TRAP Activity Assay

Ten µL of cell lysate was added and incubated at 37 ◦C for 30 min to the 50 µL TRAP
reaction buffer (2.5 naphthol ASBI phosphate HCl in 100 mM sodium acetate and 50 mM
disodium tartrate pH 6.1). To stop the enzymatic reaction finally, 150 µL of 0.1 M NaOH
was added. A multifunction microplate reader was used to measure the fluorescence
with the wavelength of 405/520 nm. In all four groups, calibrator solutions with different
TRAP concentrations (0.6 to 12 U/L) (Bone TRAP, Medac, Wedel, Germany), were used to
correlate the fluorescence intensity with TRAP activity.
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2.8. Measurement of Proinflammatory Cytokines by ELISA

ELISA kits {R&D Systems, Inc (Minneapolis, MN, USA)} were used to analyze the
levels of IL-1β, IL-6, and TNF-α, and they were determined in the osteoclast culture
medium based on the manufacturer’s directions.

2.9. Western Blot Analysis

The cells from four different experimental groups were plated in 24-well plates at a
density of 5 × 104 cells per well in 1 mL of DMEM containing 10% FBS overnight. After 24 h,
nonadherent cells were removed by gentle washing. The biomaterials, namely BCP, PRF,
and the combination of PRF and BCP, were added to the cells. After 24 h of treatment, cell
lysis was conducted by adding a cold RIPA buffer (150 mM NaCl, 50 mM Tris HCL, 0.1%
SDS, 1% Triton X-100, 1 mM PMSF, 2 mM NaF, Na3VO4, β-glycerophosphate, 2 mM EDTA,
and fresh protease inhibitor cocktail), and the cell lysate was centrifuged at 14,000 rpm
at 4 ◦C for 20 min. The BCA method was used to analyze the protein content of the
supernatant. Protein was denatured in a sample buffer, separated on 12% SDS-PAGE, and
was then transferred to a polyvinylidene difluoride membrane. The blots were blocked for
2 h at room temperature with Tris-buffered saline (TBS, 50 mM Tris-HCl, pH 7.5, 150 mM
NaCl) containing 5% nonfat milk. The blots were then washed three times with TBST
(50 mM Tris-HCl, pH 7.5, 150 mM NaCl, and 0.02% Tween 20) and incubated with a specific
primary antibody (1:1000 dilutions) of NF-κB, IKB, NFATc1, c-Fos, ERK, p-ERK, JNK, p-JNK,
P38, and p-P38 (Santa Cruz, CA, USA) at 4 ◦C and kept overnight. The blots were then
incubated for 1 h at room temperature with secondary antibody (1:5000 dilutions), and
detected by an enhanced chemiluminescence (ECL) (Thermo Fisher Scientific) detection
reagent. β-actin was used as an internal control to ensure that equal amounts of sample
proteins were applied for electrophoresis. Densitometric analysis was performed using
Image Lab software (Bio-Rad Laboratories, Hercules, CA, USA).

2.10. RNA Isolation and Reverse Transcription-Polymerase Chain Reaction

According to the manufacturer’s instructions, in all four groups, total RNA was
isolated from cells by a TRIzol reagent (Invitrogen, Carlsbad, CA, USA). cDNA was
synthesized from 1 µg of RNA using an iScript cDNA Synthesis Kit. (Bio-Rad Laboratories,
Hercules, CA, USA). PCR amplifications were performed as follows: 30 cycles for TRAP
(95 ◦C for 60 s, 55 ◦C for 30 s, and 60 ◦C for 60 s), 30 cycles for CAT-K (94 ◦C for 1 min,
60 ◦C for 1 min, and 72 ◦C for 1 min) (ENST00000678337.1), 40 cycles for MMP-9 (94 ◦C for
60 s, 60 ◦C for 60 s, and 68 ◦C for 120 s), and 30 cycles for β-actin (94 ◦C for 35 s, 64 ◦C for
45 s, and 72 ◦C for 1 min) (ENSG00000075624). β-actin was used as an endogenous control.
Ethidium bromide was used to stain the PCR products and then analyzed in a 1% agarose
gel. A 100 bp ladder was used to confirm the size of the amplification products. Relative
mRNA expression levels were obtained by normalizing to the β-actin expression. All the
experiments were repeated three times. Primers for the study are represented in Table 1.

Table 1. Primer sequences used in real-time PCR.

Gene Forward Primer Sequence (5′ to 3′) Reverse Primer Sequence (5′ to 3′) Size (bp)

TRAP CCAATGCCAAAGAGATCGCC TCTGTGCAGAGACGTTGCCAAG 216

CAT-K CCGCAGTAATGACACCCTTT AAGGCATTGGTCATGTAGCC 258

MMP-9 CTCTGGAGGTTCGACGTG GTCCACCTGGTTCAACTCAC 183

β-actin TCACCCACACTGTGCCCATCTACGA CAGCGGAACCGCTCATTGCCAATGG 141
TRAP: tartrate resistant acid phosphatase; CAT-K: cathepsin K; MMP-9: matrix metalloproteinase 9; β-actin:
beta-actin.

2.11. Statistical Analysis

Statistical package social sciences version (SPSS) 23.0 was used to perform the statisti-
cal analysis. All the data in this study was presented as mean ± standard deviation (SD).
Differences among groups were assessed using one way ANOVA and Dunnett’s multiple
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comparison tests for intergroup comparison was conducted using Graphpad Prism 6.0
software package for windows. p < 0.05 was considered to be statistically significant.
* p < 0.05, ** p < 0.01, *** p < 0.001.

3. Results
3.1. PRF/BCP Decreases TRAP Activity

The activity of TRAP was significantly suppressed by PRF/BCP as compared with
other groups (PRF, BCP and CP) (Figure 1). Hence, PRF/BCP might efficiently prevent
osteoclastogenesis by inhibiting TRAP.
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Figure 1. TRAP activity images. All data are presented by mean ± SD. Results are expressed as the
mean ± SD. The comparisons were made among CP and BCP, CP and PRF, and CP and PRF/BCP.
(** p< 0.01; *** p < 0.001).

3.2. PRF/BCP Attenuates Proinflammatory Cytokines

IL-1β, IL-6, and TNF-α were significantly decreased when treated with PRF/BCP
as compared with PRF and BCP alone (Figure 2). In addition, as compared with other
cytokines, the level of IL-6 expression was markedly decreased.
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3.3. PRF/BCP Regulates Periodontal Inflammation and Osteoclastogenesis by Inhibiting MAPK
Signaling and NF-κB Pathways

MAPK signaling and NF-kB pathways were examined at the protein level on os-
teoclasts. In the chronic periodontitis group (CP), MAPK signaling proteins and their
phosphorylated forms were highly expressed (Figure 3a,b). PRF/BCP markedly inhib-
ited the expression of ERK, p-ERK, JNK, p-JNK, p-38, and p-p38 and also diminished the
expression of NF-kB and IKB (Figure 3c,d). These results indicate that PRF/BCP has an-
tiosteoclastogenic and anti-inflammatory effects which are regulated via the inhibition of
MAPK signaling proteins.
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sentative blot image. (b) Relative densitometric analysis in histograms. NF-kB and IKB molecules
were blotted and normalized with β-actin. (c) Representative blot image. (d) Relative densitometric
analysis in histograms. Results are presented by mean ± SD. Comparisons were made among CP
and BCP, CP and PRF, and CP and PRF/BCP combination. (** p< 0.01; *** p< 0.001).

3.4. PRF/BCP Inhibits Osteoclastogenic Transcription Factors and Osteoclast Marker Genes

Osteoclastic transcription factors, c-Fos, NFATc1, and TRAF 6 and bone resorptive
enzymes, cathepsin K, TRAP, and MMP-9 were significantly decreased when treated with
PRF/BCP (Figures 4a,b and 5a,b). The decrease was greater in the PRF/BCP combined
group than the PRF and BCP group alone. These results indicated the antiosteoclastic effect
of PRF/BCP was established through inhibition of osteoclast-related marker genes.
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4. Discussion

In the existing study, PRF along with BCP, was identified as an important negative
modulator of markers for inflammation and osteoclast differentiation in chronic periodon-
titis [23]. This has led to the foundation for further research to explore the antiosteoclastic
effect of PRF/BCP via NF-kB and MAPK signaling pathways.

The monocytes were derived from the peripheral blood and differentiated to form
multinucleated osteoclasts [27]. According to Kumar et al., TRAP staining showed that
there was a relative decrease in the number of TRAP positive multinucleated osteoclasts in
PRF+BCP combination (p < 0.001) as compared with other groups [23]. In the present study,
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TRAP activity on the osteoclastic cells also found a significant suppression of osteoclastic
cells when treated with PRF/BCP, which is further confirmation of our previous study
(Figure 1).

In general, it is hypothesized that IL-1β, IL-6, and TNF-α play a key role in activating
osteoclasts that terminate in net bone resorption [28]. In the present study, IL-1β, IL-6,
and TNF-α were increased in the CP group, suggesting an inflammatory response of the
inflammatory cells during the progression of the disease (Figure 2). There were consistent
results in different studies demonstrating the increased levels of proinflammatory cytokines
in inflamed periodontal tissue [29,30]. It is observed that inflammatory responses are
inhibited by the antagonist of IL-1 and TNF-α, thereby decreasing the amount of bone
destruction in experimentally induced periodontitis [31].

NF-kB is one of the most common inflammatory cytokines and plays a key role
in RANKL-induced osteoclast formation [32]. In the current study, NF-kB level was
significantly increased in the CP group (Figure 3c,d), which can be explained as NF-kB
binds to the promoter regions of proinflammatory cytokine genes and activates their
transcription, thereby regulating the inflammatory process which is mainly mediated
by MAPK pathway. The results also showed that PRF/BCP suppressed the osteoclast
differentiation through the inhibition of IKB phosphorylation (Figure 3c,d) in the NF-kB
signaling pathway.

MAPK, extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK),
and p38 mainly activate NF-kB, resulting in the expression of proinflammatory cytokines.
However, PRF/BCP significantly decreased the level of proinflammatory cytokines (Figure 2)
and NF-kB (Figure 3c,d), thus protecting against periodontal inflammation.

Moreover, considering that periodontal inflammation accelerates osteoclastogenesis,
the function of MAPK signaling molecules in regulating osteoclast differentiation in peri-
odontitis was further studied. RANKL is overexpressed by the inflammatory responses,
which result in RANK receptor binding on an osteoclast, thereby causing osteoclastogene-
sis [33,34]. We observed an increased level of p38, ERK1/2, and JNK in the CP group where
PRF/BCP was not introduced (Figure 3a,b). On the other hand, in PRF/BCP group, osteo-
clastogenesis was inhibited by antagonizing the MAPK signaling pathway (Figure 3a,b).
Our study was in agreement with a study conducted by Lee et al. who concluded that
osteoclastogenesis is mainly influenced by the MAPK pathway [35]. Another study also
concluded that pharmacological inhibitors and gene silencing can also inhibit the MAPK
pathway [36]. Previous studies also reported the importance of p38 in the regulation
of IL-6 in periodontal ligament fibroblasts and osteoblasts [37,38]. This implies that the
activation of the MAPK pathway might exist in periodontitis-induced osteoclastogenesis.
Kim et al. showed the effect of panduratin A on inhibiting the MAPK signaling pathway
in periodontitis [24]. The study also demonstrated the key aspects of p38, JNK, and ERK
signals, which play a pivotal role in the differentiation of osteoclasts and intracellular
signaling transduction.

In the present study, PRF/BCP affectively reduced the expression of transcription
factors such as NFATc1 and c-Fos in osteoclast differentiation in the PRF/BCP group as
compared with PRF and BCP alone (Figure 4a,b). Our findings were in accordance with
Choi et al., who described the role of fisetin as a potential inhibitor of RANKL-induced
osteoclast differentiation [39]. Another study by Boyce et al. demonstrated that a de-
crease in signaling by p38/c-Fos/NFATc1 could subsequently lead to a reduction in the
expression of genes required for bone resorption, which is similar to our study [40]. It is
assumed that during RANKL and RANK interaction, the transcription factors combine
to the target gene within the nucleus of the osteoclastic cells. Further, phosphorylated
MAPK signaling proteins activate NFATc1 and c-Fos. Thus, the phosphorylation of NFATc1
through the MAPK/NF-kB axis is critical for the master osteoclast transcription factor,
NFATc1, to translocate into the nucleus of the osteoclast progenitor cells and activate the
osteoclastogenic mechanism. In our study, the synergistic effect of PRF/BCP showed to
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attenuate the action of the transcription factors, thereby influencing the MAPK signaling
proteins and reducing the osteoclastic activity.

We also observed that in response to the transcriptional signal, the expression of
mRNA in osteoclastic specific genes such as TRAP, cathepsin K, and MMP-9 were signifi-
cantly inhibited by PRF/BCP (Figure 5a,b). Our findings were in agreement with Franco
et al., who described the inhibitory effect of doxycycline on the functional expression of
osteoclast markers genes, such as TRAP activity, MMP9 enzyme activity, and cathepsin K
on RANKL-induced osteoclastogenesis [41]. Hence, keeping the aforementioned concepts
in mind, it can be concluded that PRF/BCP can reduce the manifestation and regulation
of osteoclastic transcription factors by regulating the MAPK signaling pathway proteins,
whereby blocking the activation of TRAP, cathepsin K, and MMP-9. One of the most
important factors that exhibits the bioactive feature of BCP is the degradation and release
of calcium ions which also regulate the formation and resorption of osteoclasts [21,42]. On
the other hand, phosphates and the osteoblastic lineage via the IGF-1 and ERK1/2 pathways
regulate the growth and differentiation of osteoblasts, thereby increasing the expression of
BMPs [43,44]. Hence, BCP has a dual role to play as a regenerative material.

Phosphate mainly plays an important role in the regulation of the RANK ligand:
OPG ratio to inhibit osteoclast differentiation and bone resorption [45]. The expression of
osteoblastic differentiation markers such as ALP, BMPs, OPN, OCN, BSP, ON, and RunX2
is also affected by calcium and phosphate ions [46,47]. However, the mechanism by which
PRF/BCP induces osteogenesis in favor of bone formation remains to be established. The
findings of this study can also pave the way to understanding new treatment modalities
to manage periodontal diseases. Further research should be undertaken to realize the
importance of signaling mechanisms in inflammatory mediators, their interactions with
the MAPK/NF-kB signaling pathway, and also to obtain more predictable clinical results.

Limitations of the Current Study

This study has certain limitations. First, the study identified osteoclasts using TRAP
activity; however, pit assay can be used to determine the bone resorption activity of
osteoclasts. Secondly, there was a lack of healthy groups which could provide more
insight concerning the TRAP activity, MAPK pathway, transcription factors, and osteoclast
marker genes when treated with PRF and BCP in comparison with the other groups.
Furthermore, the investigations were restricted to only one time point. Various study
designs at varying time points would enable better inference of the study. In the future, a
large number of studies with more samples may ensure better significant findings with
the best precise outcome in estimating the clinical effects of PRF/BCP combination in
regenerative periodontics.

5. Conclusions

Overall, this study demonstrated the inhibitory effect of PRF and BCP on the activation
of NF-kB and MAPK signaling pathways, as well as on the expression of inflammatory and
osteoclastogenic genes. The study results provide vital evidence substantiating the potential
role of a PRF and BCP combination as a regenerative medicine in the therapeutic approach
to periodontitis. As the present study showed the involvement of multiple signaling
pathways and the crosstalk between PRF/BCP and signaling modulators, future studies on
the biologic roles of other signaling pathways/modulators activated by PRF/BCP might
provide further understanding of biomaterials as novel therapeutic agents in the treatment
of chronic periodontitis.
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