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Abstract: Flavonoids are important secondary plant metabolites that have been studied for a long time
for their therapeutic potential in inflammatory diseases because of their cytokine-modulatory effects.
Five flavonoid aglycones were isolated and identified from the hydrolyzed aqueous methanol extracts
of Anastatica hierochuntica L., Citrus reticulata Blanco, and Kickxia aegyptiaca (L.) Nabelek. They were
identified as taxifolin (1), pectolinarigenin (2), tangeretin (3), gardenin B (4), and hispidulin (5). These
structures were elucidated based on chromatographic and spectral analysis. In this study, molecular
docking studies were carried out for the isolated and identified compounds against SARS-CoV-2
main protease (Mpro) compared to the co-crystallized inhibitor of SARS-CoV-2 Mpro (α-ketoamide
inhibitor (KI), IC50 = 66.72 µg/mL) as a reference standard. Moreover, in vitro screening against
SARS-CoV-2 was evaluated. Compounds 2 and 3 showed the highest virus inhibition with IC50 12.4
and 2.5 µg/mL, respectively. Our findings recommend further advanced in vitro and in vivo studies
of the examined isolated flavonoids, especially pectolinarigenin (2), tangeretin (3), and gardenin B (4),
either alone or in combination with each other to identify a promising lead to target SARS-CoV-2
effectively. This is the first report of the activity of these compounds against SARS-CoV-2.

Keywords: Anastatica hierochuntica; Citrus reticulate; Kickxia aegyptiaca; flavonoid aglycones; molecular
docking; SARS-CoV-2; in vitro screening

1. Introduction

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) represents an evolv-
ing global threat worldwide; its infection is characterized by acute respiratory symptoms,
such as fever, dry cough, and shortness of breath with an incubation period of about
5 days (average 2–14 days) [1]. By 19 October 2021, 194 vaccines are in the pre-clinical
phase and 127 candidate vaccines are in clinical progress (WHO, Vaccine tracker, and land-
scape) [2]. Currently, different types of vaccines are approved for use in many countries,
such as Sanofi–GSK, BioNTech–Pfizer, Curevac, AstraZeneca (The University of Oxford),
Moderna, and Johnson & Johnson [3]. However, vaccines are a prophylactic approach
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and cannot be implemented for treatment, especially in pandemic situations [4]. Further-
more, the search for new therapeutic drugs from safe natural sources is crucial during
pandemics [2,5–13]. Several naturally existing bioactive compounds were reported to
behave as antiviral agents [14–16]. Flavonoids demonstrated antiviral and immunomodu-
latory activities against coronaviruses [17]. Therefore, the antiviral properties of flavonoids
might also be applicable in the current COVID-19 pandemic. The antiviral activity of
some flavonoids against coronaviruses (CoVs) is recognized by inhibiting 3C-like protease
(3CLpro), which is capable of blocking the enzymatic activity of SARS-CoV 3CLpro [18].

The SARS-CoV-2 main protease (Mpro) enzyme plays an important role in the synthe-
sis of viral functional proteins from its basic polypeptides [19–21]. Therefore, it seems to be
responsible for both viral transcription and replication [22,23]. Based on the given facts, it
is recommended to target the SARS-CoV-2 Mpro enzyme to obtain a fast and promising
lead to solve the COVID-19 pandemic situation as soon as possible [24–26].

One of the most important methods for drug discovery processes nowadays is compu-
tational drug design [27,28]. Molecular docking studies assist scientists greatly to discover
new drugs in a fast-track manner [29–32]. Moreover, molecular dynamic simulations
confirm the results of molecular docking, especially in absence of in vitro studies [6,20].
Previous computational studies have revealed that taxifolin could be a potential inhibitor
against the SARS-CoV-2 Mpro enzyme [33]. Moreover, tangeretin showed potential for the
treatment and prevention of COVID-19 [34], while, hispidulin showed a better binding
affinity to Mpro of SARS-CoV-2 and ACE2 receptor than hydroxychloroquine and could be
used as a therapeutic candidate against COVID-19 [35]. No studies, either computational
or in vitro, were reported for the compounds pectolinarigenin and gardenin B regarding
their effects on SARS-CoV-2. Therefore, we take the responsibility for their investigations.

As an extension to our research targeting the SARS-CoV-2 Mpro enzyme [36–39], we
examined the anti-SARS-CoV-2 activities of the five isolated flavonoids (1–5) and suggest
their mechanism of action using molecular docking as SARS-CoV-2 Mpro inhibitors in
addition to their in vitro evaluation.

2. Results and Discussion
2.1. Identification of the Isolated Compounds

The chemical investigation of three investigated plant extracts led to the isolation of
five major flavonoid aglycones (1–5). Taxifolin (1) and pectolinarigenin (2) were obtained
from A. hierochuntica and K. aegyptiaca, respectively, whereas the citrus peel extract afforded
three methoxylated flavonoid aglycones—tangeretin (3), gardenin B (4), and hispidulin (5).
Their chemical structures are shown in Figure 1.

Figure 1. The chemical structures of the isolated flavonoid compounds.
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2.2. Docking Studies

The study of the binding mode of the co-crystallized α-ketoamide inhibitor (KI)
of the isolated dimer form of the SARS-CoV-2 Mpro showed an asymmetric binding.
Moreover, the molecular docking of the α-ketoamide inhibitor (KI) was conducted in
addition to the isolated and identified flavonoids, namely taxifolin (1), pectolinarigenin (2),
tangeretin (3), gardenin B (4), and hispidulin (5) against SARS-CoV-2 Mpro. The binding
scores for the docked compounds were found to be in the following order: redocked
KI > tangeretin (3) > taxifolin (1) > gardenin B (4) > hispidulin (5) > pectolinarigenin (2). Their
binding scores were near to each other (from −6.61 to −5.74 kcal/mol) compared to that
of the docked co-crystallized α-ketoamide inhibitor (−8.17 kcal/mol), with promising
binding interactions with the pocket amino acids (Table 1).

Table 1. The binding scores and interactions of the docked KI in addition to the five examined
flavonoids (1–5) inside the SARS-CoV-2 Mpro pocket.

No. Isolated Compound S a RMSD b Interactions Distance (Å)

KI α-Ketoamide inhibitor −8.17 1.64

Glu166/H-donor
Glu166/H-acceptor

Glu166/H-donor
Gly143/pi-H

2.89
3.10
3.42
3.70

1 Taxifolin −6.50 1.58

Arg188/H-donor
Glu166/H-donor
Cys145/H-donor

His41/H-pi

2.85
3.16
3.60
3.44

2 Pectolinarigenin −5.74 1.72 Glu166/pi-H
Met165/pi-H

4.19
4.47

3 Tangeretin −6.61 1.17 Glu166/pi-H
Glu166/pi-H

4.09
4.19

4 Gardenin B −6.48 0.74 Glu166/pi-H
Glu166/pi-H

4.10
4.28

5 Hispidulin −5.85 1.14
His41/H-pi

Glu166/pi-H
His41/pi-H

3.83
3.87
4.32

a S: Score of a docked compound inside the docking site (kcal/mol). b RMSD: Root mean squared deviation
between the obtained pose compared to the native one.

Regarding the docking results depicted in Table 1, it is worth mentioning that tan-
geretin (3) showed the best binding score among all isolates (−6.61 kcal/mol) compared to
the docked co-crystallized native Mpro inhibitor (KI, −8.17 kcal/mol). Tangeretin (3) was
stabilized inside the Mpro pocket of SARS-CoV-2 through the formation of 2 pi-H bonds
with Glu166 amino acid at 4.09 and 4.19 Å. Furthermore, the docked KI formed 3 H-bonds
with Glu166 amino acid at 2.89, 3.10, and 3.42 Å. It also formed 1 pi-H bond with Gly143
amino acid at 3.70 Å (Tables 1 and 2).

It is evident that the Glu166 amino acid seems to be very crucial for SARS-CoV-2 Mpro
pocket binding and inhibition.

From Tables 1 and 2 it can be observed that the docking results of the isolated and
identified five flavonoids from the aerial parts of A. hierochuntica and K. aegyptiaca and the
citrus peel of C. reticulata fruits, namely taxifolin (1), pectolinarigenin (2), tangeretin (3),
gardenin B (4), and hispidulin (5), examined against SARS-CoV-2 Mpro and compared
to the docked KI, give us a clear promising idea towards their binding affinities, which
indicates, subsequently, their expected intrinsic activities as well their importance to combat
the SARS-CoV-2 pandemic.
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Table 2. 3D pictures showing the receptor interactions and positioning between the docked KI in
addition to the five examined flavonoids (1–5) inside the binding site of SARS-CoV-2 Mpro.

Isolated Comp. 3D Binding 3D Positioning

α-Ketoamide
Inhibitor (KI)

Taxifolin
(1)

Pectolinarigenin
(2)

Tangeretin
(3)

Gardenin B
(4)

Hispidulin
(5)

The red dash represents H-bonds and the black dash represents H-pi interactions.
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2.3. In Vitro Validation

Based on the in silico studies, pectolinarigenin, tangeretin, and gardenin B showed
the best evidence of the studied drugs to be selected for further in vitro validation against
SARS-CoV-2. Hence, the in vitro study was conducted on the five compounds and the
results were effective with pectolinarigenin, tangeretin, and gardenin B. To identify the
proper concentrations to define the antiviral activity of pectolinarigenin, tangeretin, and
gardenin B, the half-maximal cytotoxic concentration “CC50” was calculated by a crystal
violet assay (Figure 2). All compounds showed a wide range of safety within the tested
concentrations (10 ng/mL–100 mg/mL).

Figure 2. Dose-response and inhibition curves for the five isolated compounds (taxifolin (a), pectolinarigenin (b),
tangeretin (c), gardenin B (d), and hispidulin (e)) showing the half-maximal cytotoxic concentration (CC50) in Vero E6 cells
and inhibitory concentration 50% (IC50) against NRC-03-nhCoV which were calculated using the nonlinear regression
analysis of the GraphPad Prism.

The antiviral screening revealed that pectolinarigenin (2) and tangeretin (3) exhibited
a promising cytotoxic inhibitory activity against NRC-03-nhCoV with IC50 = 12.4 and
2.5 µg/mL, respectively (Figure 2b,c). Both natural compounds exerted their anti-SARS-
CoV-2 activities with high selectivity indices (CC50/IC50 > 1000). In previous reports
that mentioned the biological activities of pectolinarigenin and gardenin B; pectolinari-
genin showed potent inhibitory activities on melanogenesis [40] and exhibited powerful
in vitro anti-diabetic, hepatoprotective, and anticancer activities [41–43]. On the same line,
gardenin B, which is a methoxylated flavonoid derived from a tangeretin, showed slight
anti-SARS-CoV-2 activity (IC50 = 128 µg/mL). Interestingly, gardenin B, motioned previ-
ously for its induction of cell death in human leukemia cells, involves multiple caspases [44]
and also shows in vitro antiviral activity against the Encepehalomyocarditis virus (EMV) [45].

3. Material and Methods
3.1. Plant Material

Three plant species were collected and identified as belonging to three different
families: A. hierochuntica L. (Brassicaceae), C. reticulata Blanco (Rutaceae), and K. aegyptiaca
(Plantaginaceae). The aerial parts of the first and last species were collected from the
northern coast of El Dabaa road, in March 2019, while the fresh matured fruits of C. reticulata
were obtained from the traditional market, Giza, Egypt.
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3.2. Extraction, Isolation and Structure Elucidation

The aerial parts of A. hierochuntica and K. aegyptiaca as well as the peel of C. reticulata
fruits were air-dried and ground. Each obtained powder was extracted with MeOH:H2O
(7:3) 3 times at room temperature. All extract were evaporated under reduced pressure
and temperature to obtain residues. Each residue was subjected to an acid hydrolysis
process (2N HCl, 100 ◦C, 2 h) [46]. The acidic solutions were extracted with ethyl acetate
several times, affording aglycones extracts upon evaporation. Each extract was subjected
to a Sephadex LH-20 column; using MeOH:H2O (1:1) afforded fractions. Each fraction
was subjected to PPC using BAW and 50% AcOH several times to isolate the flavonoid
aglycones. All compounds were finally purified with a Sephadex LH-20 column, us-
ing 100% MeOH as eluent to reach pure aglycones. Compound (1) was obtained from
A. hierochuntica, compound (2) from K. aegyptiaca, while compounds (3–5) were obtained
from C. reticulata (tangerine). The structures of the isolated flavonoids were elucidated
by extensive chromatographic, chemical, and spectroscopic methods (HRESI–MS, UV,
and NMR) as well as Co-PC with reference samples. Their spectroscopic data were com-
pared with previously reported values [38–41]. HRESI–MS and NMR chromatograms are
provided as supplementary files (Supplementary Material Figures S1–S10).

3.2.1. Taxifolin (Dihydroquercetin) (1)
1H-NMR (DMSO-d6, 500 MHz): δ 11.87 (1H, br s, 5-OH), 6.83 (2H, m, J = 2.0 Hz, H-2′,

H-6′), 6.69 (1H, J = 8.0 Hz, H-5′), 5.87 (1H, d, J = 2.0 Hz, H-8), 5.82 (1H, d, J = 2.0 Hz, H-6),
5.72 (1H, d, J = 6.5 Hz, H-2), 4.95 (1H, dd, J = 6.5 Hz, H-3ax), 4.45 (1H, dd, J = 17.0, 5.0 Hz,
H-3eq). Positive HRMS: 305.0723 (C15H13O7

+) [47].

3.2.2. Pectolinarigenin (Scutellarein 4′,6-Dimethyl Ether) (2)
1H-NMR (DMSO-d6, 500 MHz): δ 13.01(1H, s, 5-OH), 10.71 (1H, s, 7-OH), 8.01 (2H, d,

J = 8.5 Hz, H-2′, H-6′), 7.09 (2H, d, J = 8.5 Hz, H-3′, H-5′), 6.85 (1H, s, H-8), 6.59 (1H, s, H-3),
3.83 (3H, s, 4′-OCH3), 3.71 (3H, s, 6-OCH3). Negative HRMS: 313.0719 (C17H13O6

−) [48].

3.2.3. Tangeretin (4′,5,6,7,8-Pentamethoxyflavone) (3)
1H-NMR (DMSO-d6, 500 MHz): δ 7.98 (2H, d, J = 8.5 Hz, H-2′, H-6′), 7.12 (2H, d,

J = 8.5 Hz, H-3′, H-5′), 6.73 (1H, s, H-3), 3.99 (3H, s, 5-OCH3), 3.94 (3H, s, 7-OCH3), 3.84
(3H, s, 4′-OCH3), 3.8 (3H, s, 8-OCH3), 3.74 (3H, s, 6-OCH3). Positive HRMS: 373.1285
(C20H21O7

+) [49].

3.2.4. Gardenin B = Demethyltangeretin (5-Hydroxy 6,7,8,4′-Tetra Methoxy Flavone) (4)
1H-NMR (DMSO-d6, 500 MHz): δ 12.51(1H, s, 5-OH), 8.01 (2H, d, J = 8.5 Hz, H-2′,

H-6′), 7.13 (2H, d, J = 8.5 Hz, H-3′, H-5′), 6.78 (1H, s, H-3), 3.84 (3H, s, 7-OCH3), 3.83
(3H, s, 4′-OCH3), 3.75 (3H, s, 8-OCH3), 3.74 (3H, s, 6-OCH3). Positive HRMS: 359.1135
(C19H19O7

+) [49].

3.2.5. Hispidulin (5)
1H-NMR (DMSO-d6, 500 MHz): δ 13.05(1H, s, 5-OH), 10.68 (1H, s, 7-OH), 10.33 (1H, s,

4′-OH), 7.91 (2H, d, J = 8.5 Hz, H-2′, H-6′), 6.89 (2H, d, J = 8.5 Hz, H-3′, H-5′), 6.76 (1H, s,
H-8), 6.56 (1H, s, H-3), 3.71 (3H, s, 6-OCH3). Negative HRMS: 299.0905 (C16H11O6

−) [50].

3.3. Molecular Docking Study

The molecular docking study was performed using the MOE 2019.012 suite [51,52]
for the isolated and identified five flavonoids from A. hierochuntica, K. aegyptiaca, and
citrus peels, namely taxifolin (1), pectolinarigenin (2), tangeretin (3), gardenin B (4), and
hispidulin (5), to propose their mechanism of action as SARS-CoV-2 Mpro inhibitors based
on their binding scores and interactions.

Moreover, they were compared to the co-crystallized inhibitor of SARS-CoV-2 Mpro
(KI) as a reference standard.
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3.3.1. Preparation of the Isolated and Identified Five Flavonoids (1–5)

The 2D chemical structures of the isolated five flavonoids—taxifolin (1), pectolinari-
genin (2), tangeretin (3), gardenin B (4), and hispidulin (5)—were sketched using Chem-
Draw Professional. Each chemical structure was introduced separately into the MOE
window, converted to the 3D orientation, adjusted for partial charges, and energy min-
imized to be prepared for docking according to the default preparation steps described
earlier [53–56]. After saving each prepared compound separately using the (.moe) ex-
tension, the co-crystallized native inhibitor of SARS-CoV-2 Mpro (KI) was extracted and
saved in a separate MOE file as well. Furthermore, all of the aforementioned prepared
compounds (1–5) were imported in the same database file and saved as (.mdb) extension
to be uploaded during the docking step.

3.3.2. Target Mpro of SARS-CoV-2 Preparation

The target Mpro enzyme (as a dimer) of SARS-CoV-2 was extracted from the Protein
Data Bank (PDB code: 6Y2G) [57]. Moreover, it was subjected to the detailed preparation
steps described before [58–61] to be ready for the docking process.

3.3.3. Docking of the Database Compounds (1–5) to the Dimer Mpro of SARS-CoV-2

The previously discussed database, containing the KI in addition to the five isolated
and identified flavonoids (1–5), was uploaded in place of the ligand during a general
docking process. The binding site of the co-crystallized α-ketoamide inhibitor was identi-
fied as the docking site. Moreover, the program specifications were adjusted as follows:
triangle matcher for the placement methodology, London dG for the first scoring method-
ology, GBVI/WSA dG for the final scoring methodology to select the best 10 poses from
30 different poses for each docked compound, and rigid receptor for the refinement method-
ology [61–64]. Finally, the best pose for each tested compound, based on the score and
RMSD values, was selected for further studies.

Furthermore, a MOE program validation process was carried out before applying
the previously described docking process by redocking the co-crystallized KI alone at its
binding site of Mpro. The obtained low RMSD values (<2) between the native co-crystallized
and the redocked α-ketoamide inhibitor confirmed the valid performance [65–67].

3.4. In Vitro Anti-SARS-CoV-2 Activity
3.4.1. Cytotoxicity (CC50) Determination

To assess the half-maximal cytotoxic concentration (CC50), stock solutions of the
compounds were prepared in 10% DMSO in ddH2O and diluted further to the working
solutions with DMEM. The cytotoxic activity of the extracts was tested in VERO-E6 cells by
using a crystal violet assay, as previously described [68] with minor modifications. Briefly,
the cells were seeded in 96 well-plates (100 µL/well at a density of 3 × 105 cells/mL) and
incubated for 24 h at 37 ◦C in 5% CO2. Control cells were treated with 1% DMSO in DMEM
(the concentration of DMSO in the highest concentration of the tested samples). After
24 h, the cells were treated with various concentrations of the compounds in triplicates.
After 72 h, the supernatant was discarded, and the cell monolayers were fixed with 10%
formaldehyde for 1 h at room temperature (RT). The fixed monolayers were, then, dried
and stained with 50 µL of 0.1% crystal violet for 20 min on a bench rocker at RT. The
monolayers were, then, washed and dried, and the crystal violet dye in each well was
dissolved with 200 µL methanol for 20 min on a bench rocker at RT. The absorbance of the
crystal violet solutions was measured at λmax 570 nm as a reference wavelength using a
multi-well plate reader. The cytotoxicity of the various concentrations, compared to the
untreated cells and the blank background, was determined using nonlinear regression
analysis by plotting the log inhibitor versus the normalized response.
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3.4.2. Inhibitory Concentration 50 (IC50) Determination

The IC50 values for the compounds were determined as previously described [69], with
minor modifications. Briefly, in 96 well tissue culture plates, 2.4 × 104 Vero-E6 cells were
distributed in each well and incubated overnight in a humidified 37 ◦C incubator under
5% CO2 conditions. The cell monolayers were then washed once with 1× PBS. An aliquot
of the SARS-CoV-2 “NRC-03-nhCoV” virus [70] containing 100 TCID50 was incubated with
serially diluted concentrations of the tested compound and kept at 37 ◦C for 1 h. The
Vero-E6 cells were treated with a virus/compound mix and co-incubated at 37 ◦C in a
total volume of 200 µL per well. Untreated cells infected with the virus represented virus
control; however, cells that were not treated and not infected were cell control. Following
incubation at 37 ◦C in a 5% CO2 incubator for 72 h, the cells were fixed with 100 µL of 10%
paraformaldehyde for 20 min and stained with 0.5% crystal violet in distilled water for
15 min at RT. The crystal violet dye was then dissolved using 100 µL absolute methanol per
well and the optical density of the color was measured at 570 nm using an Anthos Zenyth
200 rt plate reader (Anthos Labtec Instruments, Heerhugowaard, Netherlands). The IC50 is
the concentration of the compound required to reduce the virus-induced cytopathic effect
(CPE) by 50%, relative to the virus control.

3.5. Statistical Analyses

All experiments were performed in three biological repeats. Statistical tests and
graphical data presentation were carried out using GraphPad Prism 5.01 software. Data are
presented as the average of the means. The IC50 and CC50 curves represent the nonlinear
fit of “normalize” of “transform” of the obtained data; their values were calculated using
GraphPad prism as “best fit value”.

4. Conclusions

Five compounds were isolated and identified from A. hierochuntica, K. aegyptiaca, and
the citrus peels of C. reticulata, namely, taxifolin (1), pectolinarigenin (2), tangeretin (3),
gardenin B (4), and hispidulin (5), and examined against SARS-CoV-2 Mpro using in vitro
and molecular docking studies. Their IC50 and binding score values indicate that the
examined flavonoids, especially pectolinarigenin (2), tangeretin (3), and gardenin B (4),
could be very promising for performing more advanced preclinical and clinical tests, either
alone or in combination with each other, for COVID-19 management.

Supplementary Materials: The following are available online. Figures S1–S10: 1H NMR and HRMS
spectra of compounds (1–5); and Figure S11: 2D pictures showing the receptor interactions and posi-
tioning between the docked α-ketoamide inhibitor (KI) in addition to the five examined flavonoids
(1–5) inside the binding site of SARS-CoV-2 Mpro are available online in the Supplementary Data file.
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