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Abstract: Acyclovir (ACV) is an effective and selective antiviral drug, and the study of its toxicology
and the use of appropriate detection techniques to control its toxicity at safe levels are extremely im-
portant for medicine efforts and human health. This review discusses the mechanism driving ACV’s
ability to inhibit viral coding, starting from its development and pharmacology. A comprehensive
summary of the existing preparation methods and synthetic materials, such as 5-aminoimidazole-
4-carboxamide, guanine and its derivatives, and other purine derivatives, is presented to elucidate
the preparation of ACV in detail. In addition, it presents valuable analytical procedures for the
toxicological studies of ACV, which are essential for human use and dosing. Analytical methods,
including spectrophotometry, high performance liquid chromatography (HPLC), liquid chromatog-
raphy/tandem mass spectrometry (LC-MS/MS), electrochemical sensors, molecularly imprinted
polymers (MIPs), and flow injection–chemiluminescence (FI-CL) are also highlighted. A brief de-
scription of the characteristics of each of these methods is also presented. Finally, insight is provided
for the development of ACV to drive further innovation of ACV in pharmaceutical applications. This
review provides a comprehensive summary of the past life and future challenges of ACV.

Keywords: acyclovir; pharmacology; synthesis; toxicology; analytical methods

1. Introduction

The structure of acyclovir (9-((2-hydroxyethoxy)methyl)guanine) (ACV) is illustrated
in Figure 1. As an antiviral drug of guanine nucleoside analogues, ACV is one of the most
commonly used antiviral drugs all around the world. It is considered the beginning of a
new era of antiviral therapy, due to its high selectivity and low cytotoxicity [1]. It is used
to treat herpes viruses, such as herpes simplex virus (HSV), varicella-zoster virus (VZV)
and Epstein–Barr virus (EB) effectively, with little effect on normal cells [2,3]. In infected
cells, it has a powerful inhibitory effect on viral DNA, preventing its synthesis. ACV is also
one of the most important essential medicines for establishing essential care systems, being
included in the WHO Model List of Essential Medicines (October 2013).

ACV, as an effective and selective antiviral drug, is one of the most common drugs in
the worldwide pharmaceutical market. Low cost and high yield synthesis processes are
essential for the development of ACV. In addition, with this extensive clinical application,
it was found that ACV effectively treats herpes, but with some adverse effects, such as
causing acute renal impairment. The State Drug Administration of China issued a notice
on the revision of ACV formulation instructions (April 2009), mentioning that patients
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need to be carefully observed for signs and symptoms of renal failure when applying ACV
therapy. In addition, the amount of ACV used is influenced by individual differences, with
the elderly, pregnant women and children needing to use ACV with caution. Due to the
above toxicological and adverse effects, it is particularly important to detect and analyze
the level of ACV, and many analytical methods have been developed to effectively identify
and quantify the level of ACV present not only in commercial pharmaceutical preparations,
but also in human urine and serum, which has played a positive role in ensuring safe drug
use on patients.
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This review summarizes the discovery and pharmacology of ACV, from its abil-
ity to inhibit the process of viral coding. The development of ACV is comprehensively
described from three points of view, including preparation method, surname change
and dosage form, to provide a theoretical basis for the clinical efficacy of this drug. To
address the toxicological studies of ACV and the challenge of how ACV can be safely
administered, existing analytical methods for ACV, such as spectrophotometry, high perfor-
mance liquid chromatography (HPLC), liquid chromatography/tandem mass spectrometry
(LC-MS/MS), electrochemical sensors, molecularly imprinted polymers (MIPs), and flow
injection–chemiluminescence (FI-CL) are reviewed. A brief description of the characteris-
tics of each of these methods is also given separately. Finally, the paper provides hot spots
of current ACV research and insights into future challenges for further innovation of ACV
in pharmaceutical applications. This research work is of high theoretical significance with
a good clinical utility.

2. The Discovery and Pharmacology of ACV

Acquired Immune Deficiency Syndrome (AIDS) spread rapidly around the world in
the 1970s. Confronted with the spread of the AIDS epidemic, chemists began to look for
nucleoside analogues for antiviral drugs. ACV was discovered by Schaeffer et al. [4] in
1974 through a search for inhibitors of adenosine deaminase. It entered into clinical trials
due to the intense preclinical investigation in 1977. Subsequently, ACV was developed
by Burroughs Wellcome (B.W., UK) as an acyclic nucleoside drug for specific anti-herpes
viruses, which were first marketed in the world in 1981 [5,6]. Since then, ACV has become
one of the most widely sold antiviral drugs in the world and has demonstrated its value
in a variety of clinical settings. It is mainly used to control the symptoms of HSV, which
causes herpes simplex; or varicella-zoster virus (VZV; a type of herpes virus), which causes
shingles and chickenpox [7]. ACV is effective against HSV-1 and HSV-2, and against VZV,
while being relatively weak against Epstein–Barr virus (EBV) and cytomegalovirus (CMV).
Meanwhile, ACV has some effect against hepatitis B virus (HBV). Besides, with in-depth
studies of ACV, ACV can also be used in combination with other agents [8–10]. For example,
it may combine with zidovudine (AZT) to treat AIDS or with human lymphoblastoid
interferon to treat chronic hepatitis B. Currently, ACV is most commonly prepared in
six formulations, including tablets, capsules, injections, eye creams, eye ointments and eye
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drops [1]. Local application treats herpetic keratitis, herpes simplex and herpes zoster. Oral
or intravenous injection can effectively treat herpes simplex encephalitis, genital herpes
and immune deficiency patients with herpes simplex infection.

ACV can significantly inhibit the synthesis of viral DNA in infected cells, without
affecting the DNA replication of non-infected cells. Viral replication relies on nucleotides
supplied by host cells as the raw material for viral DNA or RNA synthesis. Many viruses
can use viral thymidine kinase (TK) to convert RNA thymine nucleoside into monophos-
phate nucleoside. Subsequently, with the action of cell kinase, monophosphate nucleoside
is further converted into diphosphate and triphosphate nucleoside to be used by the virus.
Similarly, ACV, the antiviral nucleoside drug, as the raw material for viral replication
is converted to its monophosphate derivatives by TK, which is a reaction/process that
does not occur to any significant extent in uninfected cells (Scheme 1). Monophosphate
is then further converted into diphosphate and active triphosphate, under the catalysis
of cellular kinases. ACV triphosphate is involved in the DNA chain of the synthesizing
virus. However, the uptake of this compound by the virus blocks the extension of the
DNA strand. This is attributed to the lack of the 3′ -hydroxyl group, which blocks the
replication of the viral nucleic acid. In addition, although ACV triphosphate competes with
deoxyguanosine triphosphate (dGTP) for binding to viral DNA polymerase, the affinity
of viral DNA polymerase to ACV triphosphate is much higher than that of dGTP, which
results in the interference of polymerase combining with the viral replication templates
or primers, thus inhibiting the activity of viral polymerase. Finally, the synthesis of viral
DNA and the proliferation of viruses are blocked.
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3. The Preparation of ACV and Its Dosage Forms
3.1. The Synthesis of ACV

With the advantages of low toxicity, good tolerability, high efficiency and broad
spectrum, ACV is in great demand in the market and therefore the exploration of its
chemical synthesis methods has been widely reported. A great deal of literature has been
reported about the synthesis methods of ACV. The main synthesis routes of ACV can be
divided into the following three categories according to different raw materials, shown in
Table 1. The main synthesis routes are summarized in a diagram of Scheme 2.
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Table 1. Various starting materials for ACV synthesis.

Starting Materials Synthesizing Process The Routes in
Scheme 2 References

(1) 5-aminoimidazole-4-carboxamide
Three steps: alkylation,

condensation,
ring closure

(a) [11,12]

(2) Guanine and its derivatives

Guanosine Three steps: acylation,
condensation, azmmonolysis (b) [13]

Guanine

Three steps: acylation,
condensation, ammonolysis (c) [14,15]

Three steps: silanization,
condensation, hydrolysis (d) [16]

One step: the condensation and
deprotection of the acyl protecting

group and nucleophilic
displacement of the halogen atoms

(e) [17]

(3) other purine derivatives

2, 6-dichloropurine Condensation, ammoniation
and hydrolysis (f) [18]

2-chloro-6-iodopurine Condensation, ammoniation
and hydrolysis (g) [19]

6-iodopurine Alkylation, chlorination,
iodization, ammoniation (h) [20]

2-amino-6-chloropurine Silanization, condensation
and hydrolysis (i) [21]
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3.1.1. Synthesis from the 5-Aminoimidazole-4-carboxamide

The synthesis of ACV starting with 5-aminoimidazole-4-carboxamide is displayed in
Scheme 2a. Briefly, 5-aminoimidazole-4-carboxamide undergoes alkylations with 3-oxy-4-
chlorobutanol acetate (ClCH2OCH2CH2OAc), after which the product is condensed with
benzoyl othiocyanate (PhCONCS) by heating reflux, in acetone (CH3COCH3). Finally, ACV
is obtained by cyclodesulfurization hydrolysis under alkaline aqueous solution, containing
a suspension of a slight excess of the metal salt (Cu2+, Ag+, or Hg2) [11,12]. This scheme
cleverly adopts the method of cyclodesulfurization by using heavy metal salts to make it
possible for the synthesis of ACV from 5-aminoimidazole-4-carboxamide. Although the
strategy has the advantages of mild reaction conditions and simple operation, the raw
material is not very easy to obtain, so it would potentially take a long time to carry out the
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work. More importantly, it is not environmentally friendly to add the heavy salts during
the production process.

3.1.2. Synthesis from Guanine and Its Derivatives

As biochemical reagents, guanosine and guanine, which have extensive application,
are relatively easy to obtain. In the pharmaceutical industry, they are often used for the
synthesis of pharmaceutical products. In 1992, Wang et al. [13] reported a synthesis method
of ACV from guanosine by three steps. This synthesis route is displayed in Scheme 2b.
First, guanosine was acylated by acetic anhydride to become N, N′-diacetylguanine. Af-
ter that, the condensation of N, N′-diacetylguanine and 2-oxy-1, 4-butanediol diacetate
(AcOCH2CH2OCH2OAc) was done in the presence of p-totuenesulfonic acid in organic
solvents. Finally, ACV was produced by aminolysis in the presence of methylamine. It
is recommended as an ideal route for designing experiments, due to the accessible raw
materials, simple industrial conditions and high yield.

However, there are numerous methods to synthesize ACV by using guanines as
the starting material, which use fewer steps, or just one reaction step. Typically, it can
be prepared by acylation of guanines followed by condensation and ammonolysis. In
1988, Matsumoto et al. [14] proposed a convenient and economical synthesis of ACV from
guanine (Scheme 2c). Guanine can be acylated to N, N′-diacetylguanine by Ac2O. Subse-
quently, N2, O-diacetylacyclovir is prepared by the condensation of N, N′-diacetylguanine
and AcOCH2CH2OCH2OAc in the presence of p-toluenesulfonic acid (p-TsOH) in dimethyl
sulfoxide (DMSO). Finally, ACV is successfully synthesized by using ammonia–methanol
(NH3–CH3HO) as an organic solvent. Considering the need to be environmentally friendly
and the production yield of ACV, Chen and Wang [15] consulted and modified Mat-
sumoto’s synthesis route to improve the ACV production yield to 52%. They used (the
cheaper) toluene instead of using DMSO as the solvent for the condensation reaction, which
greatly reduced the amount of reprocessing work. Meanwhile, a methylamine solution
(CH3NH2–H2O) was employed instead of NH3–CH3OH in ammonolysis, which mitigated
the application of a large number of organic media. Interestingly, differing from Matsumoto
and Chen, Luo [16] prepared the ACV by the silanization of hexamethyldisiline (HMDS),
then by condensation with 3-oxy-4-bromobutanol acetate (BrCH2OCH2CH2OAc), and
finally by alkaline hydrolysis, as shown in Scheme 2d. The silanization route does not
easily form 7-by-product of guanine, due to the large steric hindrance, and condensation is
carried out by Hg(CN)2 as a catalyst, which is able to eliminate 7-by-product, thus greatly
improving the purity of the product. This synthetic route has a potential industrial value,
as it increases the total yield to 72.3%. The aforementioned methods of preparing ACV from
guanine involve a three-step reaction but reducing and simplifying the reaction steps is also
important for the synthesis process. Hakimelahi and Khalafi-Nezhad [17] took a different
approach. They developed a general and rapid procedure for the preparation of ACV,
which was produced by the condensation of guanine with 3-oxy-4-chloro-butanol benzoate
(ClCH2OCH2CH2OCOPh) or chloromethylchloroethyl ether (ClCH2OCH2CH2Cl) in the
presence of tetrabutylammonium fluoride (Bu4NF) in one step, achieving the condensation
and deprotection of the acyl protecting group and nucleophilic displacement of the halogen
atoms. This synthesis route is shown in Scheme 2e.

3.1.3. Synthesis from Other Purine Derivatives

It is commonly seen that purine derivatives as starting material provide promising
options for the preparation of ACV. For example, Kelley and Schaeffe [18] adopted 2,
6-dichloropurine as the raw material. After carrying out the condensation with 3-oxy-
4-chloro-butanol benzoate, methylamine ammoniation and hydrolysis, ACV was finally
obtained (Scheme 2f). Similarly, when 2-chloro-6-iodopurine was used as raw material [19],
it needed to undergo condensation with Me3SiOCH2CH2OCH2I, ammoniation and hydrol-
ysis to obtain ACV (Scheme 2g). Moreover, Han et al. [20] invented a method involving an
efficient and selective process for the production of 9-(2-hydroxyethoxymethyl)-guanine
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(ACV). As Scheme 2h shows, with the presence of benzyl triethyl ammonium chloride,
3-oxy-4-chlorobutanol trifluoroacetate alkylated the 6-iodopurine. After that, it was chlori-
nated with phosphorus oxychloride and iodized with potassium iodide. Finally, it under-
went alkaline hydrolysis by potassium bicarbonate to successfully produce the ACV. In
addition, Scheme 2i presents a synthesis method starting with 2-amino-6-chloropurine. Af-
ter silanization with hexamethyldisilane, condensation with 3-oxy-4-bromobutanol acetate
and hydrolysis, ACV was finally produced [21].

3.2. Structures Modification for Improving ACV Performances

Generally, the synthesized ACV is a white crystalline powder with poor water solu-
bility, fat solubility, oral and external absorption, and low bioavailability. Therefore, it is
crucial to modify the ACV to be lipophilic, to achieve better properties. For instance, the
palmitoyl group is introduced into ACV molecules [22,23] to prepare a lipophilic prodrug
of ACV palmitate (ACV-C16). This prodrug can be prepared into liposome gel for skin use,
which effectively improves the transdermal delivery and bioavailability of ACV. ACV and
succinic anhydride were synthesized as 9-(2- single acidated butanedioic ethoxymethyl)
guanine in basic conditions with pyridine as a solvent [24]. The water solubility of ACV
was increased by the introduction of a polar group (COOH) in the ACV molecule. Similarly,
valacyclovir, as the first generation of nucleoside antiviral drug, was obtained from the
chemical modification of ACV, which increased the water solubility of ACV [25]. Com-
pared with the original drug, the oral bioavailability of valacyclovir was greatly improved.
The fluorescent tricyclic analogues of acyclovir 6-(4-MeOPh)-TACV 8 showed similar
antiherpetic potency as the parent compounds, but improved properties [26]. In addi-
tion, the modification of ACV can also improve its antiviral properties. With the help of
lipid/calcium/phosphate nanoparticles (LCPNPs), monophosphorylation modification of
ACV can successfully modify an anti-herpes simplex virus, thymidine kinase (HSV-TK)
(HSV-TK) HSV-TK-dependent antiviral drug, into an anti-tumor drug [27]. ACV revealed
preferential binding to Pd (II) through the N(7) position of the guanine nucleobase. The
antiviral efficacy of the derived Pd (II) complex was assayed against HSV-1 strains and
outperformed the antiviral activity against HSV-1 of ACV [28]. These modifications greatly
improve the production of various dosage forms of ACV, providing more possibilities in
treatments for human health.

3.3. The Dosage Forms

No drugs can be directly applied to patients. They must be made into drug dosage
forms with certain shapes and properties before being applied in clinical practice so as
to adequately achieve the drug’s effect, reduce toxic and side effects, and facilitate the
drug’s use and preservation. Therefore, ACV is prepared in various dosage forms to
serve different clinical needs, which can reduce the frequency of administration, increase
bioavailability, maintain effective blood concentration, and prolong the duration of the drug
effect. Currently, many available dosage forms are produced; they are briefly summarized
in Table 2. In order to meet more clinical needs, many new dosage forms are being
developed. A brief overview of these new dosage forms are as follows.

Table 2. Currently available dosage forms.

Dosage Forms Products

Solid Preparation ACV tablets, ACV dispersible tablets, ACV sustained-release tablets, ACV
chewing tablets, ACV capsules, ACV granules

Semi-Solid Preparation ACV eye cream, ACV cream, ACV ointment, ACV gel
Liquid Preparation ACV for injection, ACV oral suspension, ACV eye drops
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3.3.1. Spray Formed In Situ

Topical application of ACV is normally done via ordinary emulsion and gel. The
treatment is required to be applied with finger gloves or leather gloves, usually 5–6 times a
day, 7–14 days a cycle. ACV can also be made into a spray, formed in situ with more uniform
coating and more adjustable dosage. Polymer material quickly forms a slow-release film in
situ after the spray contacts skin, evaporating the solvent, so that ACV is slowly released,
topically. This achieves the therapeutic effect. Compared with ordinary spray, the retention
of the drug at the target site can be prolonged; the efficacy can be improved; and the number
of times the drug must be administered can be reduced. Moreover, a spray of ACV formed
in situ does not contaminate clothing such that would cause the loss of liquid medicine.
More importantly, a spray of ACV formed in situ is able to reduce the risk of infecting
other parts of the body. Wu et al. [29] invented a method to prepare a spray formed in
situ and secured a national invention patent. This patent of an in situ gel demonstrated
a mechanism based on temperature sensitivity. Therefore, the applicable range can be
expanded from eye administration to external use, such as skin and other places. A topical
treatment of herpes simplex and herpes zoster infection is effective, which can meet a broad
market demand.

3.3.2. Gastric Retention Dosage Form

The bioavailability of ACV is only about 15–30% by oral absorption [30]. On the
other hand, ACV has a short half-life of about 2.5 h, so it is required to take 200 mg
orally 5 times a day for 10 days in the treatment of herpes, genital herpes and mucosal
simplex for patients with immunodeficiency. This is very inconvenient. It was reported that
ACV can have significantly increased absorption when slow administration is achieved,
or by increasing its exposure time in the gastrointestinal tract [31]. There is a patent
for the preparation of ACV gastric retention dosage form [32], which greatly improves
its bioavailability. In addition, Ruiz-Caro et al. [33] developed mucoadhesive chitosan
(CS) and hydroxypropyl-methylcellulose or hydroxypropylmethylcelluloseor (HPMC)
tablets for gastric drug delivery of ACV. The results showed that HPMC and CS, with good
mucoadhesion behavior on gastric mucosa, could be suitable polymers for obtaining tablets
meeting ACV controlled release profiles. The formulation was reasonable, the preparation
process was simple, and all data released for the studied tablets fitted the Hopfenberg
model. Furthermore, Liu et al. [34] prepared a novel gastric mucoadhesive, sustained
release ACV-resinate microsphere. Ion-exchange resin was used for adhesive delivery.
The results indicated that the bioavailability of this ACV-resinate microspheres, with a
sustained-release profile with an increasing retention time in the stomach in vitro with a
better absorption ratio, was higher than conventional ACV tablets.

3.3.3. Vaginal Sustained-Release Agents

Several investigations show that ACV is safe and effective for the treatment of primary
or recurrent lesions from genital herpes [35]. The conventional dosage forms, such as
creams, gels and tablets, may cause leakage, messiness and low residence time [36]. In order
to solve these issues, vaginal sustained-release agents were studied by many researchers.
Some have developed a liposomal vaginal delivery system for ACV [36]. However, on one
hand, the percentage of drug encapsulation efficiency is low for liposomes. On the other
hand, the fast drug release was developed in an acidic medium, inducing a low stability in
simulated vaginal fluid. Recently, Ijaz et al. [37] synthesized a beta-cyclodextrin (β-CD)
derivative with sulfhydry (β-CD-SH) to prepare inclusion complexes with ACV. Scheme 3
shows the process of synthesis of β-CD-SH. The inclusion complexes were applied in a
porcine vagina, showing a good drug dissolution rate and vaginal adhesion. Moreover,
Pacheco-Quito et al. [38] developed a vaginal tablet based on iodine–carrageenan and
hydroxypropyl methyl cellulose for the controlled release of ACV. They evaluated the
swelling, mucoadhesion and drug release in simulated vaginal fluid. The results showed
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high mucoadhesive capacity. This indicated that the formulation could stay in the vaginal
area long enough to completely release the ACV.
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4. Toxicology Studies of ACV

Thymidine kinase in normal human cells cannot phosphorylate ACV, so the toxicity
of ACV is weak. Generally, the toxicity of ACV is related to the route of administration
and dosage. A brief summary of the majority of patients’ experiences of side effects
during medication is shown in Table 3. The subsequent recovery can be improved in the
short term by adjusting the dosage or suspending the administration [39]. Numerous
and extensive preclinical toxicity studies of ACV on animal and in vitro systems to detect
the potential of acute, subchronic or chronic toxic manifestations, and the potential of
teratogenesis, mutations or carcinogenesis have been reported. Multiple animal species
were administered drugs in two or more routes, including intravenous and oral for each
specific toxicological assessment.

Table 3. Side effects induced by ACV.

Human System Chief Clinical Manifestations

Urinary System No urine, oliguria, low back pain, etc.
Nervous System Headache, sudden neurological abnormalities, etc.

Cardiovascular System Low blood pressure, palpitations, etc.
Digestive System Diarrhea, nausea, vomiting, etc.
Allergic Reactions Itchy skin, urticarial, anaphylactic shock, etc.

4.1. Acute and Subchronic Manifestations of Toxicity

In 1982, Tucker [40] introduced the preclinical toxicological data for ACV. An acute
toxicity test indicated that the oral median lethal dose (LD50) of ACV was greater than
10,000 mg/kg in mice and more than 20,000 mg/kg in rats, which has to do with the limited
oral absorption of the drug in rodents. The LD50 of ACV obtained by intravenous and
intraperitoneal routes in mouse and rat were also reported. Similarly, the LD50 values
were relatively high, as shown in Table 4. According to British Pharmacopeia (BP2020), the
medium lethal concentration (LC50) and LD50 of ACV are classified (Table 5). Although
there are some available datasets on acute toxicity, the classification criteria have still not
been met.

In 1983, a subchronic toxicity test for ACV was studied by Tucker [41]. After gavage
of ACV at 50, 150 and 450 mg/kg/day for a month, the CD-1 mice showed no symptoms
of toxicities. However, at the dose levels of 20, 40 and 80 mg/kg/day, rapid intravenous
injection was applied on the rats once each day for 3 weeks; doing this, obstructive kidney
disease was detected. In addition, Brigden [42] also summarized the acute toxicity of ACV
and claimed its subchronic toxicity. Intravenous administration of 20 mg/kg/day or more
can lead to obstructive crystal nephropathy in rats. Oral administration of 45 mg/kg and
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above daily, divided into three equal doses, may cause vomiting and diarrhea in dogs,
with weight loss after the first week. These manifestations greatly contribute to a better
understanding of the safe dosage when using ACV.

Table 4. Acute toxicity of ACV (“N.A”: No data applicable or available).

Mouse Rat

Male Female Male Female

LD50 by intravenous route (mg/kg) 405 N.A >600 N.A
LD50 by intraperitoneal route (mg/kg) 1454 999 1305 1210

Table 5. LD/LC50 values relevant classification (“N.A”: No data applicable or available).

LD50 LC50

Oral 20,000 mg/kg (rat) N.A

Inhalative Intraperitoneal: 860 mg/kg (rat)
Intravenous: 750 mg/kg (rat) >15.1 mg/L (rat)

4.2. Chronic Manifestations of Toxicity

A chronic toxicity test of ACV was investigated in 1983 by Tucker [43] et al. The report
showed that the dogs developed vomiting, diarrhea, ate less food, and weight loss within
two weeks when ACV was fed at 150 mg/kg/day, while dogs that were fed at the dose of
45 mg/kg/day had fewer symptoms of gastrointestinal constipation. However, during the
one-year trial, when these dose levels were subsequently reduced to 60 and 30 mg/kg/day,
the symptoms of occasional and inconsistent vomiting and diarrhea appeared in the dogs.
For the dogs treated with a mid and high dose of ACV, their paws were sore due to footpad
erosion, and they had cracked, split and loosened nails during the 13th week of the study.
Fortunately, the nails and footpads of dogs were normal at the dose of 15 mg/kg/day
given throughout the study. It is not difficult to see that the usage of ACV has a good
correlation with human health, showing that people must strictly follow the indications for
selecting the usage and dosage of the drug, including the number of times of use and the
route of administration to avoid excessive dosage and concentration.

4.3. Teratology and Reproductive Study

Many investigations have reported the applications of nucleoside analogues in human
antiviral chemotherapy, which directly affect nucleic acid metabolism. The cytotoxicity
produced has a profound effect on mammalian reproduction. In 1983, Moore et al. [44]
found the potential for ACV to adversely affect the reproduction and development in
laboratory animals. ACV was given subcutaneously to neonatal rats at the dose of levels
of 5, 20 and 80 mg/kg/day for 19 consecutive days. It turned out that the effect of
20 mg/kg/day treatment on weight gain in neonatal rats was minimal, while that of the
80 mg/kg/day treatment was significantly reduced. However, minimal renal lesions were
developed at the dose level of 80 mg/kg/day, without adverse signs of organ system
development. Indeed, the doses of ACV can produce plasma concentrations well above the
therapeutic level, thereby interfering with embryonic development in rats, and inducing
typical gross structural abnormalities [45].

A study by Klug et al. [46], aimed at exploring the prenatal toxicity of ACV in rats,
found that ACV was shown to trigger teratogenic potency in vitro in the rat. Briefly, after
eight injections of 50 mg/kg on days 9, 10 and 11, a reduction in the crown-rump length was
observed, as shown in Figure 2b. However, this effect was more obvious after 100 mg/kg
(Figure 2c). From Figure 2e, it can be clearly seen that embryonic abnormalities appeared,
including an abnormal head shape and the width of the skull being decreased, resembling
a beak-like visceral cranium, with this dose applied three times on day 10. When a single
dose of 200 mg/kg was administered on day 10, the result shown in Figure 2d was similar
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to that shown in Figure 2e, but slightly more pronounced. To make matters worse, all the
variables obtained changed dramatically after eight injections of 100 mg/kg on days 9, 10,
and 11 (Figure 2f).
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Unfortunately, the carcinogenic and mutagenic effects caused by ACV are still unclear,
which requires that many researchers put in lot of effort, employing further advances in
technology, to investigate.

4.4. Nephrotoxicity and Neurotoxicity

ACV is well tolerated in general, but in 1979, Selby et al. [47] firstly noticed impaired
transient renal function after ACV administration. Subsequently, extensive studies were
conducted on ACV, studying its nephrotoxicity and neurotoxicity [39,48–53]. ACV is
mainly excreted through urine, after metabolism. Unfortunately, after rapid or excessive
intravenous infusion, ACV becomes crystallized and forms precipitation in the renal
tubules due to its low water solubility, which blocks the tubules, thus causing acute renal
failure [49]. A recent study reported that the incidence of nephrotoxicity caused by ACV
was 18–21% [54]. The renal function could be partially restored after ACV discontinuation.
Bridgen et al. [55] actually found that fewer cases of renal impairment were developed
after shifting from bolus to slow intravenous infusion over 1 h. Moreover, a case report
from Meng et al. [52] found that acute renal failure was induced in a patient treated with
facial neuritis by oral ACV for 8 days. Nevertheless, after the withdrawal of ACV, the renal
function of the patient recovered completely, with continuing renal replacement therapy
for 54 h, and supplemented by symptomatic treatment. ACV-induced acute renal failure
has various manifestations, but the prognosis is still promising after active treatment.
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In addition, side effects, such as drowsiness, insomnia, insanity, convulsions, halluci-
nations, tremors, mental disorders and coma, could develop, especially when the drug is
administered intravenously or with susceptible factors (such as renal insufficiency). Ac-
cording to a recent report by Sadjadi [53], an 83-year-old African–American man received
an intravenous dose of ACV, recommended by the manufacturer because of his shingles,
a complication of end-stage kidney disease (ESRD) and chronic peritoneal dialysis (PD).
Soon after taking it, he developed confusion, disorientation and visual hallucinations.
Fortunately, after switching the treatment from PD to hemodialysis (HD), he restored.

5. Analytical Methods for Detection of ACV

Because of the excessive usage and large dosage of ACV, many other side effects and
certain toxicity hazards will occur in animals. There are many analytical methods that can
effectively quantify and detect ACV in commercial pharmaceutical formulations, human
urine and serum. The application of existing analytical methods for the determination of
ACV are vigorously discussed in the following.

5.1. Spectrophotometry

Spectrophotometry is a method for qualitative and quantitative analysis of a substance
and continues to be the preferred means for routine analytical work. In fact, many colorless
substances that do not absorb visible light can be changed into colored substances by
chromogenic reactions so that they can be found by spectrophotometry, improving the
sensitivity and selectivity of determination. Various kinds of chromogenic reactions exist,
including complexation reaction, redox reaction, condensation reaction, etc. Therefore,
there is no doubt that it is perfectly valid for applications to apply spectrophotometry in
the assay of ACV.

According to the research by Sultan [56], ACV was found to experience an oxidative
coupling reaction with 3-methylbenzothiazolin-2-one hydrazone (MBTH) in the presence
of HCl and an the Fe(III) oxidant, obtaining a deep-green colored product. It is a very
simple, clever and reliable spectrophotometric method for detecting ACV in pharmaceutical
formulations with a limit of detection (LOD) of 1.06 µg/mL, and an analysis wavelength
of 616 nm. Along with this, ACV can react with some other substances to produce new
molecules, which can be tested by spectrophotometry. Ajima et al. [57] reported that the
primary amino group of ACV was able to undergo condensation and a coupling reaction
with ninhydrin–ascorbic acid in a citric acid buffer (pH 5), which created a purple-colored
chromophore (Ruhemann’s purple) (Figure 3). At the maximum absorption wavelength
of 540 nm, the concentration of ACV had a good linear relationship with the degree of
color development, establishing a photometric method for the determination of ACV.
After optimizing reaction conditions and interference tests, the method, which had high
sensitivity (LOD: 0.3 µg/mL) and good selectivity, was suitable for application in the
quality control of ACV in hospitals and laboratories. In addition to measuring ACV
directly, indirect methods have caught many researchers’ attention. Kumar [58] developed
an indirect method for ACV determination by spectrophotometry. In brief, excessive
N-bromosuccinimide (NBS) was added to the acidic medium to oxidize ACV, and the
subsequent residual amount of NBS was used to bleach the colors of a fixed amount of
methyl orange. ACV was measured indirectly by the absorbance of methyl orange at
508 nm (LOD: 0.2 µg/mL). This method makes use of the relationship between ACV,
NBS and methyl orange, which is a potential spectrophotometric method for ACV. In
addition, the relevant literature on the detection of ACV by spectrophotometry [59–61] is
summarized, and the main parameters are shown in Table 6.
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Table 6. Various spectrophotometry methods for the detection of ACV.

Methods Operating Wave
Length(nm)

Linear Range
(µg/mL)

LOD
(µg/mL) Samples Recovery% References

UV/Vis 616 20–200 1.06 dosage forms of ACV 98.6–99.7 [56]
UV/Vis 540 <30 0.2 dosage forms of ACV 96.9–102.0 [57]

UV/Vis 508 1–5, 5–10 0.3 ACV and valacyclovir in
commercial tablet

99.26 ± 0.52,
99.47 ± 0.96 [58]

a DS 295.2 1.25–40.0 0.08
b ACV present in

PACA nanoparticles
99.3–101.2 [59]

UV/Vis 404 1.81–9.06 0.024 ACV in bulk and dosage forms 97.0–100.0 [60]

UV/Vis 252 1600–2400 0.030 ACV in bulk and pharmaceutical
Dosage form 99.72 [61]

a Derivative spectrophotometry; b Poly (n-butylcyanoacrylate).

5.2. High Performance Liquid Chromatography (HPLC)

High performance liquid chromatography (HPLC), a chromatographic analysis method
using liquid as the mobile phase, is one of the chromatography based techniques use to
analyze ACV, generally, involving different detectors. Typically, ultraviolet-visible (UV-
VIS) [62–64], fluorescence [65,66], photodiode array (PDA) [67] and diode-array detector
(DAD) [68] are coupled with it. Octadecyl (C18) and monomer octyl (C8) stationary phase
as the stationary phase are commonly used for efficient packing for reversed phase sepa-
rations (Figure 4). At present, many pharmacopoeias, including Chinese Pharmacopoeia
(CHP2015), United States Pharmacopeia (USP42), British Pharmacopeia (BP2020) European
Pharmacopoeia (EP10), Japanese Pharmacopoeia (JP17), and South Korean Pharmacopoeia
(KP 10), prescribe HPLC for the determination of ACV because this method is simple, fast
and accurate.

Yet, the biggest challenge in determining ACV by HPLC is that the measured peaks are
easily towed, and the retention time is relatively long. Therefore, the researchers studied
effective detection conditions for assaying ACV in various environments. Silva et al. [69]
validated and proposed that HPLC-UV be applied to detect ACV in vitreous humor with
0.02 mol/L acetic acid/methanol (95:5) as the mobile phase. Determination was carried
out in a C18 column at 25 ◦C and UV detection at 254 nm. The recovery under those
conditions was found to be in the range of 98.18–99.64%; the limit of quantitation (LOQ)
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was 0.16 µg/mL; and LOD was 0.048 µg/mL. The ACV attained a favorable and relatively
short retention time and a symmetric chromatographic peak. It is also difficult for HPLC
to effectively separate interferences in complex environments. Zendelovska et al. [70]
employed a UV detection set at 255 nm on a reversed phase C8 column with 0.1% (v/v)
triethylamine in water (pH 2.5) as mobile phase, to achieve the detection of ACV in
plasma samples. Protein precipitation with 20% (v/v) perchloric acid was involved in the
sample preparation, with a good separation of the ACV peak from peaks of endogenous
interference compounds. This method was successfully adapted for use in the analysis of
pharmacokinetic profiles of ACV tablets. The relevant literature on the detection of ACV
by HPLC [71,72] was summarized, and the main parameters are shown in Table 7.
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Table 7. Various HPLC methods for the detection of ACV (“N.A”: No data applicable or available).

Methods Operating
Wavelength (nm)

Linear Range
(µg/mL)

LOD
(µg/mL) Samples Recovery% References

HPLC-VIS 254 0.02–4 0.01 plasma samples 94.4–104.3 [62]
HPLC-VIS 254 0.010–2.560 0.01 ACV in human serum 90 ± 8% [63]

HPLC-VIS 254 0.25–100 2.5 Plasma and amniotic
fluid samples >80% [64]

HPLC-FLD 260 100–20,000 33 Plasma from pediatric
oncology patients 101% [65]

HPLC-FLD,
LC-HESI-MS/MS N.A 0.1–1.5 0.05, 0.002 equine plasma and

body fluids
98.8–99.3,
95.4–99.9 [66]

HPLC-PDA 350 50–500 N.A ACV (ACV Hospira®) N.A [67]
HPLC-DAD N.A 100–1000 20 ACV raw material 99.2–101.6 [68]
HPLC-UV 254 35–70 0.048 ACV in the vitreous humor 98.18–99.64 [69]
HPLC-UV 255 0.1–5.0 N.A ACV in plasma samples 91.37–98.98 [70]

HPLC-UV 254 0.001–5 0.0I a pharmacokinetic linearity
study in dogs. 88.2–92.9 [71]

a YMC-Triart C18 252.0 8–12 0.27 Aciclovir Cream 99. 6–100.6 [72]
a A reverse phase chromatographic.

5.3. Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS)

Liquid chromatography/tandem mass spectrometry (LC-MS/MS) is a chromato-
graphic technique, which combines the advantages of the high separation performance
of liquid chromatography and the high sensitivity and specificity of mass spectrometry.
Similarly, its principles require certain types of mobile phase and other conditions to
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perform [73]. However, the difference is that the mass spectrometers are employed to
overcome spectral interventions of PDA/UV-Vis detectors. Due to the sensitivity and
specificity/selectivity of the technique, LC-MS/MS is usually chosen as a detector for
highly accurate measurement. In terms of tandem mass spectrometry, quadrupole tan-
dem mass spectrometry is predominantly used at present. It can perform MS1 and MS2
operations (in space). Kanneti et al. [74] produced an analysis method to simultaneously
evaluate the quantification of ACV and valacyclovir with a mobile phase of 0.1% formic
acid: methanol (30:70% v/v) by LC-MS/MS. The application in human plasma was vali-
dated successfully in the wide measurement range of 47–10,255 ng/mL for ACV, with a
low LOQ (47.6 ng/mL). What is more, a new simple method with good sensitivity and
accuracy by LC-MS/MS was applied in the determination of ACV and valacyclovir-HCl
in tsetse flies from Sasanya et al. [75]. MgSO4 as well as MSPDC18 material were used as
the solid phase, and the isocratic mobile phase consisted of methanol:acetonitrile:water
(60:30:10, v/v/v) plus formic acid (0.1%). The overall accuracy of the method was 95% for
ACV with the range of calibration of 0.45–4.5 µg/g. The LOQ for ACV was found to be
10.2 µg/g, and the recovery was found to be above 80%.

Unfortunately, those methods with quadrupole MS instruments suffered from high
background signals since the endogenous peaks were eluted during the chromatographic
separation. As technology progresses, LC-MS/MS are modified and improved. High-
resolution mass spectrometry (HRMS) can not only accurately measure the mass of ions,
but also determine their elemental (and isotopic) composition accurately. Ultra-high-
performance liquid chromatography-high resolution tandem mass spectrometry (UHPLC-
HR MS/MS) was used for introduced into the determination of ACV in human dermal
interstitial fluid and serum form, as reported by Schimek et al. [76]. They indicated that the
concentration range was from 0.1 ng/mL to 25 ng/mL with a sample volume of only 20 µL
and validated the successful application with short-term and long-term sample stability
data and the analysis of 5000 clinical trial samples. Furthermore, as the second mass
analyzer, time of flight mass spectrometry (TOF) has become an important development
direction, due to its high resolution, wide mass range, fast scanning and high sensitivity.
Ultra performance liquid chromatography (UPLC) has the advantages of high analytical
throughput, high sensitivity and large peak capacity by utilizing the theory and principles
of HPLC and new technologies, such as rapid detection methods. Liquid chromatography-
time of flight mass spectrometry (UPLC-TOF-MS) has also been used in the analysis of the
degradation products of ACV and lidocaine in the samples [77]. The main parameters are
shown in Table 8.

Table 8. Various LC-MS/MS methods for the detection of ACV.

Methods Linear Range
(µg/mL)

LOD
(µg/mL) Samples Recovery% References

a UPLC-MS 50–500 50 9-carboxymethoxymethylguanosine in
human serum 92.2–114.2 [70]

HPLC-FLD,
LC-HESI-MS/MS 0.1–1.5 0.05, 0.002 equine plasma and body fluids 98.8–99.3,

95.4–99.9 [63]

LC-MS-MS 0.047–10.255,
0.005–1.075 0.047, 0.005 ACV and valacyclovir in human plasma. 96.0–106.3,

99.2–105.5 [71]
b HPLC- MS, 0.45–4.5 0.0625, 0.2 valacyclovir-HCl and ACV in tsetse flies 92%, 95% [72]
c UHPLC-HR

MS/MS 0.0001–0.025 0.00001 ACV in dermal samples 82 ± 5% [73]

d UPLC-TOF-MS 5–500, 10–200 5, 10 ACV and lidocaine in
topical formulations

92.8 ± 0.7, 91.3 ±
3.2 [74]

a Ultra-high-performance liquid chromatography coupled with mass spectrometry method; b Liquid chromatography combined with
heated electrospray ionization tandem mass spectrometry; c Ultra-high-performance liquid chromatography-high-resolution tandem mass
spectrometry method; d Ultra performance liquid chromatography-time of flight mass spectrometry.

5.4. Electrochemical Analysis Technology

In recent years, the application of electrochemical analysis technology in pharmaceu-
tical analysis has become much more widespread. It involves drug quality control, drug
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metabolism research, toxic substances detection and many other fields. It is inseparable
from the advent and development of a large number of novel electrochemical sensors.
Compared with the traditional analytical methods, the electrochemical analysis method
has the advantages of simple operation, high sensitivity, low detection limit, quick response
and easy in situ online detection. Various functional materials can be used as modifiers,
such as graphene [78,79], nanometal particles [80], and nano-metaloxides [81–84], which
can be introduced into electrochemical sensors. The comprehensive performance of the
sensor can be further improved by amplifying the electrochemical signal and specifying
the interaction between the functional material and the target molecule. ACV, with elec-
trochemical activity, can produce a redox reaction whose mechanism on the electrode is
validated by several studies [80,85,86], under the action of a certain electric field. Therefore,
the quantitative relationship between analyte concentration and physical parameters can
be established to detect ACV.

Shahrokhian et al. [87] prepared organic conjugated polymer polypyrrole (PPy) on
the surface of MWCNT by electrochemical polymerization. PPY was coated on the surface
of MWCNT with a porous film structure, which could enrich better ACV molecules. ACV
tends to experience an irreversible oxidation reaction, involving two electrons and two
protons on the electrode surface, producing 8-oxoacyclovir. Under the optimal experi-
mental conditions, ACV has high redox activity such that we can quantitatively detect
and rapidly evaluate ACV in tablets, injection and human plasma. In parallel, there are
various modified materials and different kinds of electrodes that are employed. Recently,
Shetti et al. [6] used composites that consisted of γ-Fe2O3 nanoparticles and bentonite clay
particles to modify a bare carbon paste electrode (CPE) to prepare the γ-Fe2O3-Bent/CPE
for ACV determination (Figure 5). They calculated the effective surface area of naked CPE
and composite electrode, by using the Randles–Sevcik equation. The results showed that
the effective surface area of the composite electrode was significantly larger than that of
the naked CPE. Due to the large sensing area and excellent electrical conductivity, γ-Fe2O3-
Bent produced a greater current intensity on the CPE surface during detection, resulting
in a sensitive detection of ACV with an extremely low LOQ of 5.1 nM. In addition, other
sensors, such as a pencil graphite electrode (PGE) [88], a glassy carbon electrode (GCE)
electropolymerizated Eriochrome black T(PEBT) [89], a GCE modified with single-walled
carbon nanotubes and nafion composite film (SWNT/Naf/GCE) [90], and so on, were also
prepared for ACV assay; the major parameters are presented in Table 9.

Table 9. Various electrochemical sensors for the detection of ACV (“N.A”: No data applicable or available).

Electrochemical Sensors Technique Linear Range (µM) LOD (µM) Samples Recovery% References

Copper nanoparticle/CPE Amperometry 27–521 2.64 Tablets 96.5–106 [80]

Fullerene-C60/GCE g DPV 0.090–6.0 0.0148 Urine;
Human serum 98.12–99.43 [85]

a MBZ/TMHPP
Cu(II)/GE

h SWV 0.01–1000 0.01 Tablets; Urine 100–102 [86]

PGE DPV 1–100 0.30 Tablets N.A [88]

PEBT/GCE DPV 0.03–1.5 0.012 Tablets;
Human serum 98-102 [89]

SWNT/Naf/GCE SWV 0.01–30 0.0018 Tablets 96.0–102.7 [90]
b MWNTs-DHP/GCE LSV 0.080–10 0.030 Tablets 102–105 [91]

c UTGE;GCE DPV 4–70; 2.0–100 1.0; 0.35 Human urine 104; 99 [92]
d PVP/CPE DPV 0.01–0.75 0.0025 Injection; Tablets N.A [93]
e ZnO/GCE SWV 1–20 0.0423 Tablets; Urine 91.3–97.5 [94]

f PS:β-CD IC/Y2O3/GCE DPV 0.01–118; 148–918 0.02 Urine; Tablets 88–99.3 [95]
a A gold electrode (GE) modified with a self-assembled monolayer of 2-mercaptobenzothiazol (MBZ) and [5,10,15,20] tetrakis(3-methoxy-4-
hydroxyphenyl)porphyrinato]-copper(II)(TMHPP Cu(II)); b A multi-wall carbon nanotubes (MWNTs)-dihexadecyl hydrogen phosphate
(DHP) film-coated GCE; c Ultra-trace graphite electrode; d Polyvinylpyrrolidone (PVP) modified CPE; e ZnO nanoparticles modified GCE;
f Polystyrene:β-cyclodextrin inclusion complex-supported yttrium oxide (Y2O3)-modified GCE; g Differential pulse voltammetry; h Square
wave voltammetry; Linear sweep voltammetry.
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5.5. Molecularly Imprinted Polymers (MIPs)

Molecular imprinting is a prospective technology to synthesize molecularly imprinted
polymers (MIPs) that have specific cavities matched with the target molecule. At present,
with the advantages of low cost, simple preparation, being more environmentally friendly,
specificity, affinity, high selectivity and having high stability for the target analyte, MIPs
are widely used in chemical sensors, solid-phase extraction, artificial antibodies and other
fields [96]. Typically, an unbalanced structure of MIPs will occur when local temperature
changes during exothermic polymerization, which can further cause the final polymer
morphology to be uneven on the length scale. Resourcefully, Wu et al. [97] engineered a
novel approach to assemble homogeneous MIPs by mimicking multiple hydrogen bonds
between nucleotide bases and grafting on silica supports with ACV as a template molecule,
which obtained the balanced structure of MIPs. Briefly, the silica microsphere surface was
activated to vinylated silica microspheres via the process shown in Figure 6A. Subsequently,
the vinylated silica microspheres were subject to polymerization with ACV and allyl-
cytosine under the initiator of 2, 2′-azobisisobutyronitrile (AIBN). After cleaning the solid
polymers and eluting the ACV from inside, molecularly imprinted microspheres (MIMs)
were finally prepared (Figure 6B). MIMs, as a specific solid phase extraction coupling with
HPLC, were successfully applied in capturing and detecting ACV from serum samples.
The LOD and mean recovery were 1.8 ng/mL and 95.6%, respectively.
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In addition to the above construction methods, using MAA as the functional monomer,
EGDMA as the crosslinking agent and AIBN as the initiator is a typical method to construct
a molecular imprint. A study by Yan et al. [98] suggested that miniaturized molecularly
imprinted solid-phase extraction (mini-MISPE) coupled with HPLC can be applied to the
assay of ACV in urine. Hybrid molecularly imprinted polymers (HMIPs) were synthe-
sized by polymerizing new hybrid monomers (3-aminopropyltriethoxysilane-methacrylic
acid, APTES-MAA), theophyllines (as dummy templates), ethylene glycol dimethacrylate
(EGDMA, as a cross-linking agent) and tetraethoxysilane (TEOS) under the initiator of
AIBN. Finally, the HMIPs were filled into a milliliter tapered plastic centrifuge tube for
solid-phase extraction. Then, a selective screening of ACV was carried out by HPLC.
The results indicated a good linear calibration (R2 = 0.9994) and an acceptable range of
mean recovery (91.6–103%) for ACV. Alongside, Han et al. [99] prepared the molecularly
imprinted matrix solid-phase dispersion (MI-MSPD) by using templates of theophyllines,
functional monomers of MAA, a cross-linking agent of EGDMA and an initiator of AIBN.
A simple, rapid and selective method, which applied MI-MSPD coupled with HPLC
(MI-MSPD-HPLC), was proposed for analyzing ACV in creatural tissues.

5.6. Flow Injection–Chemiluminescence (FI-CL)

Flow injection–chemiluminescence (FI-CL) is a powerful and effective analysis tech-
nique, combining chemiluminescence (LC) analysis with a flow injection technique [100].
The schematic diagram of FI-CL is shown in Figure 7. Because of its advantages of high
sensitivity, wide linear range, simple instruments and convenient operation, it is widely
used in environmental monitoring, drug analysis, food analysis and so forth [101].

Using alkaline as medium, ACV can significantly inhibit Ni (IV) complexes-luminol
LC systems, and there is a linear relationship between the inhibition extent and the con-
centration of ACV within a certain range. Hereby, Li et al. [102] established a Ni (IV)
complexes–luminol LC system for the detection of ACV by FI-CL. As Figure 8 shows, the
Ni (IV) complexes can react with luminol to produce a luminescent intermediate of luminol.
But Ni (IV) complexes could not react with ACV. However, the luminescent intermediates
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transfer part of the free radicals to ACV, thereby reducing the free radicals of luminol,
then reducing the amount of laminator. Finally, the luminous intensity of the system is
reduced. Therefore, luminol solution and Ni (IV) complexes were used as the reagent-I
and reagent-II, respectively. Driven by the borax buffer solution (carrier), the injected ACV
met and reacted with the intermediate. The results showed that there was a good linear
relationship with CL intensity in the range of 50–1200 µg/L. It was found that the LOD
was 0.03 mg/L, with a satisfactory stability.
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Additionally, ACV at low concentration might enhance the CL of the luminol–H2O2
system in an alkaline medium. It could be directly proportional to the CL intensity of
the luminol–H2O2 system, which allows the determination of ACV in the linear range
0.09–3 µmol/L. The method showed a low LOD for ACV (77.1 nmol/L), as well as a low
relative standard deviation (RSD) of 0.43% (11 times in parallel at the concentration of
1.00 µmol/L). It was successfully applied to the determination of ACV.

Elsewhere, Long and Chen [103] found that ACV could react with potassium per-
manganate to generate CL in the presence of formaldehyde in acidic solution. Based on
that, they created a new method for determination of ACV by FI-CL, which showed high
selectivity, wide linearity (0.2–80 mg/L) and low LOD (0.06 mg/L).

6. Current Research and Future Challenges of ACV
6.1. Current Research

ACV has problems, such as low bioavailability and development of virus resistance.
How to improve the effective access to the target site and the antiviral ability of ACV is the
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focus of current research. Many researchers have tried a major strategy of water-triggered
labile ACV precursors to achieve such an aim. Zhou et al. [104] used acid anhydride
acylation to synthesize three ACV precursor drugs, including acetate (ACV-Ace), butyrate
(ACV-But) and hexanoate (ACV-Hex), to prepare a supersaturated system of lipophilic
ACV precursor drug, which increased the skin bioavailability of ACV. Ljiljana et al. [105]
prepared six self-dispersion systems (SD1-SD6), whereby ACV was packed into a semi-solid
formulation consisting of medium chain triglycerides. Semisolid self-microemulsifying
drug delivery systems (SMEDDSs) were developed as carriers for rigid hydroxypropyl-
methylcellulose (HPMC) for oral ACV.

Meanwhile, many analogues of ACV nucleosides were synthesized and corresponding
formulations were fabricated. For examples, valacyclovir [106], ganciclovir [107], and val-
ganciclovir [108] are now available as anti-herpesviral drugs. Sahu et al. [109] synthesized
a series of acyclic selenopurine nucleosides based on the principle of biological substitution
between oxygen and selenium, and among the compounds tested, selenium–acyclovir
exhibited the strongest antiherpes simplex virus ability and activity. Komazin et al. [110] in-
vestigated the involvement of HHV-6 U69 protein kinase in their mechanism of action. The
phosphorylation of the dihydroxymethyl analogue cyclopropavir and monohydroxymethyl
nucleosides with either a 6-ether moiety (MBX 2168) or a 6-thioether moiety (MBX 1616)
with purified U69 was examined. All three compounds were substrates of this viral kinase.
These studies provide more new types of structures for the development of ACV-like an-
tiviral drugs that can more effectively address the shortcomings of ACV, while improving
antiviral capabilities and bringing a more open perspective for disease treatment.

6.2. Future Challenges of ACV

Because of the complexity of diseases and the diversity of drug properties, many
researchers are contributing to the development of various ACV delivery systems to meet
different needs. Oral instant tablets, which can be taken without water, are of great conve-
nience to patients [111]. The side effects caused by ACV should also be avoided, which
are related to the dosage and the speed of administration. Therefore, the development of
long-term sustained-release injection, with slow release for one month or three months
at a time, can not only overcome the pain of daily injection, but also reduce the toxic and
side effects by maintaining a stable blood concentration. Furthermore, ACV has a special
affinity for viruses, but is less toxic to mammalian host cells [112]. Although carcinogenesis
was reported in vitro, no evidence of carcinogenesis was found in animal experiments.
Some animal studies have shown that high concentrations of the drug can cause mutations,
though there is no evidence of chromosomal changes. The carcinogenic and mutagenic
effects of ACV are unclear. Furthermore, great efforts are being made to reduce, refine, and
replace the use of animal models in various fields of biomedical research.

Given this challenge, organ-on-a-chip, which are not simulators using silicon elec-
tronic chips to simulate human organs, but biochips containing real, living human cells,
are widely expected to be used in future drug toxicology and drug discovery [113–115].
Lee and Sung’s [116] recent research aimed at investigating drug toxicology and effects by
reconstructing physiological microenvironments in vitro. As a recent example, a bioanalyt-
ical platform was developed by microfluidic culture of human hepatocytes, coupled with
NMR spectroscopy to monitor the metabolic responses of hepatocytes to flutamide (an
anticancer drug) and hydroxyflutamide (flutamide’s active metabolite), both of which are
hepatotoxic [117]. By quantitative analysis and plotting of metabolism and mitochondrial
activity, the metabolic characteristics of toxic drug reactions in the model were validated.
Moreover, the metabolic pathways involved in the induction of hepatotoxicity were delin-
eated, between those due to flutamide and hydroxyflutamide. The organ-on-chip approach
was employed in this study; it is conducive to the reduction of biological noise inherent to
the in vivo metabolomics model and reveals a potential source of hepatotoxicity-specific
biomarkers. Organ-on-chip is an amazing technology being utilized not only to evaluate
human-related drug reactions with expected toxicity at different levels of biological com-
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plexity, such as subcellular, cellular, tissue, and organ levels, but also to assess unexpected
off-target toxicity [118]. Promisingly, the unknown role of ACV in the human body could
be explored with the help of organ-on-a-chip technology in the future, due to its promising
prospects. A new understanding of ACV may be proposed soon, which can be expected to
have great research significance.

In terms of computational methods in ACV discovery, drug research and development
based on wet experiments is an expensive, time-consuming and challenging process. As
an effective virtual shortcut, computer-aided drug design helps to shorten the long process
and reduce the cost of drug design. Now, computer-aided drug design has become an indis-
pensable tool in drug research and development [109–120]. More importantly, increasing
the knowledge of diverse chemical structures, as well as the boosting of computer power,
makes it possible to discover new clues for treatment using many available pharmaceutical
drugs approved by the FDA that have reached the market. Computation-based drug dis-
covery methods can be roughly classified into structure-based drug design, ligand-based
drug discovery, network-based drug repositioning, and machine learning–based drug
repositioning [121].

Structure-based drug design methods assume that the 3D structures of a drug target
are known and design a computation method to find new treatment clues of drugs based
on the target structure. Structure-based drug discovery methods contain molecular docking
algorithms and de novo ligand (such as antagonists, inhibitors of a target) exploitation.
Popular structure-based prediction tools include homology modeling tools (such as Swiss
model [122], Phyre2 [123], and RaptorX [124]), fold recognition tools (such as MUSTER [125]
and I-TASSER [126]), and de novo modeling tools (such as QUARK [127] and EVfold [128]).
Ligand-based drug discovery methods consider the conditions where drug target struc-
tures are unknown and thus, design multiple drug discovery models, based on ligand
structures. These methods contain pharmacophore modeling approaches [129], molecu-
lar similarity approaches [130] and quantitative structure–activity relationship modeling
approaches [131]. Network-based drug discovery methods use network propagation al-
gorithms and diverse biological networks, including a drug–target interaction network,
drug–disease interaction network and drug–drug interaction to reposition existing FDA-
approved drugs and find their new treatment potential. Machine learning–based drug
repositioning obtains feature vectors of FDA-approved drugs based on drug biological
information and develops effective classifiers to reposition the available drugs.

The above four types of drug discovery methods can be effectively applied to boost the
drug discovery process; they are widely used by pharmaceutical companies and academia.
Now, the methods are one valuable part of the drug discovery pipeline and demonstrate
great promise. Therefore, we can fully utilize the four types of methods to find related
therapeutic clues for ACV. However, structure-based methods require that the structures
of receptors are known when finding target candidates of ACV. Therefore, the combined
ACV methods integrating structure-based and ligand-based methods can amplify their
advantages and improve this identification.

Network-based drug discovery methods [132,133] use drug similarity in the biological
networks, the similarity of other biological entities, and network algorithms. Therefore, we
can find new uses of ACV, based on network-based drug discovery methods. However,
network-based methods could not be applied to drug function prediction for orphan drugs.
Thus, the type of method may be unavailable when there is no information associated
with ACV.

Machine learning–based drug discovery methods [134–136] effectively take advan-
tage of the optimal performance of machine learning and obtain better drug prediction
performance. This type of method selects the biological features of drugs and other asso-
ciated entities from the existing databases and develops a classification model to classify
drug–target interactions, drug–disease interactions, and drug–drug interactions. We can
find possible targets, diseases, and other drugs interacting with ACV based on machine
learning models. Generally, machine learning–based methods, especially deep learning



Molecules 2021, 26, 6566 21 of 26

models, can obtain the best prediction performance for finding new biological functions
of ACV.

7. Conclusions

ACV is one of the most common and broad-spectrum antiviral drugs. It is widely and
extensively used against herpes simplex virus (HSV), herpes simplex, and varicella-zoster
virus. This article reviews the synthesis, modification, and detection methods of ACV.
Although synthetic methods of ACV are relatively mature for now, with the development
of drug analysis theory and application technology, new methods have emerged. At
present, there are a variety of methods for determining ACV, such as spectrophotometry,
chromatography, and MIPs. In recent years, electrochemical analysis methods based on
modified working electrodes have attracted widespread attention in the field of pharma-
ceutical analysis, due to their simple operation, rapid response, and high sensitivity as well
as selectivity, low cost and good reproducibility. Finally, in response to the future challenge
of reducing, refining and replacing the use of animal models, it is concluded that machine
learning approaches, especially deep learning models, have made significant contribution
to the efforts to find new biological functions of ACV.
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105. Ljiljana, D.; Jovana, J.; Bojan, Č.; Marija, P. Development of semisolid self-microemulsifying drug delivery systems (SMEDDSs)

filled in hard capsules for oral delivery of acyclovir. J. Pharm. 2017, 528, 372–380. [CrossRef]
106. Sun, L.; Wang, C.; Zhang, Y. A physiologically based pharmacokinetic model for valacyclovir established based on absolute

expression quantity of hPEPT1 and its application. Eur. J. Pharm. Sci. 2018, 123, 560–568. [CrossRef] [PubMed]
107. Chou, S.; Matthew, W.; Rohita, S.; Steven, K. Ganciclovir and maribavir susceptibility phenotypes of cytomegalovirus UL97 ATP

binding region mutations detected by expanded genotypic testing. Antivir. Res. 2021, 193, 105139. [CrossRef]
108. Ho, L.; Heeryong, L.; Seoung, W.L.; Seun, D.H.; Joon, H. Efficacy and Safety According to the Dose of Valganciclovir for

Cytomegalovirus Prophylaxis in Transplantation: Network Meta-analysis Using Recent Data. Transplant. Proc. 2021, 53, 6,
1945–1950. [CrossRef]

109. Sahu, P.K.; Umme, T.; Yu, J.; Kim, G.; Qu, S.; Naik, S.D.; Jeong, L.S. Structure-Activity Relationships of Acyclic Selenopurine
Nucleosides as Antiviral Agents. Molecules 2017, 22, 1167. [CrossRef] [PubMed]

110. Komazin-Meredith, G.; Cardinale, S.C.; Williams, J.; Peet, N.P.; Prichard, M.N.; Bowlin, T.L. Human Herpesvirus 6 U69 Kinase
Phosphorylates the Methylenecyclopropane Nucleosides Cyclopropavir, MBX 2168, and MBX 1616 to Their Monophosphates.
Antimicrob. Agents Chemother. 2013, 57, 5760–5762. [CrossRef]

111. Yang, X.; He, Y.; Wu, Z.; Feng, B.; Gao, Y. Desloratadine Citrate Disodium Freeze-Dried Oral Instant Tablets and Preparing
Method Thereof. China Patent 112094230A, 18 December 2020.

112. Bryan-Marrugo, O.; Ramos-Jiménez, J.; Barrera-Saldaña, H.; Rojas-Martínez, A.; Vidaltamayo, R.; Rivas-Estilla, A. History and
progress of antiviral drugs: From acyclovir to direct-acting antiviral agents (DAAs) for Hepatitis. C. Med. Univ. 2015, 17, 165–174.
[CrossRef]

http://doi.org/10.1016/j.msec.2016.02.079
http://doi.org/10.1016/j.msec.2016.01.030
http://www.ncbi.nlm.nih.gov/pubmed/26838917
http://doi.org/10.1016/j.jpba.2017.12.006
http://www.ncbi.nlm.nih.gov/pubmed/29291454
http://doi.org/10.1016/j.aca.2005.12.023
http://www.ncbi.nlm.nih.gov/pubmed/17723608
http://doi.org/10.5072/ZENODO.30114
http://doi.org/10.1016/j.molliq.2012.11.009
http://doi.org/10.1016/j.matpr.2019.07.086
http://doi.org/10.1021/acs.jpcc.9b00465
http://doi.org/10.1016/j.bioelechem.2019.107393
http://www.ncbi.nlm.nih.gov/pubmed/31698180
http://doi.org/10.1016/j.chroma.2013.02.039
http://doi.org/10.1016/j.chroma.2014.04.045
http://doi.org/10.1039/c3ay40170g
http://doi.org/10.1002/bio.3724
http://www.ncbi.nlm.nih.gov/pubmed/31736184
http://doi.org/10.3177/jnsv.66.10
http://www.ncbi.nlm.nih.gov/pubmed/32115448
http://doi.org/10.13595/j.cnki.issn1000-0720.2016.0225
http://doi.org/10.1002/bio.1378
http://doi.org/10.6039/j.issn.1001-0408.2021.16.10
http://doi.org/10.1016/j.ijpharm.2017.06.028
http://doi.org/10.1016/j.ejps.2018.07.057
http://www.ncbi.nlm.nih.gov/pubmed/30081070
http://doi.org/10.1016/j.antiviral.2021.105139
http://doi.org/10.1016/j.transproceed.2021.05.006
http://doi.org/10.3390/molecules22071167
http://www.ncbi.nlm.nih.gov/pubmed/28704950
http://doi.org/10.1128/AAC.00978-13
http://doi.org/10.1016/j.rmu.2015.05.003


Molecules 2021, 26, 6566 26 of 26

113. Prestwich, G.D.; Liu, Y.; Yu, B.; Shu, X.Z.; Scott, A. 3-D culture in synthetic extracellular matrices: New tissue models for drug
toxicology and cancer drug discovery. Adv. Enzym. Regul. 2007, 47, 196–207. [CrossRef] [PubMed]

114. Caplin, J.D.; Granados, N.G.; James, M.R.; Montazami, R.; Hashemi, N. Microfluidic Organ-on-a-Chip Technology for Advance-
ment of Drug Development and Toxicology. Adv. Heal. Mater. 2015, 4, 1426–1450. [CrossRef]

115. Skardal, A.; Shupe, T.; Atala, A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug
Discov. Today 2016, 21, 1399–1411. [CrossRef]

116. Lee, J.B.; Sung, J.H. Organ-on-a-chip technology and microfluidic whole-body models for pharmacokinetic drug toxicity screening.
Biotechnol. J. 2013, 8, 1258–1266. [CrossRef] [PubMed]

117. Choucha Snouber, L.; Bunescu, A.; Naudot, M.; Legallais, C.; Brochot, C.; Dumas, M.E.; Elena-Herrmann, B.; Leclerc, E.
Metabolomics-on-a-chip of hepatotoxicity induced by anticancer drug flutamide and Its active metabolite hydroxyflutamide
using HepG2/C3a microfluidic biochips. Toxicol. Sci. 2013, 132, 8–20. [CrossRef]

118. Esch, E.W.; Bahinski, A.; Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 2015, 14, 248–260.
[CrossRef] [PubMed]

119. Du, J.; Guo, J.; Kang, D.; Li, Z.; Wang, G.; Wu, J.; Zhang, Z.; Fang, H.; Hou, X.; Huang, Z.; et al. New techniques and strategies in
drug discovery. Chin. Chem. Lett. 2020, 31, 1695–1708. [CrossRef]

120. Zhu, H. Big data and artificial intelligence modeling for drug discovery. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 573–589.
[CrossRef]

121. Leelananda, S.P.; Lindert, S. Computational methods in drug discovery. Beilstein J. Org. Chem. 2016, 12, 2694–2718. [CrossRef]
122. Schwede, T.; Kopp, J.; Guex, N.; Peitsch, M.C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids

Res. 2003, 31, 3381–3385. [CrossRef]
123. Kelley, L.A.; Sternberg, M.J. Protein structure prediction on the Web: A case study using the Phyre server. Nat. Protoc. 2009, 4,

363–371. [CrossRef]
124. Källberg, M.; Wang, H.; Wang, S.; Peng, J.; Wang, Z.; Lu, H.; Xu, J. Template-based protein structure modeling using the RaptorX

web server. Nat. Protoc. 2012, 7, 1511–1522. [CrossRef]
125. Wu, S.; Zhang, Y. MUSTER: Improving protein sequence profile–profile alignments by using multiple sources of structure

information, Proteins: Structure. Funct. Bioinform. 2008, 72, 547–556. [CrossRef]
126. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 2008, 9, 40. [CrossRef] [PubMed]
127. Xu, D.; Zhang, Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based

force field. Proteins 2012, 80, 1715–1735. [CrossRef] [PubMed]
128. Marks, D.S.; Colwell, L.J.; Sheridan, R.; Hopf, T.A.; Pagnani, R.; Zecchina, C. Sander, Protein 3D structure computed from

evolutionary sequence variation. PLoS ONE 2011, 6, e28766. [CrossRef] [PubMed]
129. Lin, S.K. Pharmacophore Perception, Development and use in drug design. Edited by Osman, F. Güner. Molecules 2000, 5, 987–989.

[CrossRef]
130. Durán, A.; Zamora, I.; Pastor, M. Suitability of GRIND-based principal properties for the description of molecular similarity and

ligand-based virtual screening. J. Chem. Inf. Model. 2009, 49, 2129–2138. [CrossRef]
131. Verma, J.; Khedkar, V.M.; Coutinho, E.C. 3D-QSAR in drug design—A review. Curr. Top. Med. Chem. 2010, 10, 95–115. [CrossRef]
132. Fotis, C.; Antoranz, A.; Hatziavramidis, D.; Sakellaropoulos, T.; Alexopoulos, L.G. Network-based technologies for early drug

discovery. Drug Discov. Today 2018, 23, 626–635. [CrossRef]
133. Chen, Y.; Kirchmair, J. Cheminformatics in natural product-based drug discovery. Mol. Inform. 2020, 39, 2000171. [CrossRef]
134. Korkmaz, S. Deep learning-based imbalanced data classification for drug discovery. J. Chem. Inf. Model. 2020, 60, 4180–4190.

[CrossRef]
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