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Abstract: Uncertainty measures estimate the reliability of a predictive model. Especially in the field
of molecular property prediction as part of drug design, model reliability is crucial. Besides other
techniques, Random Forests have a long tradition in machine learning related to chemoinformatics
and are widely used. Random Forests consist of an ensemble of individual regression models, namely,
decision trees and, therefore, provide an uncertainty measure already by construction. Regarding the
disagreement of single-model predictions, a narrower distribution of predictions is interpreted as
a higher reliability. The standard deviation of the decision tree ensemble predictions is the default
uncertainty measure for Random Forests. Due to the increasing application of machine learning
in drug design, there is a constant search for novel uncertainty measures that, ideally, outperform
classical uncertainty criteria. When analyzing Random Forests, it appears obvious to consider the
variance of the dependent variables within each terminal decision tree leaf to obtain predictive
uncertainties. Hereby, predictions that arise from more leaves of high variance are considered less
reliable. Expectedly, the number of such high-variance leaves yields a reasonable uncertainty measure.
Depending on the dataset, it can also outperform ensemble uncertainties. However, small-scale
comparisons, i.e., considering only a few datasets, are insufficient, since they are more prone to
chance correlations. Therefore, large-scale estimations are required to make general claims about the
performance of uncertainty measures. On several chemoinformatic regression datasets, high-variance
leaves are compared to the standard deviation of ensemble predictions. It turns out that high-variance
leaf uncertainty is meaningful, not superior to the default ensemble standard deviation. A brief
possible explanation is offered.

Keywords: chemoinformatics; machine learning; Random Forest; regression; ensemble; uncertainty
measure; reliability measure

1. Introduction

Computational methods to predict molecular properties play a crucial role in the early
stages of drug development, since their estimations determine the following experiments.
An insufficient validation of predictive models may lead to wrong assumptions and, there-
fore, bears the risk of wasting time and resources [1]. Typically, the predictive performance
of machine learning models is evaluated using an external test set [2]. However, such
evaluations do not reflect the limitations of the model [3]. These limitations partially arise
from the training data the model has learned from. Test data that are similar to the training
data are expected to be easily predictable [4]. This expectation can be deceptive, since
parts of the chemical space that are well covered by the training data can still be hard to
model, e.g., in the case of unusually high output fluctuations in dense areas. In quantitative
structure–activity relationship (QSAR) research, such areas are known as activity cliffs.
Formally, they are pairs or groups of compounds that are structurally similar but differ
vastly in their potency [5]. Although they are interesting from a pharmacodynamical point
of view, they add to the difficulty of predictive modeling. It is, therefore, desirable to
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provide an uncertainty parameter additional to each prediction that estimates the reliability
of the predicted output [6], e.g., by error bars [7]. Quantifying the uncertainty of predictive
models in drug design and chemoinformatics is considered part of assessing their appli-
cability domain. Due to the established, yet still increasing, usage of machine learning
in drug design [8,9], exploring and evaluating the applicability domain and uncertainty
quantification methods is an on-going field of research [10–16]. Some modeling techniques
must be augmented or modified to yield uncertainty measures (UMs), others have built-in
measures due to their operating principle.

Random Forests (RFs) are widely applied machine learning techniques that already
provide a UM through construction [17]. An RF consists of individual decision tree
estimators that are independently fitted models. According to a given loss function that
penalizes errors, a tree learns by finding optimal splitting points for individual independent
variables to partition the training data such that the resulting error term becomes minimal.
To build an RF, several decision trees are fitted to different randomly chosen subsets of
the training data. When growing a tree, the split function chooses the best independent
variable and the best splitting point for that variable, but at each step it receives only a
randomly selected subset of the variables. These perturbations render the trees in the RF
diverse and improve generalization. By default, RFs for regression output the arithmetic
mean over all single-tree predictions. Due to the approach of aggregating multiple weak
learners to a stronger single predictor, RFs are, by definition, ensemble predictors [18].
Uncertainty estimates for new objects can, in general, be obtained from ensembles by
considering the disagreement of the ensemble members’ predictions, where the degree
of disagreement is assumed to be related to the difficulty to predict the output. The
standard deviation or variance are straight-forward measures to capture how wide the
single predictions are distributed around the mean. Measures of prediction distribution
are the default uncertainty estimators of ensemble-based methods [19].

Depending on the task at hand, decision trees might be outperformed by other ma-
chine learning techniques, but their partitioning strategy is easy to interpret and gives
rise to a novel UM. As the trees in an RF focus on local error minimization, their leaves
represent areas where the output variance is at a supposed minimum. Thus, more variance
in a leaf implies that the local area must be hard to model and objects that are located
in that area are, therefore, predicted with more uncertainty. An illustrative example of a
high-variance leaf is provided in Figure S1 in the Supporting Information. The concept
of uncertainty estimation by screening for high local output variances has already been
successfully applied in a model-independent approach [20]. High-variance leaves (HVLs)
can be determined by providing a threshold value, where leaves with an output standard
deviation above this threshold are HVLs. RF predictions, for which more tree estimators
predict from HVLs, can then be considered less certain. The fraction of trees that predicts
from HVLs serves as a UM for RF regression. Originally, the idea of HVLs with a thresh-
old was inspired by the discrete definition of activity cliffs, since they imply structurally
similar molecules with dissimilar activities [21]. While the standard deviation of ensemble
predictions (SDEP) can become infinitely large in theory, the fraction of HVLs lies between
0 and 1 by construction and is, therefore, comparable across datasets. The disadvantage
is the requirement of the threshold parameter for the standard deviations in the leaves.
The best threshold for the dataset at hand can be found by grid-search or provided by the
user from experience. For brevity, the fraction of HVL predictions and the actual HVLs are
abbreviated as HVLs.

On a selection of chemoinformatic regression datasets, predominantly target activities,
the HVLs are evaluated for their ability to reflect prediction uncertainties. Basic RF models
are computed for all datasets and two different descriptors, followed by assessing their
predictive quality. HVLs are defined using a constant threshold to give an impression of
their base performance, without any additional tuning. For the predictions of each run, the
SDEP and HVLs are compared by measuring the decline in error when removing those
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predictions of highest uncertainty. As expected, HVLs are indeed related to modeling
difficulty and perform comparably yet slightly inferior to the SDEP.

2. Results
2.1. Predictive Performance

The model performances for each dataset are listed in Table 1. Overall, models using
ECFPs achieved higher predictive performances. In only 9 out of the 32 datasets, the
predictive performance was higher when using RDKit descriptors. For dataset P04150, the
models of both descriptor types achieved the same prediction quality.

The three non-bioactivity datasets and Q16602 exhibited the lowest errors among all
RDKit descriptor evaluations. The four best-performing datasets for ECFPs were P42345,
Q16602, P24530, and P25929. The lowest performances among RDKit descriptor evaluations
were obtained for P41594, MMP2, P61169, and O60674. For ECFP evaluations, the datasets
Q05397, P28482, P41594, and P28335 had the lowest prediction quality.

The degree of overfitting varied for each combination. While all train R2s were located
between 0.88 and 0.98, test R2s ranged from 0.47 to 0.91. Test performances of the activity
datasets were consistent with the results of Cortes-Ciriano [22]. Observed vs. predicted
scatter plots for all evaluations give a visual overview of the predictive performances and
are provided in Tables S1 and S2 in the Supporting Information.

2.2. Area under the Confidence–Oracle Error Curve after Removing 50% of the Most Uncertain
Predictions (AUCO50)

All comparisons by relative AUCO50 (i.e., the AUCO50 using HVLs relative to using
the SDEP) are shown in Figure 1. When using RDKit descriptors, the areas for the HVLs
ranged from 97.4% to 136.9% of the corresponding SDEP area, 114.9% on average. The
two extreme cases corresponded to the datasets F7 and Q16602, respectively. For ECFPs,
the areas ranged from 80.1% to 129.0%, with 108.7% on average. The extreme cases
correspond to the datasets P16851 and Q05397, respectively. The confidence curves for
RDKit descriptors are shown in Figure 2, while those for ECFPs are depicted in Figure 3.
These confidence curve plots also illustrate how the areas were obtained: The AUCO50 for
the SDEP arose from the area between the black ideal curve and the gray SDEP confidence
curve, and the AUCO50 for HVLs arose from the area between the black ideal curve and
the red HVLs confidence curve.

The datasets where both measures exhibited the most similar areas were P28335 when
using RDKit descriptors and TETRAH in case of ECFPs. Similar areas occurred when either
the confidence curves of both measures constantly overlaped or one curve crossed the other,
such that their areas became alike in the long run. For both possibilities, respectively, the
confidence curves of P28335, using RDKit descriptors, and P49146, using RDKit descriptors,
are visualized in Figure 4. All confidence curves can be found in Tables S3 and S4 in the
Supporting Information. Furthermore, UM vs. residual scatter plots are provided in
Tables S5 and S6.

For the comparisons between the SDEP and HVLs involving RDKit descriptors, 22
out of all 32 cases differed more than 10% in their AUCO50. Nine cases differed more than
20% and two cases differed more than 30%. For the evaluations when using ECFPs, 18 out
of the 32 cases differed more than 10% in AUCO50. Four cases differed more than 20%, and
no case differed 30% or more.
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Figure 1. Comparison of the two UMs by AUCO50. All values were divided by the AUCO50 of the SDEP to show relative
areas. The height of each bar indicates the area between ideal curve and that of the measure (smaller is better). Bars
corresponding to the SDEP are shown in gray, while bars of HVLs are colored red. The results are shown for all datasets
(a) when using RDKit descriptors and (b) when using ECFPs.

Table 1. Train performances and test performances for every dataset in combination with both
descriptors. All calculations were performed at full floating-point precision, and the table was
rounded afterwards. For the descriptor that achieved the better test performance on a particular
dataset, Test MSE and Test R2 are underlined and in bold. The median of each column is presented
in the last row.

RDKit Descriptors ECFPs

Train Test Train Test

Dataset MSE R2 MSE R2 MSE R2 MSE R2

F7 0.049 0.948 0.277 0.705 0.077 0.918 0.303 0.676
IL4 0.027 0.912 0.146 0.520 0.036 0.883 0.133 0.563
MMP2 0.084 0.905 0.465 0.474 0.102 0.885 0.389 0.560
O60674 0.133 0.909 0.742 0.495 0.139 0.905 0.597 0.594
O14965 0.106 0.938 0.610 0.642 0.104 0.939 0.449 0.736
P03372 0.097 0.945 0.489 0.720 0.120 0.931 0.497 0.715
P04150 0.085 0.936 0.444 0.664 0.110 0.917 0.445 0.664
P06401 0.070 0.947 0.399 0.696 0.089 0.932 0.373 0.715
P11229 0.087 0.951 0.500 0.717 0.129 0.927 0.522 0.705
P12931 0.100 0.947 0.546 0.712 0.113 0.940 0.478 0.747
P16581 0.108 0.937 0.620 0.640 0.140 0.919 0.539 0.688
P17252 0.109 0.928 0.539 0.642 0.125 0.917 0.495 0.671
P18089 0.103 0.932 0.606 0.598 0.122 0.919 0.640 0.575
P19327 0.096 0.924 0.565 0.553 0.107 0.915 0.481 0.620
P21554 0.095 0.955 0.556 0.736 0.115 0.945 0.513 0.757
P24530 0.068 0.958 0.368 0.770 0.077 0.952 0.306 0.809
P25929 0.081 0.955 0.473 0.739 0.091 0.950 0.386 0.787
P28335 0.088 0.923 0.519 0.541 0.109 0.904 0.499 0.560
P28482 0.074 0.915 0.404 0.532 0.077 0.911 0.393 0.546
P35968 0.109 0.934 0.648 0.608 0.119 0.928 0.544 0.671
P41594 0.113 0.910 0.664 0.473 0.133 0.894 0.561 0.555
P42345 0.095 0.963 0.534 0.790 0.105 0.959 0.450 0.823
P47871 0.079 0.929 0.451 0.591 0.097 0.912 0.421 0.619
P49146 0.071 0.954 0.399 0.741 0.096 0.938 0.423 0.726
P61169 0.087 0.910 0.498 0.486 0.100 0.897 0.417 0.570
Q05397 0.084 0.919 0.484 0.534 0.109 0.895 0.471 0.546
Q16602 0.073 0.968 0.439 0.808 0.100 0.956 0.416 0.818
P24941 0.115 0.940 0.661 0.655 0.136 0.929 0.581 0.697
Q92731 0.097 0.926 0.496 0.619 0.127 0.902 0.516 0.604
TETRAH 0.036 0.967 0.190 0.822 0.082 0.923 0.291 0.727
DELANEY 0.073 0.983 0.413 0.906 0.349 0.921 1.278 0.709
FREESOLV 0.281 0.981 1.539 0.896 1.351 0.909 4.516 0.694

Median 0.088 0.938 0.497 0.649 0.109 0.919 0.474 0.682

The fact that both UMs performed comparably gave rise to the question whether they
were correlated. Examples of the SDEP vs. HVL correlation plots for two datasets are
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visualized in Figure 5. The datasets correspond to the examples in Figures 3a and 4a. In
the first case, P16581 using ECFPs, HVLs outperformed the SDEP. The dissimilarity of the
two UMs in this case was also indicated by a rather low Pearson correlation coefficient (r)
of 0.58. In the second case, P28335 using RDKit descriptors, both UMs performed alike.
The values of both UMs for each object were also more correlated, resulting in an r of
0.78. Overall, values of r ranged between 0.39 (P17252 with RDKit descriptors) and 0.86
(FREESOLV with RDKit descriptors). Scatter plots and rs for all cases are provided in
Tables S7 and S8 in the Supporting Information.

Figure 2. Two confidence curve plots from models using RDKit descriptors. (a) Plot of dataset F7,
for which HVLs had the smallest area compared to that of the SDEP. (b) Plot of dataset Q16602, for
which HVLs had the largest area compared to that of the SDEP.

Figure 3. Two confidence curve plots from models using ECFPs. (a) Plot of dataset P16581, for which
HVLs had the smallest area compared to that of the SDEP. (b) Plot of dataset Q05397, for which HVLs
had the largest area compared to that of the SDEP.

Figure 4. Two confidence curve plots from models using RDKit descriptors. (a) Plot of dataset
P28335. (b) Plot of dataset P49146. Although the area ratios of both UMs in (a,b) were close to 1, the
confidence curves of the HVLs differed in their shape. In (a), both curves progressed in a similar
fashion, while in (b), the SDEP curve declined faster until the curve of the HVLs sharply decreased
after 35% and continued to decline.
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Figure 5. Scatter plots of SDEP vs. HVLs. The SDEP of each object in a dataset was plotted against its
fraction of HVLs. (a) Plot of dataset P16581, using ECFPs. (b) Plot of dataset P28335, when applying
RDKit descriptors. The datasets correspond to those of Figures 3a and 4a, respectively.

2.3. Decline in MSE When Omitting the Least Certain Predictions

The MSEs for leaving out the least certain fractions of different sizes are visualized
in Figure 6. For most cases, the MSE constantly shrank when removing more unreliable
predictions according to both UMs. In some evaluations, the MSE rose from one step to the
next. Such reversions could mostly be observed from MSE50 to MSE90 (i.e., in cases least
relevant for practitioners); overall, in seven evaluations. Four of those incidents solely arose
from the usage of the SDEP. The corresponding evaluations belonged to the datasets MMP2
and O60674 when using RDKit descriptors, and F7 and MMP2 when using ECFPs. In the
other three cases, the effect occurred for HVLs and the SDEP alike. They corresponded
to P16581, P49146, and Q05397, all featurized by ECFPs. Rises in MSE from one fraction
to the next could also be observed for other steps. Exemplarily, MSE20 was larger than
MSE10 for P18089 when ECFPs and HVLs were applied. Apart from these exceptions, the
trend already observed for the AUCO50 continued beyond the 50% area.

The step from MSE0 to MSE5 represents the ability to detect the least accurate pre-
dictions. In some cases, the MSE5 was larger than the MSE0, implying that the UM was
misleading for these fractions and eliminated accurate predictions. Examples thereof
comprise the evaluation with HVLs of dataset P18089 for RDKit descriptors, or that of
F7 in combination with ECFPs. This behavior was found exclusively for evaluations
involving HVLs.

Overall, most SDEP MSEs were below their corresponding HVL MSEs. All MSE50s
and all MSE90s, independent of the dataset, descriptor, or UM, were below their MSE0s.
The average MSEs at each fraction across all datasets for both descriptors is summarized in
Figure 7. It can be seen that the standard deviations between the measures overlapped for
all average MSEs. With the exception of the average MSE5 in the case of RDKit descriptors,
the average MSEs of HVLs lied within the standard deviations of the corresponding SDEP
MSEs and vice versa. Despite some increases from one fraction to the next, Figure 7
reveals that, on average, both UMs caused a decline in MSE when applied to remove
unreliable predictions.

An overview of all AUCO50s and MSEs of the specified fractions is provided in
Tables S9–S12 in the Supporting Information.
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Figure 6. MSEs for different fractions of omitted predictions for all datasets. The label of the corresponding dataset of
each plot is denoted left to the y-axis. MSEs when removing predictions according to the SDEP are shown in gray. MSEs
obtained by removing predictions using HVLs are depicted in red. For each evaluation, the six connected points correspond
to the MSE when leaving out the least certain 0%, 5%, 10%, 20%, 50%, and 90%, as denoted by the x-axis. All values within
each evaluation were divided by the total MSE involving all predictions (MSE0) to aid visual comparison. The numbers on
each y-axis are, therefore, fractions of MSE0.
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Figure 7. Average MSEs for each fraction across all datasets. The vertical bars at each point indicate
standard deviations. For comparability, all MSEs were divided by the MSE0 before averaging.
(a) Plot for evaluations using RDKit descriptors. (b) Plot for evaluations using ECFPs.

3. Discussion

In all cases, the MSE decreased when removing uncertain predictions according to
each measure. For a random measure with no correlation to prediction uncertainty, the
MSE is expected to remain constant on average. Therefore, both UMs were considered to
be effective in the detection of uncertain predictions. For the datasets and the evaluation
strategy at hand, the SDEP outperformed HVLs in most cases, although their performances
did turn out to be comparable. Despite the predictive quality of the examined model or
its degree of overfitting, the decline in error could be considered similar for both UMs.
Especially in cases where both measures showed similar performances, variations in the
selection of train and test splits might change the ranking. The results would also differ
when the standard deviation threshold was tuned as a hyperparameter. In this case, it also
had to be decided how to tune the threshold, i.e., which objective function to use for this
optimization step. AUCO would be a natural choice, but the MSE for a given fraction of
the predictions could also be used.

To a certain degree, the fraction of HVLs and the SDEP were correlated in all cases,
which was expected, since both measures were effectively able to eliminate uncertain
predictions. The absence of a correlation could only be expected from a random measure
unrelated to prediction errors. Furthermore, HVLs detect local variations, i.e., output
variability in similar regions of the independent variables. The SDEP is based on the
variation of the predictions across the trees. In many cases, local variation in the leaves can
induce mean shifts of the predictions. Thus, in these cases, both measures can yield similar
uncertainties. Yet, cases are conceivable where homogeneous leaves in different trees can
still disagree in their predictions, which can go unnoticed by HVLs, but can be detected by
the SDEP. This might be the reason why the SDEP performed slightly better. This line of
reasoning showed an advantage of the SDEP and underlined its value as the default UM in
regression RFs.

Cases of strong correlation further indicated the similarity of both UMs. In cases of
weaker correlation, both UMs could be combined in expectation to benefit from synergistic
effects. A consensus measure could be more effective than the two UMs individually.
However, the aggregation of UMs was beyond the scope of this study.

By removing more and more unreliable predictions, each remaining MSE should be
smaller than the previous MSE. For almost all observed cases and the choice of fraction
size at each step, such a relation could be observed. Occasionally, the removal of larger
fractions resulted in a larger MSE, at least between individual steps. Of those cases where
the MSE90 was larger than the MSE50, three were also among models of least predictive
performance. MMP2 and O60674, when using RDKit descriptors, and Q05397 when using
ECFPs, were within the top four worst predictive models of each descriptor. On the one
hand, it seems plausible that the success of a UM can be linked to the predictive quality
of the model. It appears odd that ensemble members that highly disagree can be correct
in their aggregated prediction. On the other hand, ensemble predictors benefit from the
diversity of their members [23]. The random variable selection in RFs is actually a feature
to induce member diversity since, depending on the dataset, a diverse set of predictions
can still lead to an accurate single prediction. Exemplarily, Q16602, when applying ECFPs,
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also exhibited a rise in MSE from 50% to 90%, but was actually among the best performing
models. It is, therefore, hardly generalizable to estimate the UM performance from the
predictive performance.

Averaging over all results provided a more general view in contrast to considering
the outcome of only some individual datasets. On average, the general decline in MSE
and the observation that SDEP MSEs were below the MSESs of HVLs became clearer.
Furthermore, by also including the standard deviation of the fraction-specific MSEs across
all datasets, the overlap between both performances became visible, despite the fact that
the SDEP outperformed HVLs. Variation between MSEs was more distinct when removing
larger fractions, observable from the larger standard deviations for the MSE20s, MSE50s,
and MSE90s in contrast to those of the MSE5s and MSE10s. In conclusion, the reduction in
MSE was similar for the most uncertain predictions, while the efficiency in error reduction
in more certain predictions was rather case-dependent.

In general, a UM is not expected to reproduce the prediction error, but to estimate
the confidence of the model for a particular new object. A metric that is able to actually
estimate the error implies that the model probably left out usable information, i.e., was
underfitted. The concept of predictive uncertainties is related to that of error bars (i.e.,
of confidence or prediction intervals), where larger error bars do not necessarily indicate
larger errors, but a higher chance to find largely varying predictions.

Finally, predictive uncertainties depend on measurement errors in the training data.
Models that yield accurate predictions based on experimental measurements are not
necessarily able to accurately predict error bars. This phenomenon was pointed out by
Wood et al. in a study about QSAR model quality, exemplary for a dataset of experimentally
acquired lipophilicities [24]. For FREESOLV, the error reduction (relative to the total MSE)
was most effective among all datasets, regardless of which descriptor or UM was used.
Apart from the hydration free energies taken from the literature, the outputs for FREESOLV
were simulated using methods of molecular dynamics. Thus, they were calculated instead
of measured and, therefore, of a different nature, which might explain the extraordinary
success of both UMs.

4. Materials and Methods
4.1. Data Acquisition

Overall, 32 datasets were examined. Of those datasets, 29 were activities compiled
for a QSAR benchmarking study by Cortes-Ciriano. The number of compounds ranges
from 137 to 4662 per set. The labels used in this article to refer to each activity dataset
were identical to those in the previous study. To show the applicability of HVLs beyond
the scope of the QSAR context, three additional datasets were added, which were not
related to target activity. A set of toxicity values against Tetrahymena pyriformis, measured as
inhibitory growth concentration, containing 1571 molecules, and was labeled TETRAH [25].
The ESOL dataset, referred to by Delaney, has 1144 entries of molecules and their aqueous
solubility [26]. The dataset FREESOLV comprises 643 compounds and their hydration
free energies, either taken from the literature or obtained by molecular dynamics simula-
tions [27]. A comprehensive summary of all datasets can be found in Tables S13 and S14 in
the Supporting Information.

4.2. Data Preparation

Initially, all compounds were retrieved as SMILES. The filtering steps that Cortes-
Ciriano describes in their study were also applied to the activity datasets here. The
implementation of the filtering mechanism is included in Figure S2 in the Supporting
Information. The SMILES were converted to canonical SMILES using RDKit [28], followed
by two descriptor calculations using the MoleculeNet framework [29], resulting in 64 cases
for evaluation. The first descriptor was the extended connectivity fingerprints (ECFPs) [30]
with an atom neighbor radius of three, hashed to bit vectors of a length of 2048. The second
one was a collection of 200 physicochemical and fragment-based molecular properties from
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RDKit, called RDKit descriptors. IC50 values in the activity datasets were converted to
pIC50 values by multiplying the decadic logarithm of the IC50 values by −1. The columns
remained unscaled as RFs do not require variable standardization.

4.3. Machine Learning Setup

A single 10-fold cross-validation was performed to obtain test predictions for all
molecules. The RF implementation of choice was the RandomForestRegressor from scikit-
learn [31], with a fixed number of 500 ensemble members and a minimum of two samples
per leaf. This ensured that every leaf had technically enough values to calculate a standard
deviation. No hyperparameter tuning of RF took place, as the aim of this work was to
assess UMs and not to improve predictive performance. The lack of hyperparameter
tuning decreases overfitting and yields more comparable models. Variables that contained
identical values, i.e., carried no information, were dropped at every iteration right before
the current model was fitted. Due to the 10-fold approach, the output of every molecule
was computed nine times when in a training split and one time when in a test split. To
obtain single values for all molecules, the nine train values per molecule were averaged
before any performance measures were computed. Similarly, the HVL occurrences for
all train values were summed up and divided by the sum of all ensemble members in all
models they could occur in (500 ∗ 9 = 4500).

4.4. Predictive Quality

Both UMs were presented in a competitive approach. The applicability of HVLs was
revealed by demonstrating how well they performed compared to the state-of-the-art SDEP.
However, such entirely relative comparisons did not account for cases in which the SDEP
did not perform well in the first place. Therefore, it was reasonable to inspect the predictive
performance first to obtain an impression of how erroneous the unreliable predictions
actually were.

Two metrics were applied to evaluate predictive performances. The mean squared
error (MSE) is an established metric to assess the error (absolute measure) for a set of
predictions and corresponding observed outputs:

MSE =
∑n

i=1(yi − ŷi)
2

n
.

Here, n refers to the number of data points in the test set, and yi and ŷi are the observed
values and their predictions, respectively. In contrast to the MSE, R2 is a relative measure
that compares the quality of the predictions to the single-valued mean predictor [32]:

R2 = 1 − ∑n
i=1 (yi − ŷi)

2

∑n
i=1(ȳ − yi)2 .

Various definitions of R2 exist [33]. In case train data and test data are distinct sets,
some definitions exclusively consider the average of the train outputs or test outputs as
ȳ [34]. Since the current implementation involved the whole dataset as train and test
set alike (although keeping train and test distinct for every split), the usage at hand
corresponded to the general definition of R2 here, i.e., ȳ included all outputs of a dataset.

4.5. Uncertainty Assessment

The implementation from scikit-learn does not simply calculate the average of all
sample outputs in a leaf. From those outputs, some are selected and weighted unequally
to further improve the predictive performance of the tree. Therefore, the prediction deter-
mined by a decision tree in the RandomForestRegressor does not correspond to the plain
mean. The detection of HVLs was still implemented as explained, since the idea was to
capture the output fluctuation in the subspace defined by the leaf. Taking the outputs
obtained by the additional improvement step of scikit-learn would underestimate the leaf
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variance. The threshold to define HVLs was set to half the standard deviation in y of the
current dataset. E.g., the outputs of TETRAH had a standard deviation of about 1.03, so
the threshold for this dataset was approximately 0.515. This procedure led to reasonable
results and was based on preliminary experiments.

Comparing the SDEP to HVLs was performed by assessing their abilities to eliminate
uncertain predictions. In other words, given as a set of predictions, how well does the
overall error decrease when removing the worst predictions according to some measure?
A good UM would be able to detect the worst predictions without knowing their errors.
Thus, removing those predictions should decrease the MSE, where a better UM would
decrease the MSE further while removing the same amount of predictions. For both
UMs, the predictions were sorted from least to most certain, i.e., the highest SDEP to the
lowest SDEP and most HVLs to least HVLs, respectively. Additionally, the predictions
were sorted by their absolute residual, descendingly, to emulate an ideal measure that
perfectly scales with the error. All MSEs from leaving out 0% to 50% of the predictions
according to each measure were computed object-wise and plotted for comparable MSE
decrease plots, or confidence curves. Hereby, the MSE was re-calculated every time a single
prediction was removed, where the MSE0 contained all n predictions of the dataset, the
next point on the confidence curve contained n − 1 predictions, etc. The ideal curve, where
the predictions were perfectly sorted (by their residual) would, therefore, decrease sharply
and smoothly, while the curves where the residuals were sorted by a UM would practically
never follow this ideal shape. The areas that the curves of both UMs enclosed with the ideal
measure curve were compared to assess the difference in their uncertainty measurement
performance. Scalia et al. refer to this metric by area under the confidence–oracle error
(AUCO) [23]. The AUCO of 50% data coverage would be referred to by AUCO50. A
smaller AUCO50 implies that the curve of the measure was closer to the ideal curve; thus,
removing erroneous predictions more efficiently. Covering the full area, i.e., up to 100%,
leads to unreliable results due to the division by the number of remaining objects which
becomes smaller and smaller.

To inspect the detection of unreliable predictions beyond 50%, but also to compare
smaller fractions, the remaining MSEs at 5%, 10%, 20%, 50%, and 90% prediction removal
were picked, resulting in MSE5, MSE10, MSE20, MSE50, and MSE90. These resulting MSEs
were compared between the two UMs.

5. Conclusions

In this work, HVLs were evaluated as a specific UM for RFs. Their principle was
explained and their performance estimated on a diverse collection of datasets. It could be
demonstrated that the concept of HVLs was applicable to assess predictive uncertainties
and comparable in performance to the default SDEP. Especially due to their similar effi-
ciency, the large-scale evaluations were required to reasonably compare the two UMs. In
other words, a smaller study could misleadingly suggest that HVLs prevail over the SDEP,
e.g., by only involving the non-bioactivity datasets and ECFPs.

An additional variation of the HVL implementation could improve the detection of
unreliable predictions. A continuous definition of the UM could increase its performance.
Instead of a hard cutoff, a continuous estimator, e.g., the average leaf variance, could
reproduce the output fluctuation more distinctly. With a continuous estimator, there is no
need for setting the cutoff value, which is an additional hyperparameter. The immediate
disadvantage of the continuous version of the measure is that it can become infinitely large
and is not normalized.

In contrast to the SDEP, which can be used for all ensemble regressors, HVLs represent
a measure tailored to RF. The perception that areas of unusual deviations are harder to
model is intuitive and makes HVLs easy to infer from the training data. However, while
HVLs reliably detect local variations (in the sense of heterogeneous outputs for similar
molecules), the SDEP also considers the impact of local variations on the predictions, which
might be the reason why the SDEP was slightly more effective.



Molecules 2021, 26, 6514 12 of 13

Supplementary Materials: The following are available online in the Supporting Information,
Figure S1: scheme of a fitted regression tree with a high-variance leaf, Figure S2: Python code
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uncertainty vs. residual scatter plots, Tables S7 and S8: SDEP vs. HVLs scatter plots, Tables S9–S12:
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