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Abstract: Here we report the synthesis of interesting 3-alkyl-4-hydroxy-1-aryl-4-(propa-1,2-dienyl)1H-
pyrazol-5(4H)-ones and 9-alkyl-7-aryl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-ones, starting from
1,2-diaza-1,3-dienes (DDs) and propargyl alcohol. The reaction proceeds through a sequence Michael-
type nucleophilic attack/cyclization/[2,3]-Wittig rearrangement. In the same way, the reaction
between the aforementioned DDs and allyl alcohol furnished 4-allyl-4-hydroxy-3-alkyl-1-aryl-1H-
pyrazol-5(4H)-ones. A DFT study was also carried out, in order to have decisive clarifications about
the mechanism.

Keywords: [2,3]-Wittig rearrangement; pyrazolones; propargyl alcohol; allyl alcohol; 1,2-diaza-,1,3-
dienes; DFT study

1. Introduction

Heterocycles, in particular those that contain one or more nitrogen atoms, are an
extremely important class of compounds widely distributed in nature, as they represent
the majority of active molecules employed in biological, pharmacological, and industrial
chemistry [1–5].

Among them, pyrazolones play a crucial role as they have a wide range of appli-
cations, in particular in the pharmaceutical field [6–8]. In fact, they are known to have,
along with many others, antimicrobial [9], antitubercular [10], antifungal [7,11–13], and an-
tibacterial [7,11–13] properties, and also antitumor [7,14], gastric secretion stimulatory [15],
anticonvulsant [16], and antimalarial [17] activities. Besides, they are employed as starting
materials for the preparation of dyes. [18].

It is for this cause that organic chemists [19,20] as well as our group [21] are actively
engaged in the development of new synthetic strategies for their synthesis.

In particular, spirocyclic motifs [19–21] containing pyrazolone core are widely rep-
resented in many synthetic bioactive and natural products [22–29]. So, several methods
for the preparation of such complex three-dimensional structures have been developed
starting from simple and readily accessible precursors [22–29].

On the other hand, the α-hydroxyallenes are also a valuable class of derivatives that
constitute both versatile synthetic intermediates as well as the core of different compounds
of synthetic or natural origin, which manifest biological activities [30–36].

Among the several approaches that have been employed for their synthesis [37–45],
the [2,3]-Wittig rearrangement of propargylic ethers represents an efficient way to assemble
them [46,47]. The major limitation of this versatile bond reorganization process, which
has many other applications in organic synthesis, is mainly correlated to the use of strong
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bases and very low temperatures together with the laborious, complicated, and expensive
procedures required [48–50].

Quite recently, we have published a preliminary paper, in which, by exploiting
the ability of 1,2-diaza-1,3-dienes (DDs) as Michael-acceptors [51–58], we have synthe-
sized α-(prop-2-yn-1-yloxy)hydrazones 3 (Scheme 1) [59]. These compounds containing
a propargylic ether function have been demonstrated to be able to give easily and in
very mild conditions the [2,3]-Wittig rearrangements. In detail, the synthesis involves
1-methyloxycarbonyl-DDs 1a–c and propargyl alcohol 2a [60,61] and it is conducted at
room temperature, in dichloromethane in the presence of a catalytic amount of a base such
as the 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU). In these conditions, the reaction has fur-
nished the corresponding α-(prop-2-yn-1-yloxy)hydrazones 3a–c (41–61%), in 24.0–72.0 h
(Scheme 1) [59], by means of the nucleophilic Michael-type attack of the oxygen atom of
propargyl alcohol 2a to the terminal carbon atom of the DDs 1.
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Scheme 1. Synthesis of α-(prop-2-yn-1-yloxy)hydrazones 3a–c and of 9-alkyl-1-oxa-7,8-
diazaspiro[4.4]nona-3,8-dien-6-ones 5a–c [59].

The subsequent treatment of the so-obtained hydrazonic compounds 3a–c with 4
equiv. of a weak base, as K2CO3, in methanol has furnished new and unexpected 9-alkyl-
1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-ones 5a–c, in good yields (67–73%) in 1.0–1.5 h
whose structure was confirmed by X-ray spectroscopy (Scheme 1) [59].

For the formation of products 5a–c, we hypothesized a preliminary base-promoted
nucleophilic attack of the hydrazonic nitrogen at the ester group of Michael adducts 3,
with the loss of an alcohol molecule, to give the pyrazolone ring, followed by a further
cyclization process passing through a [2,3]-Wittig-type rearrangement [59]. In order to
better clarify the proposed mechanism and to have some variability on the substituents of
DDs as well as to increase the scope of the reaction, we have decided to extend our studies
to investigate the reactivity of differently substituted DDs such as 1-aryl-DDs 1d–g with
propargyl and allyl alcohols 2a,b, respectively. The results of this study are the object of
the present work.

2. Results and Discussion

To conduct the optimization process, we chose as a representative model the 1-phenyl-
DD 1d and the same propargyl alcohol 2a (Table 1). Initially, we have verified whether the
conditions previously employed with the 1-methyloxycarbonyl-DDs 1a–c and 2a to obtain
the adducts 3, that is CH2Cl2, DBU (0.1 equiv.) (Scheme 1) [59], can also be adapted to the
DDs otherwise substituted such as 1d (Table 1, entry 1). Unfortunately, in this case, the
reaction did not work at all. This occurrence is probably due to the lower electrophilicity of
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1-aryl-DDs 1d–g (Scheme 2) compared to that of 1-methoxycarbonyl-DDs 1a–c (Scheme 1),
as evidenced by kinetics studies previously published by some of us [62].

Table 1. Screening of different conditions in the reaction between 1-phenyl-DD 1d and propargyl
alcohol 2a to obtain 4-hydroxy-3-methyl-1-phenyl-4-(propa-1,2-dienyl)-1H-pyrazol-5(4H)-one 4a and
9-methyl-7-phenyl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-one 5d a.
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So, we have tested several solvents, such as dichloromethane, acetonitrile, and tetrahy-
drofuran, and also the same propargyl alcohol used both as solvent and reagent (Table 1).
Furthermore, a series of organic and inorganic bases as promoters have been used, such as
DBU, DIPEA, NaH, MeONa, and K2CO3 (Table 1).

The increment of the DBU to 1.0 equivalent in CH2Cl2, MeCN, THF, or using 2a as
solvent/reagent (entries 2, 5, 7, 8), as well as the use of a catalytic amount of the DBU at
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60 ◦C in MeCN (entry 4), have produced complicated reaction mixtures, in which a TLC
analysis revealed the presence of 3-methyl-4-hydroxy-1-phenyl-4-(propa-1,2-dienyl)1H-
pyrazol-5(4H)-one 4a and 9-methyl-7-phenyl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-one
5d (Table 1), but only in traces. The reactions carried out with DIPEA (entries 9–14) or a
catalytic amount of DBU, both at r.t. and by heating (entries 1, 3, 4, and 6) did not work
at all, while with NaH (entries 15–20) or MeONa (entries 21–25), they gave complicated
mixtures, regardless of the solvent conditions employed.

Additionally, the attempts to carry out the reaction using strong bases at lower temper-
atures such as NaH at –20 ◦C (entry 17) or –78 ◦C (entry 18), as well as MeONa at –20 ◦C
(entry 23) or t-BuONa at room temperature (entry 26) or at −20 ◦C (entry 27) have also
failed, giving complicated reaction mixtures.

Additionally in the case of the use of 4 equiv. of K2CO3 in any solvent at room
temperature, only traces of 4a and 5d were obtained (entries 23–26).

The trend of the reaction improves by using four equiv. of K2CO3 using 3 mL of
propargy alcohol 2a as solvent/reagent at 60 ◦C, giving 4a and 5d in 11% and 29% yields,
respectively, and these are the best conditions found in our screening (Table 1, entry 32).

At this point, to tentatively improve the yields, we have tried some different carbon-
ates, such as Cs2CO3 (entry 33) or Na2CO3 (entry 34), in the same best conditions found
with K2CO3 but we have obtained lower yields of 4a and 5d.

So, with these most optimal conditions possible in hand, we performed the reactions
between 1-aryl-DDs 1d–g and propargyl alcohol 2a used as solvent-reagent, at 60 ◦C in the
presence of 4 equiv. of K2CO3.

After 8.0–11.5 h, at the disappearance of the red color of the DDs, a TLC monitoring
revealed a complicated reaction mixture in which there are two main spots, very close
to each other. Their separation was very difficult having requested a first purification by
column chromatography on silica gel and then by preparative thin-layer chromatography
with more successive elutions. The so-obtained products were identified as 3-alkyl-4-
hydroxy-1-aryl-4-(propa-1,2-dienyl)1H-pyrazol-5(4H)-ones 4a–d and 9-alkyl-7-aryl-1-oxa-
7,8-diazaspiro[4.4]nona-3,8-dien-6-ones 5d–g (Scheme 2, Table 2). It is impossible to isolate
other significant products as the reaction appears as a dirty complicated mixture of degra-
dation compounds.

Table 2. Yields and reaction times for the synthesis of 3-alkyl-4-hydroxy-1-aryl-4-(propa-1,2-
dienyl)1H-pyrazol-5(4H)-ones 4a–d a and of 9-alkyl-7-aryl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-
ones 5d–g.

Entry 1 R1 R2 R3 4 Yield (%) b 5 Yield (%) c Time (h) d

1 1d Et Me H 4a 11 5d 29 11.5
2 1e Me Me Cl 4b 10 5e 17 10.0
3 1f Me Me OMe 4c 14 5f 21 9.0
4 1g Me Et H 4d 18 5g 18 8.0

a Reaction conditions: DDs 1d–g (1 mmol), propargyl alcohol 2a (3 mL), K2CO3 (4 mmol), at 60 ◦C (oil bath).
b Yield of pure isolated 3-alkyl-4-hydroxy-1-aryl-4-(propa-1,2-dienyl)1H-pyrazol-5(4H)-ones 4a–d referred to 1.
c Yield of pure isolated 9-alkyl-7-aryl-1-oxa-7,8- diazaspiro[4.4]nona-3,8-dien-6-ones 5d–g referred to 1. d Time of
disappearance of 1.

As the first step of the reaction, we hypothesized the formation of the non-isolable
hydrazone intermediates 3, by means of the nucleophilic Michael-type attack of the oxygen
atom of propargyl alcohol 2a to the terminal carbon atom of the azoene system of the DDs
1. The base-promoted nucleophilic attack of the hydrazonic nitrogen at the ester group of
hydrazones 3, with the loss of an alcohol molecule, gives the corresponding non-isolable
pyrazolone derivative I (Scheme 2).

In order to obtain decisive information to explain the subsequent Wittig rearrangement
involved in the formation of the following final products 4a–d and 5d–g, a DFT study
was conducted.



Molecules 2021, 26, 6557 6 of 18

The base-promoted deprotonation of the intermediate I can occur at the α or α′ posi-
tions, leading to the formation of anion species II or II′, respectively (Scheme 3). Intermedi-
ate II can theoretically undergo both [1,2]- or [2,3]-Wittig rearrangements, furnishing prod-
ucts III or IV, respectively, while intermediate II′ can give the [1,2]- or [1,4]-rearrangement,
giving products III′ or III”, respectively (Scheme 3) [40,47,49,63–81].
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It is noteworthy that the process here described is highly regioselective, since the
deprotonation occurs only in the α position of the intermediate I to produce II, as this
proton is more acid than the one in the α′ position, being activated both from an amidic
carboxylic group as well as from an imino function. As a confirmation of this event,
the two products of deprotonation II and II′ have been optimized by DFT methods. As
supposed, the former II resulted in being more stable than the latter by 33.8 kcal/mol (see
Supplementary Materials).
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Then, in the formation of the 3-alkyl-4-hydroxy-1-aryl-4-(propa-1,2-dienyl)1H-pyrazol-
5(4H)-ones 4a–d, the Wittig rearrangement observed is of the [2,3]-type, as the spectroscopic
data of the products 4 clearly support (Schemes 2 and 3). To exclude that, in the concomi-
tant formation of the 9-alkyl-7-aryl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-ones 5d–g,
the [1,2]-Wittig rearrangement was involved by means of cyclization of intermediate III
(Scheme 3), a DFT study has been carried out.

From intermediate II (Scheme 3), the two different possibilities, that is [1,2]- and
[2,3]-rearrangement, have been explored. In the former, a single transition state (TS1)
is necessary to obtain the final product, but the activation free energy is quite high
(∆G‡ = 49 kcal/mol) due to the strain of the incipient three-members ring in TS1 (Figure 1).
On the other hand, for the [2,3]-rearrangement, two different TSs (TS2 and TS3) are neces-
sary. In the former, the carbanion of II attacks the terminal propargylic carbon giving the
conjugated base of 9-alkyl-7-aryl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-one IV. Succes-
sively, in TS3, the bond between the oxygen and the carbon 1 breaks, giving V, which after
reprotonation, will lead to 4a. The free energy of TS2 and TS3 are quite similar (11.1 and
10.4 kcal/mol, respectively).
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The energy profile for the two mechanisms (Figure 1) shows that the [2,3]-rearrangement
is largely favored over the other one, both thermodynamically and kinetically, de facto
excluding that a [1,2]-Wittig rearrangement may be involved in the concomitant formation
of 5. So, the formation of the 9-alkyl-7-aryl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-ones
5d–g happens by means of the protonation of intermediate IV (Scheme 2, Figure 1).
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However, the high activation energy determined by the DFT study for the formation
of final products 4 and 5 can explain why their yields are so low. On the other hand, it is
reported in the literature that the yields of Wittig rearrangement products are commonly
quite low [63–84].

It is noteworthy that, commonly to trigger the Wittig rearrangements, the use of
strong Brønsted bases, such as BuLi or t-BuLi [63–84], is required, and usually, the reactions
happen at very low temperatures. In our system instead, much milder conditions, such
as a weak base as K2CO3 and a temperature of 60 ◦C, are able to efficiently promote the
α-deprotonation and the consequent [2,3]-Wittig rearrangement. This aspect together with
the possibility to conduct the synthesis under solvent-free conditions makes it eco-friendly
and less harmful to the environment.

It is well known that allyl alcohol is a valuable building block in organic syntheses,
due to its versatile reactivity as alkylating agent [82–85].

For this fact and also with the intent to verify if the mild conditions employed for
[2,3]-Wittig rearrangement in the reaction of the DDs 1 with propargyl alcohol 2a could be
extended to other substrates, we have planned to conduct the reaction between DDs 1d–h
and allyl/crotyl alcohol 2b,c (Scheme 4). To our great pleasure, the reactions conducted
using 2b, as solvent and reagent, at 60 ◦C and in the presence of 4 equiv. of K2CO3, have
actually provided the corresponding 4-allyl-4-hydroxy-3-alkyl-1aryl-1H-pyrazol-5(4H)-
ones 6a–e (25–70%) (Scheme 4, Path A, Table 3).
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ones 6a–d and tert-butyl 4-allyl-4-hydroxy-3-methyl-5-oxo-4,5-dihydro-1H-pyrazole-1-carboxylate 6e.

Also in this case, the reaction proceeds through the preliminary formation of a hy-
drazonic adduct intermediate 3, by means of the nucleophilic attack of the oxygen of allyl
alcohol 2 to the terminal carbon atom of the azoene system of the DD 1, followed by a
base-promoted cyclization due to a nucleophilic attack of the hydrazonic nitrogen at the
ester group of hydrazone 3, with the loss of an alcohol molecule, to give the corresponding
non-isolable pyrazolone VI (Scheme 5). Now, the base-promoted loss of the hydrogen
in the 4 position of the pyrazolone ring can theoretically promote both [1,2]- and [2,3]-
Wittig rearrangements, however, furnishing in both cases the same final products 6a–d
(Schemes 4 and 5) [17,18].
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Table 3. Yields and reaction times for the synthesis of adducts 3d,e, and 1H-pyrazol-5(4H)-ones 6a–e.

Entry 1 R1 R2 R3 2 R4 3 a Yield
(%) b

Time
(h) 6 Yield

(%)
Time

(h)

1 1d Et Me Ph 2b H 6a c 25 e 8.0
2 1e Me Me 4-Cl-Ph 2b H 6b c 33 e 10.0
3 1f Me Me 4-OMe-Ph 2b H 6c c 33 e 6.0
4 1g Me Et Ph 2b H 6d c 28 e 16.0
5 1h Et Me COOBut 2b H 3d 37 0.1 6e d 70 f 4.0
6 1h Et Me COOBut 2c Me 3e 22 0.1

a Reaction conditions: DD 1h (1 mmol), allyl (2b) or crotyl (2c) alcohol (3 mL), K2CO3 (1 mmol), rt. b Yields
of 3d,e referred to 1. c Reaction conditions: DDs 1d–g (1 mmol), allyl alcohol 2b (3 mL), K2CO3 (4 mmol), at
60 ◦C (oil bath). d Reaction conditions: adduct 3d (1 mmol) in ethanol (3 mL), K2CO3 (1 mmol), rt. e Yields of
4-allyl-4-hydroxy-3-alkyl-1-aryl-1H-pyrazol-5(4H)-ones 6a–d referred to 1. f Yield of tert-butyl 4-allyl-4-hydroxy-
3-methyl-5-oxo-4,5-dihydro-1H-pyrazole-1-carboxylate 6e referred to 3d.
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So, to clarify which of the two mechanisms was involved, we tried to introduce a
methyl substituent on the terminal carbon atom of the double bond of the alcohol and
therefore we tested the crotyl alcohol 2c (R4 = Me, Schemes 4 and 5) in the reaction with
1-aryl-DDs 1d–g. To our large disappointment, in all cases, the reaction was unsuccessful,
despite using various conditions of solvent, base, and temperature (for the conditions
tested, see Table S1 in the Supplementary Materials).

We have then investigated the behavior of t-butoxycarbonyl-DD 1h, chosen as an
example, by virtue of its incremented electrophilic character due to the replacement of the
aryl on the N1 of the azo-ene system with the BOC moiety [62].

As supposed, both allyl (2b) and crotyl (2c) alcohol reacted with 1h, at room temper-
ature, with only one equivalent of K2CO3, under solvent-free conditions, furnishing the
hydrazonic adduct intermediates 3d,e (Scheme 4, Path B and Scheme 5, Table 3). Unfortu-
nately, while compound 3d, if treated with 1 equiv. of K2CO3 in ethanol, was converted
into the corresponding 4-allyl-4-hydroxy-3-alkyl-1-alcoxycarbonyl-1H-pyrazol-5(4H)-one
6e, 3e did not furnish the corresponding pyrazol-5(4H)-one under any of the countless
conditions tested (Scheme 4, Path B and Scheme 5, Table 3. For the conditions tested, see
Table S2 in the Supplementary Materials).

Then, a DFT study was carried out for the reaction between the allylic moiety and
DDs, for which, given the lack of reactivity of substituted allyl alcohol, it is difficult to
obtain experimental information about the mechanism. Also, in this case, the strain in the
TS of the [1,2]-rearrangement (TS1A) makes this path high in energy (∆G‡ = 57.1 kcal/mol)
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and not a viable option. Differently than before, the [2,3]-rearrangement is not a two-step
mechanism, as the formation of the Cα-C1 bond and the O-C1 bond cleavage are concerted
(TS2A). The activation barrier of the [2,3]-rearrangement is 16.2 kcal/mol, which is higher
than in the case of the propargylic moiety but still viable, in principle (Figure 2).
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Both the mechanisms lead to the same product, VII, but the latter is less stable than
the starting material, VI, by 1.4 kcal/mol. This difference is positive and almost constant
with all the dielectric values used in the calculations, ranging from toluene to water.

Using the crotyl alcohol, two different products, 7 or 8, are possible, depending on the
reaction mechanism (Scheme 5). Both the [1,2]- and [2,3]-rearrangement would lead to a
thermodynamically unfavored product (∆G◦ = 2.8 and 7.3 kcal/mol).

Finally, if using 1-t-butoxycarbonyl-DD 1h instead of the 1-aryl-ones, the framework
is slightly different. In this case, the use of allyl alcohol leads to a product that is ther-
modynamically favored (9, ∆G◦ = −1.1 kcal/mol) and it is the same with both the [1,2]-
and [2,3]-rearrangements. Given the previous results (Figure 2), it is most likely that only
the [2,3]-rearrangement is active. The use of crotyl alcohol leads to a slightly different
scenario: the [1,2]-rearrangement would lead to a substantially thermoneutral product
(10, ∆G◦ = −0.09 kcal/mol), but, as seen before, this way is kinetically forbidden, whereas
the [2,3]-rearrangement, which would be kinetically viable, leads to a product that is
thermodynamically forbidden (11, ∆G◦ = 6.7 kcal/mol) (see Supp. Information).

3. Experimental Section
3.1. General

All chemicals and solvents were purchased from commercial suppliers and used as
received. 1,2-Diaza-1,3-dienes were prepared as reported [86–88] and used as EE/EZ isomer
mixtures. Melting points were determined in open capillary tubes and are uncorrected.
FTIR spectra were obtained as Nujol mulls. All 1H NMR and 13C NMR spectra were
recorded at 400 and 100 MHz, respectively. Proton and carbon spectra were referenced
internally to solvent signals, using values of δ = 7.27 ppm for proton and δ = 77.00 ppm
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for carbon (middle peak) in CDCl3. All coupling constants (J) are given in Hz. All the NH
and OH exchanged with D2O. Precoated silica gel plates of 0.25 mm were employed for
analytical thin-layer chromatography. All new compounds showed satisfactory elemental
analysis. Mass spectra were recorded in the ESI-MS mode. The nomenclature was generated
using ACD/IUPAC Name (version 3.50, 5 April 1998), Advanced Chemistry Development
Inc., Toronto, ON, Canada.

3.2. General Procedure for the Synthesis of 3-Alkyl-4-hydroxy-1-aryl-4-(propa-1,2-dienyl)
1H-Pyrazol-5(4H)-ones 4a–d and of 9-Alkyl-7-aryl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-ones
5d–g, Starting from 1,2-Diaza-1,3-dienes 1d–g and Propargyl Alcohol 2a

To a magnetically stirred mixture of 1,2-diaza-1,3-diene 1d–g (1 mmol) and propargyl
alcohol 2a (3 mL) at 60 ◦C (oil bath), K2CO3 (4 mmol) was added and the suspension
was left to stand under these conditions for the appropriate time (8.0–11.5 h) until the
disappearance of the reagent 1 (TLC monitoring). The crude mixture was then purified
by column chromatography on silica gel and successively on thin-layer chromatography
to afford 3-alkyl-4-hydroxy-1-aryl-4-(propa-1,2-dienyl)1H-pyrazol-5(4H)-ones 4a–d and
9-alkyl-7-aryl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-ones 5d–g. Compounds 4b,d and
5e,g were crystallized from EtOAc-light petroleum ether, while 4a,c and 5d,f were found
to be oils.

4-Hydroxy-3-methyl-1-phenyl-4-(propa-1,2-dienyl)-1H-pyrazol-5(4H)-one (4a).
4a was isolated by column chromatography (acetate/cyclohexane 20:80) and then

by thin-layer chromatography (three elutions in acetate/cyclohexane 20:80 mixture) in
11% yield as brown oil; 1H-NMR (400 MHz, CDCl3, 25 ◦C): δ 2.21 (s, 3H), 4.09 (brs, 1H),
5.09 (d, J = 6.4, 2H), 5.40 (t, J = 6.4 Hz, 1H), 7.20 (t, J = 7.6, 1Har), 7.40 (t, J = 7.2 Hz, 2Har),
7.86 (d, J = 8.8 Hz, 2Har) ppm; 13C-NMR (100 MHz, CDCl3, 25 ◦C): δ 13.3 (q), 78.0 (s),
80.7 (t), 89.7 (d), 118.8 (d), 125.3 (d), 128.8 (d), 137.6 (s), 161.2 (s), 172.4 (s), 207.6 (s) ppm;
IR (Nujol, cm−1): νmax 3302, 1953, 1719; MS (ESI): m/z 229.25 [M + H+]; anal. calcd. for
C13H12N2O2 (228.25): C 68.41, H 5.30, N 12.27; found: C 68.58, H 5.35, N 12.18.

1-(4-Chlorophenyl)-4-hydroxy-3-methyl-4-(propa-1,2-dienyl)-1H-pyrazol-5(4H)-one (4b).
4b was isolated by column chromatography (acetate/cyclohexane 20:80) and then

by thin-layer chromatography (three elutions in acetate/cyclohexane 20:80 mixture) in
10% yield as a brown solid; mp: 85–87 ◦C; 1H-NMR (400 MHz, CDCl3, 25 ◦C): δ = 2.20 (s,
3H), 4.28–4.30 (m, 1H), 5.13 (d, J = 6.4 Hz, 2H), 5.36 (t, J = 6.4 Hz, 1H), 7.36 (d, J = 8.8 Hz,
2Har), 7.83 (d, J = 9.2 Hz, 2Har) ppm; 13C-NMR (100 MHz, CDCl3, 25 ◦C): δ 13.3 (q), 77.6 (s),
81.3 (t), 89.6 (d), 119.8 (d), 128.9 (d), 130.4 (s), 136.2 (s), 160.9 (s), 171.8 (s), 207.6 (s) ppm;
IR (Nujol, cm−1): νmax 3302, 1953, 1719; MS (ESI): m/z 261.22 [M − H+]; anal. calcd. for
C13H11N2O2Cl (262.69): C 59.44, H 4.22, N 10.66; found: C 59.21, H 4.28, N 10.60.

4-Hydroxy-1-(4-methoxyphenyl)-3-methyl-4-(propa-1,2-dienyl)-1H-pyrazol-5(4H)-one (4c).
4c was isolated by column chromatography (acetate/cyclohexane 20:80) and then

by thin-layer chromatography (three elutions in acetate/cyclohexane 20:80 mixture) in
14% yield as brown oil; 1H-NMR (400 MHz, CDCl3, 25 ◦C): δ 2.20 (s, 3H), 3.83 (s, 3H),
4.29 (d, J = 2.4 Hz, 1H), 5.15 (d, J = 6.8 Hz, 2H), 5.35 (t, J = 6.8 Hz, 1H), 6.94 (d, J = 9.2 Hz,
2Har), 7.74 (d, J = 9.2 Hz, 2Har) ppm; 13C-NMR (100 MHz, CDCl3, 25 ◦C): δ 13.2 (q),
55.5 (q), 77.2 (s), 81.2 (t), 89.9 (d), 114.1 (d), 120.6 (d), 130.6 (s), 157.2 (s), 160.4 (s), 171.4 (s),
207.6 (s) ppm; IR (Nujol, cm−1): νmax 3242, 1956, 1712, 1678; MS (ESI): m/z 259.12 [M + H+];
anal. calcd. for C14H14N2O3 (258.27): C 65.11, H 5.46, N 10.85; found: C 65.22, H 5.40, N 10.90.

3-Ethyl-4-hydroxy-1-phenyl-4-(propa-1,2-dienyl)-1H-pyrazol-5(4H)-one (4d).
4d was isolated by column chromatography (acetate/cyclohexane 20:80) and then

by thin-layer chromatography (three elutions in acetate/cyclohexane 20:80 mixture) in
18% yield as an orange solid; mp: 101–103; 1H-NMR (400 MHz, CDCl3, 25 ◦C): δ 1.32 (t,
J = 7.2 Hz, 3H), 2.55–2.66 (m, 2H), 4.27–4.29 (m, 1H), 5.11 (d, J = 6.8 Hz, 2H), 5.37 (t, J = 6.4 Hz,
1H), 7.21 (t, J = 7.2 Hz, 2Har), 7.41 (t, J = 7.6 Hz, 2Har), 7.89 (d, J = 8. Hz, 1Har) ppm; 13C-
NMR (100 MHz, CDCl3, 25 ◦C): δ = 9.3 (q), 21.0 (t), 78.1 (s), 81.1 (t), 90.1 (d), 118.8 (d), 125.3
(d), 128.8 (d), 137.7 (s), 164.6 (s), 172.4 (s), 207.5 (s) ppm; IR (Nujol, cm−1): νmax 3279, 1956,
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1691; MS (ESI): m/z 243.12 [M + H+]; anal. calcd. for C14H14N2O2 (242.27): C 69.41, H 5.82,
N 11.56; found: C 69.32, H 5.89, N 11.65.

9-Methyl-7-phenyl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-one (5d).
5d was isolated by column chromatography (acetate/cyclohexane 20:80) and then

by thin-layer chromatography (three elutions in acetate/cyclohexane 20:80 mixture) in
29% yield as orange oil; 1H-NMR (400 MHz, CDCl3, 25 ◦C): δ 2.09 (s, 3H), 4.94–4.99 and
5.12–5.16 (2m, 2H), 5.62–5.65 (m, 1H), 6.46–6.48 (m, 1H), 7.19 (t, J = 7.6 Hz, 1Har), 7.40
(t, J = 7.6 Hz, 2Har), 7.89 (dd, J = 8.4 Hz, J = 1.2, 2Har) ppm; 13C-NMR (100 MHz, CDCl3,
25 ◦C): δ = 13.1 (q), 78.4 (t), 93.7 (s), 118.5 (d), 123.8 (d), 125.1 (d), 128.8 (d), 133.5 (d),
138.0 (s), 159.8 (s), 170.8 (s) ppm; IR (Nujol, cm−1): νmax 3314, 3081, 1762, 1597; MS (ESI):
m/z 227.20 [M − H+]; anal. calcd. for C13H12N2O2 (228.25): C 68.41, H 5.30, N 12.27; found:
C 68.31, H 5.38, N 12.39.

7-(4-Chlorophenyl)-9-methyl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-one (5e).
5e was isolated by column chromatography (acetate/cyclohexane 20:80) and then by

thin-layer chromatography (three elutions in acetate/cyclohexane 20:80 mixture) in 17%
yield as an orange solid; mp: 108–109 ◦C; 1H-NMR (400 MHz, CDCl3, 25 ◦C): δ 2.08 (s, 3H),
4.94–4.98 and 5.11–5.15 (2m, 2H), 5.62–5.64 (m, 1H), 6.47–6.49 (m, 1H), 7.36 (d, J = 9.2 Hz,
2Har), 7.86 (d, J = 9.2 Hz, 2Har) ppm; 13C-NMR (100 MHz, CDCl3, 25 ◦C): δ 13.1 (q), 78.4 (t),
93.6 (s), 119.6 (d), 123.6 (d), 128.9 (d), 130.1 (s), 133.7 (d), 136.6 (s), 160.1 (s), 170.7 (s) ppm;
IR (Nujol, cm−1): νmax = 3278, 3093, 1722, 1595; MS (ESI): m/z 261.22 [M − H+]; anal. calcd.
for C13H11N2O2Cl (262.69): C 59.44, H 4.22, N 10.66; found: C 59.56, H 4.28, N 10.74.

7-(4-Methoxyphenyl)-9-methyl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-one (5f).
5f was isolated by column chromatography (acetate/cyclohexane 20:80) and then by

thin-layer chromatography (three elutions in acetate/cyclohexane 20:80 mixture) in 21%
yield as brown oil; 1H-NMR (400 MHz, CDCl3, 25 ◦C): δ 2.08 (s, 3H), 3.82 (s, 3H), 4.94–4.98
and 5.12–5.16 (2m, 2H), 5.62–5.65 (m, 1H), 6.46–6.48 (m, 1H), 6.93 (d, J = 9.2 Hz, 2Har), 7.77
(d, J = 9.2 Hz, 2Har) ppm; 13C-NMR (100 MHz, CDCl3, 25 ◦C): δ 13.1 (q), 55.5 (q), 78.4 (t),
93.6 (s), 114.0 (d), 120.4 (d), 123.8 (d), 131.4 (s), 133.4 (d), 157.0 (s), 159.7 (s), 170.4 (s) ppm;
IR (Nujol, cm−1): νmax 3279, 3086, 1731, 1717, 1610; MS (ESI): m/z 257.13 [M − H+]; anal.
calcd. for C14H14N2O3 (258.27): C 65.11, H 5.46, N 10.85; found: C 64.99, H 5.54, N 10.76.

9-Ethyl-7-phenyl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-one (5g).
5g was isolated by column chromatography (acetate/cyclohexane 20:80) and then

by thin-layer chromatography (three elutions in acetate/cyclohexane 20:80 mixture) in
18% yield as a yellow solid; mp: 121–123 ◦C; 1H-NMR (400 MHz, CDCl3, 25 ◦C): δ 1.27
(t, J = 7.2 Hz, 3H), 2.34–2.54 (m, 2H), 4.93–4.97 and 5.11–5.15 (2m, 2H), 5.63–5.66 (m, 1H),
6.44–6.46 (m, 1H), 7.19 (t, J = 7.6 Hz, 1Har), 7.41 (t, J = 7.6 Hz, 2Har), 7.92 (dd, J = 8.8 Hz,
J = 1.2, 2Har) ppm; 13C-NMR (100 MHz, CDCl3, 25 ◦C): δ 9.7 (q), 21.1 (t), 78.2 (t), 93.7
(s), 118.5 (d), 124.1 (d), 125.0 (d), 128.8 (d), 133.1 (d), 138.0 (s), 163.5 (s), 170.9 (s) ppm; IR
(Nujol, cm−1): νmax 3096, 1714, 1632, 1597; MS (ESI): m/z 241.25 [M − H+]; anal. calcd. for
C14H14N2O2 (242.27): C 69.41, H 5.82, N 11.56; found: C 69.31, H 5.77, N 11.62.

3.3. General Procedure for the Synthesis of Tert-Butyl
2-(3-(Allyloxy)-4-ethoxy-4-oxobutan-2-ylidene) Hydrazinecarboxylate (3d) or Tert-Butyl
2-(3-(but-2-en-1-yloxy)-4-ethoxy-4-oxobutan-2-ylidene) Hydrazinecarboxylate (3e), Starting from
1,2-Diaza-1,3-diene 1h and Allyl (2b) or Crotyl (2c) Alcohol

To a magnetically stirred mixture of 1,2-diaza-1,3-diene 1h (1 mmol) and allyl (2b) or
crotyl (2c) alcohol (10 equiv.) at room temperature, K2CO3 (1 mmol) was added and the
suspension was left to stand under these conditions for 0.1 h until the disappearance of
the reagent 1 (TLC monitoring). The crude mixture was quickly filtered and then purified
by column chromatography on silica gel to afford compounds 3d,e, that were crystallized
from EtOAc.

Tert-butyl 2-(3-(allyloxy)-4-ethoxy-4-oxobutan-2-ylidene)hydrazinecarboxylate (3d).
3d was isolated by column chromatography (acetate/cyclohexane 40:60) in 37% yield

as a white solid; mp: 119–120 ◦C; 1H-NMR (400 MHz, CDCl3, 25 ◦C): δ 1.27 (t, J = 7.2 Hz,
3H), 1.52 (s, 9H), 1.83 (s, 3H), 4.02–4.12 (m, 2H), 4.20–4.28 (m, 2H), 4.63 (s, 1H), 5.21 (d,
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J = 10.0 Hz, 1H), 5.28–5.35 (m, 1H), 5.86–5.95 (m, 1H), 7.60 (s, 1H) ppm; 13C-NMR (100 MHz,
CDCl3, 25 ◦C): δ 10.8 (q), 14.1 (q), 28.2 (q), 61.4 (t), 70.8 (t), 81.6 (s), 81.8 (d), 118.2 (t), 133.5
(d), 146.8 (s), 152.3 (s), 169.1 (s) ppm; IR (Nujol, cm−1): νmax 3235, 1760, 1725, 1704; MS
(ESI): m/z 303.22 [M + H+]; anal. calcd. for C14H24N2O5 (302.17): C 55.98, H 8.05, N 9.33;
found: C 56.16, H 8.40, N 9.18.

Tert-butyl 2-(3-(but-2-en-1-yloxy)-4-ethoxy-4-oxobutan-2-ylidene)hydrazinecarboxylate (3e).
3e was isolated by column chromatography (acetate/cyclohexane 40:60) in 22% yield

as a white solid; mp: 158–160 ◦C; 1H-NMR (400 MHz, CDCl3, 25 ◦C): δ 1.27 (t, J = 7.2 Hz,
3H), 1.52 (s, 9H), 1.71 (dd, J = 6.4 Hz, J = 0.8 Hz, 3H), 1.82 (s, 3H), 3.96–4.01 (m, 2H), 4.22
(q, J = 7.2 Hz, 2H), 4.62 (s, 1H), 5.53–5.61 (m, 1H), 5.70–5.79 (m, 1H), 7.57 (s, 1H) ppm;
13C-NMR (100 MHz, CDCl3, 25 ◦C): δ 10.8 (q), 14.2 (q), 17.8 (q), 28.2 (q), 61.4 (t), 70.6 (t),
81.4 (d), 81.5 (s), 126.3 (d), 131.1 (d), 146.9 (s), 152.2 (s), 169.3 (s) ppm; IR (Nujol, cm−1):
νmax 3372, 3269, 1715, 1627; MS (ESI): m/z 313.09 [M − H+]; anal. calcd. for C15H26N2O5
(314.18): C 57.31, H 8.34, N 8.91; found: C 57.16, H 8.41, N 8.98.

3.4. General Procedure for the Synthesis of
4-Allyl-4-hydroxy-3-alkyl-1-aryl-1H-pyrazol-5(4H)-ones 6a–d, Starting from 1,2-Diaza-1,3-dienes
1d–g and Allyl Alcohol 2b

To a magnetically stirred mixture of 1,2-diaza-1,3-dienes 1d–g (1 mmol) and allyl
alcohol 2b (3 mL) at 60 ◦C (oil bath), K2CO3 (4 mmol) was added and the suspension
was left to stand under these conditions for the appropriate time (8.0–16.0 h), until the
disappearance of the reagent 1 (TLC monitoring). The crude mixture was then purified by
column chromatography on silica gel to afford 4-allyl-4-hydroxy-3-alkyl-1-aryl-1H-pyrazol-
5(4H)-ones 6a–d as oils, in the case of 6a,c,d or solid that was crystallized from EtOAc-light
petroleum ether in the case of 6b.

3.5. General Procedure for the Synthesis of
4-Allyl-4-hydroxy-3-methyl-1-alcoxycarbonyl-1H-pyrazol-5(4H)-one 6e, Starting from 3d

To a magnetically stirred solution of tert-butyl 2-(3-(allyloxy)-4-ethoxy-4-oxobutan
-2-ylidene)hydrazinecarboxylate 3d (1 mmol) in ethanol (3 mL), K2CO3 (1 mmol) was
added and the suspension was left to stand under these conditions for 2.0 h, until the
disappearance of the reagent 3 (TLC monitoring). The crude mixture was then filtered and
purified by column chromatography on silica gel to afford 6e as oil.

4-Allyl-4-hydroxy-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (6a).
6a was isolated by column chromatography (acetate/cyclohexane 20:80) in 25% yield

as brown oil; 1H-NMR (400 MHz, CDCl3, 25 ◦C): δ 2.18 (s, 3H), 2.59–2.73 (m, 2H), 3.90
(brs, 1H), 5.15–5.24 (m, 2H), 5.55–5.65 (m, 1H), 7.20 (t, J = 7.6 Hz, 1Har), 7.39 (t, J = 8.8 Hz,
2Har), 7.83 (d, J = 7.6 Hz, 2Har) ppm; 13C-NMR (100 MHz, CDCl3, 25 ◦C): δ 13.2 (q), 40.6 (t),
79.6 (s), 118.9 (d), 121.4 (t), 125.4 (d), 128.5 (d), 128.8 (d), 137.4 (s), 161.5 (s), 173.4 (s) ppm;
IR (Nujol, cm−1): νmax 3263, 1683, 1596; MS (ESI): m/z 231.30 [M + H+]; anal. calcd. for
C13H14N2O2 (230.26): C 67.81, H 6.13, N 12.17; found: C 67.70, H 6.19, N 12.22.

4-Allyl-1-(4-chlorophenyl)-4-hydroxy-3-methyl-1H-pyrazol-5(4H)-one (6b).
6b was isolated by column chromatography (acetate/cyclohexane 20:80) in 33% yield

as a yellow solid crystallized from EtOAc-light petroleum ether; mp: 131–133 ◦C; 1H-NMR
(400 MHz, CDCl3, 25 ◦C): δ 2.18 (s, 3H), 2.58–2.71 (m, 2H), 4.19 (brs, 1H), 5.15–5.24 (m,
2H), 5.52–5.62 (m, 1H), 7.33 (d, J = 8.8 Hz, 2Har), 7.79 (d, J = 8.8 Hz, 2Har) ppm; 13C-NMR
(100 MHz, CDCl3, 25 ◦C): δ 13.2 (q), 40.5 (t), 79.6 (s), 119.9 (d), 121.5 (t), 128.3 (d), 128.9 (d),
130.5 (s), 135.9 (s), 161.9 (s), 173.5 (s) ppm; IR (Nujol, cm−1): νmax 3302, 1685, 1625; MS
(ESI): m/z 265.09 [M + H+]; anal. calcd. for C13H13N2O2Cl (264.71): C 58.99, H 4.95, N
10.58; found: C 59.11, H 4.89, N 10.66.

4-Allyl-4-hydroxy-1-(4-methoxyphenyl)-3-methyl-1H-pyrazol-5(4H)-one (6c).
6c was isolated by column chromatography (acetate/cyclohexane 20:80) in 33% yield

as brown oil; 1H-NMR (400 MHz, CDCl3, 25 ◦C): δ 2.17 (s, 3H), 2.60–2.64 (m, 2H), 3.82
(s, 3H), 4.10 (brs, 1H), 5.20–5.27 (m, 2H), 5.60–5.69 (m, 1H), 6.93 (d, J = 9.2 Hz, 2Har), 7.72
(d, J = 9.2 Hz, 2Har) ppm; 13C-NMR (100 MHz, CDCl3, 25 ◦C): δ 13.3 (q), 40.7 (t), 55.5 (q),
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79.0 (s), 114.0 (d), 120.7 (d), 121.5 (t), 128.5 (d), 130.8 (s), 157.2 (s), 160.8 (s), 172.5 (s) ppm;
IR (Nujol, cm−1): νmax 3357, 1693, 1608; MS (ESI): m/z 259.23 [M − H+]; anal. calcd. for
C14H16N2O3 (260.29): C 64.60, H 6.20, N 10.76; found: C 64.51, H 6.24, N 10.67.

4-Allyl-3-ethyl-4-hydroxy-1-phenyl-1H-pyrazol-5(4H)-one (6d).
6d was isolated by column chromatography (acetate/cyclohexane 20:80) in 28% yield

as red oil; 1H-NMR (400 MHz, CDCl3, 25 ◦C): δ 1.32 (t, J = 7.2 Hz, 3H), 2.44–2.70 (m,
4H), 3.65 (brs, 1H), 5.16–5.25 (m, 2H), 5.56–5.66 (m, 1H), 7.20 (t, J = 7.2 Hz, 1Har), 7.40 (t,
J = 8.4 Hz, 2Har), 7.87 (dd, J = 8.8 Hz, J = 1.2 Hz, 2Har) ppm; 13C NMR (100 MHz, CDCl3,
25 ◦C): δ 9.1 (q), 21.0 (t), 40.9 (t), 79.7 (s), 118.8 (d), 121.4 (t), 125.2 (d), 128.6 (d), 128.8 (d),
137.6 (s), 164.9 (s), 173.5 (s) ppm; IR (Nujol, cm−1): νmax 3313, 1689, 1625, 1597; MS (ESI):
m/z 245.14 [M + H+]; anal. calcd. for C14H16N2O2 (244.29): C 67.83, H 6.60, N 11.47; found:
C 67.71, H 6.65, N 11.54.

Tert-butyl 4-allyl-4-hydroxy-3-methyl-5-oxo-4,5-dihydro-1H-pyrazole-1-carboxylate (6e).
6e was isolated by column chromatography (acetate/cyclohexane 20:80) in 70% yield

as pale yellow oil; 1H-NMR (400 MHz, CDCl3, 25 ◦C): δ 1.59 (s, 9H), 2.13 (s, 3H), 2.55
(d, J = 7.2 Hz, 2H), 3.10 (brs, 1H), 5.20–5.30 (m, 2H), 5.61–5.71 (m, 1H) ppm; 13C-NMR
(100 MHz, CDCl3, 25 ◦C): δ 13.4 (q), 28.0 (q), 40.3 (t), 78.1 (s), 84.9 (s), 122.2 (t), 127.9 (d),
147.5 (s), 161.5 (s), 173.2 (s) ppm; IR (Nujol, cm−1): νmax 3268, 1678, 1619; MS (ESI): m/z
253.22 [M − H+]; anal. calcd. for C12H18N2O4 (254.28): C 56.68, H 7.13, N 11.02; found: C
56.84, H 7.02, N 10.86.

4. DFT Calculations

All the geometries have been optimized with ORCA 4.1.0 [89,90], using the BP86
functional in conjunction with a def2-TZVP basis set for all the atoms. Dispersion forces
were taken into account using the D3 correction with Becke−Johnson damping [91]. The
effect of the solvent has been simulated through the Continuum-like Polarizable Continuum
Model (C-PCM, dichloromethane if not otherwise specified). All the geometries have been
confirmed to be stationary points, with zero (intermediates) or one (transition states)
imaginary frequency.

5. Conclusions

In conclusion, we have established a protocol to synthesize new and appealing 4-
hydroxy-4-(propa-1,2-dienyl) or 4-hydroxy-4-allyl-1H-pyrazol-5(4H)-ones and spiro
dihydrofuran-pyrazolones, starting from 1,2-diaza-1,3-dienes and propargyl or allyl al-
cohols under very mild conditions. The transformation shows attractive features since it
excludes the employment of strong bases and low temperatures.

The obtained products have potentially interesting properties. In fact, often, the
biological activities of molecules that incorporate more scaffolds are not simply attributable
to the sum of the characteristics shown by the individual functionalities, but synergistic
effects can increase its effectiveness, or induce the manifestation of new characteristics.

Finally, a DFT study carried out on these reactions allowed us to obtain definitive
elucidations on the mechanism which involves a [2,3]-Wittig rearrangement.

Supplementary Materials: The following are available online: experimental procedures and spectral
data of all compounds, copies of 1H-NMR and 13C-NMR spectra of compounds 3 d,e, 4a–d, 5d–g,
6a–d, Tables S1 and S2 refer to the screening of conditions in the reaction between DDs 1d–g and crotyl
alcohol 2b and to tentatively convert hydrazone 3e into the corresponding pyrazolone, respectively.
DFT optimized geometries and energies.
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