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Abstract: The permeability transition (PT) is an increased permeation of the inner mitochondrial
membrane due to the opening of the PT pore (PTP), a Ca®*-activated high conductance channel
involved in Ca®* homeostasis and cell death. Alterations of the PTP have been associated with many
pathological conditions and its targeting represents an incessant challenge in the field. Although
the modulation of the PTP has been extensively explored, the lack of a clear picture of its molecular
nature increases the degree of complexity for any target-based approach. Recent advances suggest
the existence of at least two mitochondrial permeability pathways mediated by the F-ATP synthase
and the ANT, although the exact molecular mechanism leading to channel formation remains elusive
for both. A full comprehension of this to-pore conversion will help to assist in drug design and to
develop pharmacological treatments for a fine-tuned PT regulation. Here, we will focus on regulatory
mechanisms that impinge on the PTP and discuss the relevant literature of PTP targeting compounds
with particular attention to F-ATP synthase and ANT.

Keywords: permeability transition; calcium; F-ATP synthase; adenine nucleotide translocator;
cyclophilin D; mitochondrial channels

1. Introduction

The permeability transition (PT) refers to an increased permeability of the inner
mitochondrial membrane (IMM) to solutes in response to matrix Ca®* which leads to
matrix swelling. Although this process was initially considered as a direct consequence
of membrane damages likely due to activation of phospholipases (PLAs) [1], the PT was
then ascribed to the opening of a regulated channel, the so-called PT pore (PTP) [2—4].
The PTP is now defined as an unselective mitochondrial high conductance channel with
an estimated diameter of 14 A [5], allowing solutes of up 1.5 kDa to equilibrate across
the membrane. Supporting evidence was provided by electrophysiological studies in
mitoplasts which confirmed the existence of a Ca?*-activated high conductance channel
and identified some peculiar characteristics, i.e., a maximal conductance of 1.3 nS, a variety
of subconductance states, and the typical flickering activity (rapid oscillation between
closed and open states) [6-8].

Although the molecular identity of the PTP is a long-standing mystery, some efforts
have been made aiming to obtain a final picture of the pore components. An early model for
PTP formation predicted a multiprotein complex including the core constituents adenine
nucleotide translocator (ANT) and voltage-dependent anion channel (VDAC) orchestrated
primarily by hexokinase 2 and cyclophilin D (CyPD), which would act as modulators [9].
However, gene inactivation studies led to the dismissal of this hypothesis, as reviewed
in [10]. Recent advances provided new clues on the most promising candidates, indicating
F-ATP synthase as a leading PTP component and re-evaluating the contribution of ANT in
the PT process. In this review, we will focus on the role of F-ATP synthase and ANT in PTP
formation, examine regulatory mechanisms, and discuss the relevant PTP pharmacology.

Molecules 2021, 26, 6463. https:/ /doi.org/10.3390/molecules26216463

https:/ /www.mdpi.com/journal/molecules


https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-3507-8708
https://orcid.org/0000-0002-4573-9306
https://doi.org/10.3390/molecules26216463
https://doi.org/10.3390/molecules26216463
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26216463
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26216463?type=check_update&version=4

Molecules 2021, 26, 6463

2 0f 22

2. Modulation of the PTP

Over decades of studies, a plethora of endogenous modulators have been discovered
to govern PTP opening, and while some regulatory sites have been identified, most of them
remain largely unknown. Matrix Ca?*, also referred to as the “permissive” factor, results
to be a strict requirement for PTP activation, although it might not always be sufficient to
initiate the PT process. The minimum Ca?* threshold necessary for PTP opening varies
indeed among experimental conditions and depends on many additional factors that could
change the sensitivity of the pore to the cation. For example, divalent cations other than
Ca?*, such as Mg?*, Sr?*, and Ba%* delay PT occurrence, likely by competing with Ca?*
for the same binding site [11,12]. Adenine nucleotides that act synergistically with Mg?*
also contribute to PTP inhibition through a yet undefined mechanism. In early studies [2],
Hunter and Haworth reported that the inhibitory effect of ADP on the PT is mediated by
low- and high-affinity binding sites, the former being abolished by the ANT-specific ligand
atractylate (ATR). Halestrap and co-workers proposed that the low-affinity binding site for
ADP is located in the ANT as well [13]. In de-energized mitochondria, acidic (below 7) or
alkaline (above 7.4) matrix pH mediates desensitization of the PTP, while in the first case,
the inhibition occurs through the reversible protonation of matrix His residues [14], the
basis of inhibition in the latter remains obscure. Of note, in energized mitochondria, an
external acidic pH promotes rather than inhibits PTP opening by augmenting the uptake of
inorganic phosphate (Pi) through the phosphate carrier [15]. Pi is one of the most puzzling
PTP modulators and its mechanism of action has been only partially dissected. Despite
the fact that Pi binds matrix Ca2*, sequestering it in the form of precipitates that decrease
the free Ca®* required for PTP opening [16,17], it readily induces pore opening. It has
been proposed that Pi exerts its positive action when present in the form of polyphosphate
aggregates, the loss of which significantly delays PT occurrence [18]. On the other hand, the
PTP-inducing effect of Pi is only seen in the presence of CyPD, a mitochondrial peptidyl-
prolyl cis-trans isomerase and one of the best-characterized PTP activators, as we will
discuss in the following section. The ablation of CyPD in mammals indeed prevents PT
activation by Pi and rather unmasks an inhibitory effect, which may depend on the lowered
matrix-free Ca?* concentration [19]. This effect of Pi was also documented for other species,
i.e., D. melanogaster [20] and S. cerevisiae [21-23], in which mitochondrial CyPs do not
appear to participate in PTP modulation.

The PTP is a voltage-dependent channel and promptly responds to membrane depo-
larization, which boosts its open probability [24], apparently mediated by voltage sensing
residues that have not been fully characterized yet. Critical arginines are thought to tune
a putative voltage sensor of the pore [25,26]. These residues appear not to reside in the
ANT given that ANT-deficient mitochondria do undergo mitochondrial swelling upon
carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) treatment [27] and that
the arginine-specific reagent phenylglyoxal (PGO) does not affect ADP/ATP exchange
properties [25]. However, permeabilized C2C12 myotubes devoid of ANT1 exhibited
higher voltage-thresholds of PTP opening, suggesting that ANT might be involved in the
voltage-sensing mechanism [28]. Among pore activators, fatty acids (FAs) deserve mention.
FAs have been shown to be potent uncouplers of oxidative phosphorylation [29]. Whether
FAs activate PTP opening through membrane depolarization or direct binding to PTP
constituents is still not known, and we will address this aspect together with the effect
of phospholipase inhibitors in an upcoming section. Thiol reagents that are also known
positive regulators of PTP opening might act by shifting the gating potential of the pore
to higher values, i.e., making pore opening more sensitive to small depolarizations [30].
Distinct active thiols have been identified by a careful phenotypic study using specific
reagents. At least three sites contribute to control PTP opening by oxidation: two thiols
exposed to the matrix side are apparently in equilibrium with the pyridine nucleotide
and glutathione pools, are protected by micromolar concentrations of N-ethylmaleimide
(NEM) and react with phenylarsine oxide (PAO), diamide (DIA) and tert-butyl hydroperox-
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ide (TBH) [31]; a third site instead faces the intermembrane space (IMS) and reacts with
copper-o-phenanthroline or with millimolar concentrations of NEM [32].

Although the modulation of the PTP has been extensively described, the lack of
a detailed picture of its molecular identity complicates the identification of the many
regulatory sites, which would help in drug design, allowing precise tuning of PTP opening.

3. Cyclophilin D: A Master PTP Regulator

To date, CyPD is one of the best-characterized protein interactors involved in the acti-
vation of the mammalian PTP without being a structural component and without affecting
channel properties [33]. Initial studies to shed light on PTP modulation by CyPD involved
protein inhibition or deletion, and overexpression of its encoding gene (Ppif). Clear-cut
evidence in support of CyPD as a master regulator of the PTP came from the observation
that Ppif/" mice show a striking desensitization to Ca®* of the PTP [34], which provides
substantial protection from cell death in a number of PTP-related paradigms, including
ischemia-reperfusion injury [34], heart failure [35], and muscular dystrophies [36,37]. How
CyPD controls PTP opening is still a matter of debate. One hypothesis suggests a direct
interaction with ANT [38,39], which could be enhanced under oxidative conditions [39].
CyPD can also bind F-ATP synthase in a process favored by Pi [40], providing a possible
explanation for the modulation of the PTP by Pi.

Recent work pointed out that CyPD can undergo many different post-translational
modifications (PTMs), including phosphorylation, oxidation, acetylation, and S-nitrosylation
that control PTP opening, as recently reviewed in [41]. One of the most studied PTM is
perhaps CyPD phosphorylation by glycogen synthase kinase 33 (GSK33), a constitutively
active Ser/Thr protein kinase that enhances PTP opening in cancer cells [42] and promotes
CyPD binding to ANT [43]. A set of kinases known as RISK (reperfusion injury salvage
kinases, including Akt, ERK1/2, PKG, PKC-¢, and p70s6K) performs an inactivating phos-
phorylation on GSK3f, impairing its ability to trigger the CyPD-PTP interaction [44].
Although the phosphorylation site(s) involved in the activity of GSK3f are yet unknown,
the phosphorylation status at S191 or 542 directly impacts on the ability of CyPD to regulate
the PTP. The phosphoresistant CyPD S191A mutation increases the resistance of the pore to
Ca?*, protects against cell death and exhibits a reduced myocardium infarct size after is-
chemia [45]. In addition, phosphorylation at S42 increases the propensity for pore opening
in mitochondria from MCU-KO mice [46]. It is interesting to note that the phosphorylation
of both serine residues correlates with an enhanced CyPD binding to the F-ATP synthase.
Other CyPD PTMs impinging on PTP modulation have been studied, such as sirtuin-3
(SIRT3) dependent deacetylation following SIRT3 overexpression [47-49]. In particular,
deacetylation of CyPD at K166 inhibits PTP opening and reduces cell death [47].

In tumor cells, CyPD was found to be sequestered by TRAP1, the mitochondrial
paralog of HSP90, which antagonizes the CyPD-dependent induction of PTP via its pro-
tein folding /unfolding mechanisms [50]. The formation of the TRAP1/CyPD complex is
prevented by CyPD-targeting compounds such as cyclosporine A (CsA), but not by the
TRAP1 ATPase activity inhibitor Gamitrinib, and can be disrupted by p53. TRAP1 has
been directly connected to PTP modulation, given that its inhibition or downregulation
results in mitochondrial depolarization, cytochrome c release, and cell death, which are
all features of PTP activation, while its overexpression exerts a protective effect [51]. The
TRAP1-dependent PTP regulation is detectable in different pathophysiological contexts, in-
cluding models of neural stem cells, kidney disease, and ischemic damage [52-54]. Indeed,
TRAP1 is overexpressed under hypoxia [55] and protects cardiomyocytes and rat brains
from hypoxic injuries and ROS-dependent pore opening upon ischemia-reperfusion [56,57].
Whether the TRAP1-dependent PTP modulation occurs uniquely through CyPD sequester-
ing is not known. Recently, TRAP1 was reported to directly bind several F-ATP synthase
subunits, in particular 3, «, v, d, g, and OSCP subunits [58], and this may open a new
field of investigation. A set of highly selective TRAP1 inhibitors were recently identified
by applying a molecular dynamics-based approach [59]. These compounds (compound
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5 in particular) inhibit TRAP1 ATPase activity abrogating its pro-tumorigenic functions
without affecting HSP90. It will be important to understand whether this beneficial effect
might also be due to an increased PTP opening propensity.

At present, PTP inhibition is achieved mostly by the use of drugs targeting CyPD
(see Table 1). The best characterized CyPD-targeting PTP inhibitor is CsA [60-62]. The
use of CsA in vivo, however, presents several intrinsic limits. One issue that is often not
adequately considered is the expression level of CyPD, which may vary widely in different
cells and tissues [63]. Additional problems arise from the inhibition of calcineurin. CsA
indeed binds all cyclophilins, including the isoform A located in the cytosol forming the
CsA-CyPA complex able to inhibit the Ca?*-dependent phosphatase calcineurin, prevent-
ing nuclear translocation of NFAT and consequent transcription of NFAT-targeted genes
(e.g., IL2), resulting in immunosuppression [64-66]. Importantly, calcineurin inhibition
also prevents dephosphorylation of Drp1l and its translocation to mitochondria, preventing
fission through an effect that is unrelated to PTP inhibition [67]. To avoid these com-
plex effects, derivatives of CsA such as NIM811 and Debio025 (also called Alisporivir)
have been synthesized, which after binding cyclophilins cannot form complexes with
calcineurin. These derivatives maintain the ability to inhibit PTP opening and have been
successfully used in the treatment of several pathologies. Of note, these CsA derivatives
showed a remarkable antiviral effect against HCV [68,69], and in the case of Alisporivir,
also against HIV [70]. NIM811 improves skeletal muscle salvage and survival in vivo
after ischemia-reperfusion injury [71] and ameliorates mitochondrial structural and func-
tional abnormalities in several models of muscular dystrophies [72]. It also improves
mitochondrial functions and decreases neurodegeneration after traumatic brain injury [73],
and appears effective in protecting against acute pancreatitis in different models [74].
Another CyPD-targeting compound is sanglifehrin A (SfA), a macrolide produced by
actinomycetes [75] with potent immunosuppressive features. SfA is not related to CsA,
but like CsA, it tightly binds to CyPA, although the resulting complex does not inhibit cal-
cineurin. Rather, SfA arrests T cell proliferation in the G1 phase in response to interleukin 2
through a mechanism involving NFkB-mediated upregulation of p53 and p21 genes, which
inhibit cell cycle kinases. SfA acts as a potent PTP inhibitor by sequestering CyPD and was
shown be protective against damage following ischemia-reperfusion [76]. However, all
these compounds suffer from many disadvantages, including complex multistep synthesis,
potential side effects unrelated to cyclophilin inhibition and cytotoxicity. Newly synthe-
sized small CyPD inhibitors have been developed and applied in several pathological
conditions. A fragment-based drug discovery approach was used to generate a new family
of non-peptidic, small-molecule cyclophilin inhibitors with potent antiviral activity against
HCV, human immunodeficiency virus, and coronaviruses [77]. In particular, compound
31 showed good efficacy in protecting mice from hepatic ischemia-reperfusion injury [78].
However, a general limitation of all these CyP-targeting compounds is that they are not
PTP blockers and that their efficacy is limited by target availability.
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Table 1. List of compounds that modulate PT occurrence. When feasible, the target(s) and the mechanism of action

are reported.

Effect on the
Compound Name Target Permeability Mechanism of Action Comments
Transition (PT)
cyclosporin A C.SA./.CYPA comp lvex
(CsA) inhibits calcineurin
[64-66]
effective in ischemia/reperfusion
injury, dystrophic models,
NIM81L traumatic brain injury and
cyclophilins inhibition CyPD sequestration pancreatitis [71-74]
Debio025 effective in dystrophic models
or Alisporivir [36,79,80]
p
sanglifehrin A effective in ischemia-reperfusion
(SfA) injury [76]
compound 31 effective in hepatic
P ischemia/reperfusion injury [78]
Benzodiazepine- possible induction of cell death in
423 p F-ATP synthase activation conformational change lymphocytes [81]; effective on
(Bz-423) (OSCP subunit) of the channel activity of reconstituted
F-ATP synthase F-ATP synthase [82]
activation or
phenylglyoxals F-ATP synthase inhibition arginine adducts [25,26,83-86]
(PGO) (subunit g) (species-specific)
no alterations of PT occurrence
clisommvein F’ffbiﬁffse inhibition ND [13,24,87]; inhibition of channel
gomy and a) (controversial) activity of DDM-extracted F-ATP
synthase [88]
E-ATP synthase R protection in an ex vivo model of
compound 10 (subunit ¢) inhibition ND myocardial infarction [89]
atractylate - blockage of ANT in the
(ATR) activation cstate [90-92]
bongkrekic acid N blockage of ANT in the
inhibition 90-92
(BKA) adenine nucleotide m-state [ ]
suramin translocator (ANT) activation oxidation of critical induction of mitochondrial
thiols swelling [93]; FDA approved [94]
lonidamine activation ND activation of ANT channel activity
[95]
GNX-4728 and adenine nucleotide stabilization of AN.T effective in amyotrophic lateral
GNX-4975 translocator (ANT)? and phosphate carrier sclerosis [96]
(cinnamic anilides) ’ (PiC) interaction
effective in dystrophic models
TRO01 and TR002 ND inhibition ND . _andin
ischemia/reperfusion injury
[97,98]
nupercaine and phospholipases prevention of fatty acid [1,20]
tetracaine (PLAs) release !
ER-000444793 ND ND [99]
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4. Mitochondrial Permeability Pathways: The ANT and the F-ATP
Synthase Hypotheses

The molecular identity of the PTP is a matter of a long-standing debate in the field.
In spite of some controversies for which we refer to a recent review for a more detailed
discussion [100], one of the current hypotheses proposes that both F-ATP synthase and
the ANT can provide distinct IMM permeation pathways. Whether these two proteins
represent distinct permeability pathways or whether they cooperate is still under investi-
gation. The identification of regulatory mechanisms and compounds that act specifically
on these proteins could provide important clues to dissect their specific involvement in
pathophysiological conditions.

4.1. The ANT Pore

The ANT was the first candidate proposed for PTP formation as reviewed in [101,102].
It represents the most abundant protein of the IMM; in humans, four different isoforms
exist and are encoded by genes with high sequence homology (~80-90%); in comparison,
mice express only three ANT isoforms. In respiring mitochondria, it exchanges matrix ATP
for cytosolic ADP (with a strict ratio 1:1) according to their concentration gradient and to
the membrane potential, and generates a net negative charge. The transport mechanism
consists of the alternation of two different conformations, i.e., the cytoplasmatic-state
(c-state) and the matrix-state (m-state), which are opened toward the IMS and the matrix
side, respectively. In both states, a complex network of electrostatic interactions closes
the transporter from one side and allows the release of the nucleotide from the other
side [103,104]. The carrier was indeed suggested to operate with a single binding center
gated pore mechanism, by which the binding of ADP (or ATP) drives the conformational
changes between the two states modifying the matrix and cytoplasmic salt bridge networks;
in this way, the unique binding site is accessible for only one nucleotide at a time [90].
The structure of the ANT conformation states was revealed in the presence of specific
inhibitors, ATR and bongkrekic acid (BKA), which freeze ANT in the c-state and m-state,
respectively [104]. Supporting evidence for the ANT hypothesis as the PTP came from
the ability of ATR and BKA to exert opposite effects on the PT, i.e., ATR promotes pore
activation while BKA plays an inhibitory role. Another important clue concerns the
channel activity of ANT. Reconstituted bovine ANT into proteoliposomes indeed gives
rise to Ca®*-activated channels with subconductances of 300-600 pS showing, in addition,
a clear voltage dependence that resembles that of the PTP [91]. ANT channel openings
are also prevented by acidic pH, although at lower values (about 5.2) compared to those
required for PTP inhibition (about 6.5) [91]. Furthermore, recombinant ANT derived from
Neurospora crassa showed a similar profile of conductances, inhibition by ADP and BKA,
and activation by CyPD, although this could not be completely prevented by CsA [92].

ANT was also proposed to mediate the effect of oxidants in PTP modulation. In
particular, two ANT cysteines (C160 and C257) were found to be responsive to PAO and
DIA generating direct cross-links and via glutathione, respectively, that would activate
pore opening [105]. Moreover, the oxidation of an additional ANT cysteine residue (C56)
was suggested to promote ANT dimerization that might facilitate channel formation [105].
However, a causal relationship between ANT cysteine modifications and pore modulation
remains to be established, also considering that the ablation of ANT isoforms 1 and 2 did
not prevent the effect of oxidants on the PTP, which still responded to DIA and TBH [27].
In spite of the fact that more than two decades have elapsed from this proposal, no clues
have been provided to explain how ANT can form a channel. Considering the mechanism
of adenine nucleotide transport, it appears that the internal cavity is sealed during the
catalytic cycle, with the release or binding of the adenine nucleotide on opposite sides.
This seal may be incomplete in the presence of free FAs, given that under these conditions,
ANT can mediate H* translocation across the inner membrane [106]. One cannot exclude
that Ca?* may promote a dramatic conformational change on ANT, which would then
accommodate a high conductance channel, although this hypothesis requires experimental
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validation. The involvement of cardiolipin (which tightly binds ANT) in this putative
Ca?*-dependent modification of ANT has also been suggested [107].

In summary, we think that the role of ANT in PTP formation is rather strong and can
explain the modulation of the PT by both CyPD and ATR/BKA. However, whether ANT
operates as a pore or whether it influences the opening of an alternative channel is still not
known. It is important to note that the electrogenic ADP/ATP transport by ANT could
itself affect the PT process by modulating mitochondrial surface potential [108], which
may impinge on another permeability pathway. Genetic studies demonstrated that the PT
cannot be entirely ascribed to ANT. In a recent work from the Molkentin laboratory, ANTs
triple KO (TKO) mice lacking all murine isoforms (ANT1/2/4) have been characterized,
revealing that the PT persisted although it had a higher Ca?* threshold for activation [109].
Yet, TKO mitochondria underwent CyPD-dependent swelling in a sucrose-based medium,
clearly indicating the existence of an ANT-independent permeability pathway. Consistently,
TKO mitochondria still display channel activity as measured by patch-clamp, although at
variance from wild-type, appears to be insensitive to ADP, suggesting that the inhibitory
effect of ADP could be ascribed to ANT. These observations clearly demonstrate that the
PT occurring in the absence of ANTs must be mediated by a distinct pathway, which could
be provided by F-ATP synthase.

4.2. The F-ATP Synthase Pore

The F-ATP synthase is a multiprotein complex that primarily resides at the mito-
chondrial cristae edges. It consists of a globular, water-soluble F; head (x333) and a
membrane-embedded F, subcomplex which includes subunit a and the c-ring. These two
domains are linked by two stalks: the peripheral stalk (OSCP, b, d, F6 and in part A6L)
and the central stalk (v, §, ), which expands within the F; head [110]. The peripheral stalk
has a membrane domain that is structurally connected to the F, and includes subunits e,
g, f, part of A6L, 6.8PL, and DAPIT, which are involved in forming a complex interface
between monomers [111]. This allows F-ATP synthase to organize into dimers or higher
complexes, such as tetramers and oligomers, that contribute to determining the typical
bending of cristae [112]. F-ATP synthase, and in particular the OSCP subunit of the pe-
ripheral stalk, was identified as a novel interactor of CyPD, which decreases the ATPase
activity in a CsA-dependent manner [40,113]. Moreover, an ever-increasing number of
studies provided robust evidence that F-ATP synthase is one of the best candidates for
PTP formation. F-ATP synthase isolated from native gels from bovine [113], human [114],
yeast [23], and drosophila [115] mitochondria, exhibited Ca?*-activated currents in planar
lipid bilayers that can be inhibited by ADP/Mg?*. More recently, highly purified bovine
F-ATP synthase extracted under very mild detergent conditions, i.e., in presence of lauryl
maltose neopentyl glycol (LMNG), that preserves all subunits including the very labile
DAPIT and 6.8PL, was shown to generate Ca?*-activated channels with features that per-
fectly match those of the PTP [82]. ADP/Mg?* readily inhibited channel activity, indicating
that the adenine nucleotide binding site within the catalytic domain of the F-ATP synthase
is critical. In this study, dimers and oligomers gave rise to high conductance channels while
monomers were inactive, strengthening the potential role of the dimerization interface in
pore formation. Other groups pointed out the importance of monomers and proposed
that a channel forms within the c-ring. Indeed, F-ATP synthase monomers extracted with
dodecyl maltoside (DDM) generated channels that could be inhibited by ATP and Ba?*
and displayed conductances similar to those of the PTP [88]. Of note, these channels
opened in the absence of added Ca?*, which only increased the frequency of events. The
apparent discrepancy about the requirement of monomers or dimers may be explained by
the difference in F-ATP synthase structure and/or subunit composition, which are deter-
mined by the specific detergent utilized. Indeed, treatment with DDM leads to the loss of
subunits, e.g., DAPIT and 6.8PL; given its strong delipidating properties, this detergent
may also alter the lipid plug within the c-ring [116] that may be critical for PTP formation.
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Thus, an intact peripheral stalk may be required for PTP activation through the c-ring in
intact mitochondria.

Together with reconstitution studies, major efforts have been devoted to mapping
critical PTP regulatory sites on the F-ATP synthase by subunit deletion and by site-directed
mutagenesis. Mutation of a specific threonine residue (T165) in subunit 3, which coor-
dinates the binding of Mg?* during catalysis, strongly lowers the sensitivity of the PTP
to Ca?t, indicating that the binding site for the cation resides within the F; domain [117].
OSCP is also a fundamental hub for PTP modulation. This subunit not only represents
a binding site for CyPD, but also possesses a critical His (H135) that mediates the effect
of pH on the PTP [118]. Furthermore, we recently reported that the unique OSCP Cys
(C141), which is in proximity to the H135, is involved in the modulation of the PTP by
oxidants [119]. In particular, this thiol which actively responds to DIA and mitoparaquat
and modulates pore opening appears to be masked by the binding of CyPD, which exerts a
protective role. The molecular consequence of C141 oxidation is still unclear, although we
hypothesized that OSCP homodimers might form between F-ATP synthases of adjacent
cristae, leading to a conformational change of the enzyme that could favor the transition
toward pore formation. Site-directed mutagenesis in yeast did not provide compelling
clues on the involvement of other conserved thiols (those located in subunits «, vy, and
c) [119], although the participation of cysteines present uniquely in the mammalian enzyme
cannot be ruled out. These findings suggest that other PTP-related proteins, such as ANT,
might participate in the PTP modulation by oxidation together with the F-ATP synthase
through its OSCP C141.

The site of channel formation within the F-ATP synthase is still a matter of debate.
In support of the c-ring hypothesis, the substitution of key glycine residues of subunit
¢ increased channel conductance of the c-ring [114] and accelerated calcein release in
response to ionomyecin [120]. Interestingly, a naturally occurring G87E variant of subunit
c increased the PTP propensity to open, exacerbating mitochondrial damage in patients
with ST elevation myocardial infarction (STEMI) [121]. In support of the dimer/tetramer
hypothesis, ablation of subunits e and g in yeast desensitized PTP to Ca?*, decreased
swelling, and reduced F-ATP synthase channel conductance up to tenfold [23,122,123].
Consistent with the role of dimers in channel formation, single substitutions of R8 of
subunit e and E83 of subunit g (which entail electrostatic interactions stabilizing the
dimeric complex) gave rise to smaller channels that never reached the full conductance
state [124]. Thus, subunits e and g might represent a strict requirement for the formation of
a full conductance PTP channel, although other subunits can be involved. For instance,
the lack of subunit f, which is another small constituent of the Fo domain in close contact
with subunits e and g, affected the PTP Ca®*-dependence and swelling capacity [125].
Altogether these findings strongly support the primary contribution of F-ATP synthase to
PTP formation, yet the molecular mechanism that switches this energy-conserving enzyme
to an energy-dissipating system remains to be defined. Recent cryo-EM studies showed
peculiar F-ATP synthase structures obtained in the presence of Ca?*, which were never
observed with Mg?" that could potentially describe different conformational states in the
process of PTP opening [116].

4.3. F-ATP Synthase and ANT Mediate Distinct Permeability Pathways

Evidence against the involvement of F-ATP synthase in the PT process derives from
a set of thorough experiments in cells with genetically modified F-ATP synthase. It was
shown that a Ca* and CsA-sensitive PT occurred in HAP1 cells deleted of subunits ¢ [126],
OSCP [127], b [127], or c and & [128]. Since these deletions prevented the assembly of the
F-ATP synthase, it was concluded that the enzyme is not involved in the formation of
the PTP. However, Neginskaya et al. [129] measured the electrophysiological properties
of HAP1-A12 mitoplasts (devoid of subunit c) and found that, differently from parental
mitoplasts, they did not show high-amplitude currents in response to Ca*, but rather
smaller conductances (about 300 pS) which strongly resembled those of reconstituted
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ANT [92]. Consistent with a potential role of ANT in the generation of these currents, BKA
was shown to force the transition to smaller conductances which could then be completely
inhibited by ADP and CsA. In good agreement with an ANT-mediated PT, HAP1-A12 cells
underwent Ca?*-dependent depolarization, which could be prevented by BKA that did
not cause inhibition in parental cells. These findings pointed out that in the absence of
a fully assembled F-ATP synthase, the PT could be mediated by ANT forming a distinct
permeability pathway. In support of this hypothesis, Carrer et al. provided further insights
by analyzing the electrophysiological properties of mitoplasts isolated from HAP1 cells
lacking subunit b or OSCP and from HeLa cells genetically ablated for subunit g [130]. In
wild-type cells and mitoplasts, PTP opening could be efficiently inhibited by CsA, but was
completely refractory to BKA, suggesting that the ANT pore (also referred to as A-PTP)
did not emerge in the first place, while the F-ATP synthase pore (also referred to as F-PTP)
appears to predominate. The lack of subunit b or OSCP, which generates vestigial F-ATP
synthases [127] and likely prevents channel formation by the enzyme, unmasks the A-PTP,
as confirmed by the efficacy of BKA in blocking channel activity in situ and the PT in living
cells [130]. The ablation of subunit g, which also caused the loss of subunit e, completely
prevented PTP opening unless ATR was added and forced A-PTP activation. Different
from mitoplasts devoid of subunit ¢, which showed channels sensitive to both BKA and
CsA [129], mitoplasts with a defective F-ATP synthase peripheral stalk (i.e., absence of
OSCP or b subunits) became sensitive to BKA but were refractory to CsA [130]. This
puzzling observation could help to shed light on a potential structural relationship between
ANT and the F-ATP synthase, which were shown to physically interact in the so-called
“ATP synthasome” and respond in a still undefined manner to CyPD [131,132].

5. Pharmacology of the PTP: Hunting for the Target

The possibility to target the PTP is of particular interest considering its implications in
the physiological homeostasis of both Ca?* [133-137] and ROS [138] as well as in the activa-
tion of the cell death cascade [139]. PTP openings in the “long-lasting, high-conductance”
mode, often followed by mitochondrial matrix swelling, rupture of the outer membrane,
and release of proapoptotic factors, are associated with cell death initiation and have
been extensively associated with several pathological conditions. As already mentioned,
through the use of CsA or of its non-immunosuppressive derivatives or through the genetic
ablation of Ppif, key advances have been made in understanding the implication of PTP
in disease, and to date, the number of PTP-related paradigms has significantly increased.
Among these, ischemia-reperfusion injury, muscular dystrophies and neurological disor-
ders are perhaps the best characterized. The PTP indeed represents a promising target for
cardioprotection under ischemia-reperfusion [140]. In the heart, mitochondrial dysfunction
accelerates when blood flow is re-established after prolonged ischemia; while ischemic
condition does not cause PTP opening itself, likely because of the protective effects of
intracellular acidosis [141], it facilitates PTP opening at the reperfusion phase. Evidence
that the PTP plays a role in reperfusion injury has been obtained in several experimental
models, including isolated cardiomyocytes [142], perfused hearts [143], and in living ani-
mals [34,35]. PTP activation has also been linked to excitotoxicity, which is accompanied
by a massive Ca?* influx and a consequent neuronal cell death [144,145] and to mitochon-
drial alterations in Reye’s syndrome [146], in multiple sclerosis [147], amyotrophic lateral
sclerosis [148] and Alzheimer’s disease [149,150]. In the latter, amyloid beta, which forms
aggregates in the patient’s brain were shown to bind CyPD, and this correlates with an
enhanced susceptibility of PTP opening [149]. PTP-dependent mitochondrial dysfunction
has been demonstrated to play a pivotal role in muscular dystrophies [151]. Collagen
VI-deficient mice which recapitulate muscle defects observed in Bethlem patients, could
be recovered by treatment with CsA or with Debio025 [152] or by crossing with Ppif”
mice [37]. Remarkably, these findings have also been extended to various genetic models
of Duchenne muscular dystrophy [36,79,80].
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However, emerging evidence points to potentially deleterious consequences of dereg-
ulations of PTP openings also in the “low-conductance” mode, which mostly impacts on
Ca?* and ROS homeostasis. Indeed, decreased PTP flickering due to a decreased level of
CyPD acetylation has been recently causally associated with the onset of spastic paraple-
gia, and the restoration of a physiological PTP activity can rescue neuronal function both
in vitro and in vivo [153].

Lack of a full understanding of the PTP constituents certainly represents a complica-
tion for any PTP-targeting strategy, also in light of the fact that CyPD could not always
be involved in PTP modulation. Although recent advances in the identification of the
PTP molecular identity have been made, the still uncertain molecular mechanism for pore
formation by the two leading candidates makes standard target-based approaches prob-
lematic. Both F-ATP synthase and ANT indeed play a pivotal role in the energy-conserving
circuit and they cannot be easily targeted without altering the bioenergetic balance. In
the next section, we will discuss a set of compounds (Table 1) that impinges on F-ATP
synthase and on ANT as well other molecules with unknown targets that modulate the PT
(Figure 1). We would like to stress that some compounds discussed below are not suitable
for pharmacological purposes because of the ability to interfere with ATP synthesis or
adenine nucleotide transport, yet they could represent a useful tool to shed light on the
involvement of the two permeability pathways under pathological conditions.

v—— cyclosporin A
NIM811
Alisporivir

sanglifehrin A
compound 31

oligomycin bongkrekic acid

(and derivatives)

GNX-4975
Fo
ER-000444793 X
atractylate TROO1 and TR002 )
suramin
lonidamine
. FAs
nupercaine
tetracaine ...
o
pY <
o
/ o)

PLAs

Figure 1. Exogenous modulators of the permeability transition (PT) and related targets. Schematic representation of
exogenous PT modulators impinging on F-ATP synthase, adenine nucleotide translocator (ANT), cyclophilin D (CyPD), or
still unknown target(s). Activators and inhibitors are marked in green and red, respectively. Pore formation within the Fo
domain of the F-ATP synthase might be triggered by a conformational change (marked with a black arrow) favored by CyPD
and/or Benzodiazepine-423 (Bz-423) binding to OSCP subunit, or phenylglyoxals, while it could be potentially inhibited
by oligomycin (and derivatives). Compounds that sequester CyPD (cyclosporin A, NIM811, Alisporivir, sanglifehrin A,
and compound 31) prevent its binding to F-ATP synthase and/or to ANT inhibit the PT process. Pore formation by ANT
is favored by atractylate, suramin, or lonidamine, while it is prevented by bongkrekic acid and potentially by cinnamic
anilides (such as GNX-4975). Nupercaine and tetracaine inhibit phospholipases (PLAs) and prevent the release of fatty acids
(FAs), which favor PT occurrence through a not yet defined mechanism. The target(s) of PT inhibitors like ER-000444793
and triazoles (such as TR001 and TR002) remain(s) to be defined.



Molecules 2021, 26, 6463

11 of 22

5.1. F-ATP Synthase-Targeting Compounds
5.1.1. Benzodiazepine-423

Benzodiazepine (Bz)-423 causes selective cytotoxicity in lymphocytes involved in
autoimmune disorders [81]. For this reason, Bz-423 was proposed as a lead drug to treat
systemic lupus erythematosus. Concerning its mechanism of action, the initial hypothesis
was that Bz-423 initiates the apoptotic process through the generation of superoxide anion
and Bax/Bak dependent cytochrome c release [154]. Bz-423 was then shown to target the F-
ATP synthase at the OSCP subunit, resulting in a significant decrease of enzymatic activity,
mimicking the action of CyPD on the F-ATP synthase [155]. Bz-423 and CyPD compete
for binding OSCP, and both lower the Ca?* threshold required for PTP opening [113].
Bz-423 can be seen as a small molecule “analog” of CyPD for the effects on the PTP, as also
indicated by its promoting effect on channel activity of reconstituted F-ATP synthase [82].
Taken together, these findings strongly support that the effect of Bz-423 on the PT is
mediated by its interaction with the F-ATP synthase.

5.1.2. Phenylglyoxals

Phenylglyoxals (PGO) specifically target arginine residues, with which they form
stable derivatives through their guanidino group, particularly under mildly alkaline condi-
tions [83]. Rat liver mitochondria pretreated with PGO are more resistant to PT occurrence
triggered by an uncoupler, suggesting that (i) PGO adducts affect the open probability of
the PTP, and (ii) critical arginine residues are involved in PTP modulation [25,26,83-85].
This modulatory mechanism appears to be species-specific. While PGO desensitizes PTP
opening in rat, mouse, and yeast mitochondria, it sensitizes the PTP to Ca?* in drosophila
and human mitochondria [86]. In yeast, the critical arginine residue targeted by PGO and
mediating the effect of PGO on the PT has been identified in position 107 of F-ATP synthase
subunit g. Remarkably, the expression of human subunit g in yeast shifts the effect of PGO
on the PTP from inhibition to activation, proving that the species specificity of PTP modu-
lation by PGO relies on the R107 subunit g [86]. In keeping with a specific effect on F-ATP
synthase, PGO was shown to negatively modulate the enzymatic activity; the effect is more
pronounced when Ca* (but not Mg?*) was used [156]. PGO derivatives that differ for the
functional groups attached to the phenyl ring lead to different consequences on PT [83].
At variance from PGO, OH-PGO triggers the permeability transition in rat mitochondria,
suggesting that the overall charge of the adduct influences PTP voltage sensing.

5.1.3. Oligomycin and Related Compounds

Among F-ATP synthase inhibitors, oligomycin is perhaps the best characterized. The
binding site is located in between two adjacent c-subunits in contact with the proton half-
channel formed by subunit a, with a subsequent block of proton transport [157]. Thus,
the number of bound oligomycin molecules for one F-ATP synthase was supposed to be
limited to the number of c helixes exposed to the proton half-channel, yet at least seven
molecules were modeled in the crystal structure, suggesting that more binding sites are
possible [157]. While the inhibitory mechanism of oligomycin on the enzymatic activity
of the F-ATP synthase is well documented, the consequences of oligomycin treatment are
more complex than expected. Indeed, after the initial inhibition of ATP synthesis (which
causes a drop of mitochondrial respiration linked to ADP phosphorylation), oligomycin can
stimulate oxygen consumption [158]. This phenomenon was explained by the unexpected
uncoupling activity of oligomycin, which appears to be inhibited by ATP, given that both
glycolysis-supplied ATP or maintenance of matrix ATP by BKA abolish this uncoupling
activity [158]. Of note, CsA does not protect against oligomycin-mediated uncoupling,
indicating that the PTP is not involved in such a mechanism. Oligomycin is indeed not
considered to be a PTP modulator. A number of studies aimed at defining PTP regulatory
mechanisms included oligomycin in the experimental protocol in order to preserve the
ATP/ADP balance, which could in turn indirectly affect the propensity for PTP open-
ing [13,24,87]. However, several reports described the potential of oligomycin as a PTP
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inhibitor under particular conditions. Oligomycin prevents PT initiated by Bax [159,160] or
by a high concentration of selenite [161] and differently from CsA, inhibition by oligomycin
could be released by FCCP addition [162]. In another set of experiments, the inhibitory
effect of oligomycin appeared to be additive to that of CsA [163] and to require Pi, given
that the replacement of this anion with acetate abolished oligomycin-mediated PTP inhibi-
tion [162-164]. Oligomycin can also prevent the PT induced by ATR, likely by increasing
the ADP/ATP ratio, which in turn may hinder the effect of ATR [165,166].

Whether oligomycin exerts this dampening on the PTP by binding the F-ATP synthase
is not known. In this regard, oligomycin as well as other F-ATP synthase inhibitors (e.g.,
venturicidin) that bind to a unique pocket within the c-ring, were reported to decrease
calcein release upon stimulation with a Ca?* ionophore [120]. More strikingly, channel
activity of DDM-solubilized F-ATP synthase monomers showed a clear-cut inhibition
by oligomycin [88], pointing to a possible direct effect on the PTP-forming ability of the
enzyme. As already mentioned, DDM, which efficiently dissociates hydrophobic protein-
protein interactions and alters subunit composition of F-ATP synthase [167], may cause
conformational changes on the enzyme and/or unmask binding sites for oligomycin that
are not accessible in the absence of detergent. Recently, a first target-based approach
considering the c-ring as a primary candidate for PTP formation has been carried out.
Oligomycin-based small molecules have been developed aiming at discovering new po-
tential PTP modulators [89]. These compounds (such as compound 10) based on the
1,3,8-triazaspiro[4,5]decane scaffold specifically targeted the ¢ subunit and showed good
PTP inhibitory capacity without providing apparent off-target effects or alterations in
mitochondrial bioenergetics. Interestingly, these compounds also displayed beneficial
effects in preventing cell death during the reperfusion phase in a model of myocardial
infarction [89].

5.2. ANT-Targeting Compounds

As already mentioned, the early literature on the PT reported the effect of the ANT lig-
ands, ATR and BKA, in stimulating or antagonizing pore opening, respectively [2]. ATR is
a diterpenoid glycoside of 803 kDa extracted from Atractylis gummifera and other plants, the
toxicity of which was widely documented in the last two centuries [168]. The major biologi-
cal effects of ATR and of its derivatives, like carboxyatractyloside, depend on the inhibition
of the ANT translocase activity, which arrests oxidative phosphorylation [169]. ATR, lock-
ing ANT in the c-state, prevents ADP binding to the transporter [170]. ADP that has a
highly similar geometry and charge distribution as ATR, exerting a strong competition for
the same binding site on the ANT. BKA is an unsaturated tricarboxylic fatty acid of 486 kDa
produced by the bacterium Burkholderia gladioli pathovar cocovenans [171], which freezes
ANT in the m-state preventing the ADP/ATP exchange [172]. The mechanism of action of
these compounds in modulating the PT has not been resolved. Together with a conforma-
tional change on the ANT, one possibility is that ATR might act by preventing the binding
of adenine nucleotides to the external carrier site, whereas BKA prevents the dissociation
of the adenine nucleotides from the internal site [173]. In addition to ATR and BKA, several
molecules have been found to efficiently modulate ANT translocase activity [174]. Suramin,
which efficiently inhibits ANT activity, also triggers mitochondrial swelling in an ADP-
and CsA-sensitive fashion, possibly by oxidizing critical thiols [93]. Interestingly, suramin
is a drug already approved by the FDA with multiple pharmacological activities, including
inhibition of P2Y2 receptors [94]. Lonidamine is a derivative of indazole-3-carboxylic acid
and is known to inhibit aerobic glycolysis and energy metabolism selectively in tumor cells.
Lonidamine was also shown to trigger PTP opening in a CsA-sensitive manner [175]. Inter-
estingly, lonidamine elicited ANT channel activity in planar lipid bilayers [95], suggesting
that it exerts a direct effect on channel formation by the ANT.
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5.3. CyPD-Independent PTP Inhibitors

A first high throughput screening (HTS) of commercially available small molecule
libraries led to the discovery of at least four classes of new low molecular weight PTP
inhibitors. The first class included cinnamic anilide derivatives, which were able to effi-
ciently inhibit mitochondrial swelling triggered by various stimuli (Ca?* and oxidants)
and to improve Ca®* retention capacity (CRC) more efficiently than CsA [176]. One such
compound (GNX-4728) demonstrated protective effects against ischemia-reperfusion injury
and in a mouse model of amyotrophic lateral sclerosis, where it improved motor function
and limited neurodegeneration [96], while it lacked therapeutic efficacy in mouse neonatal
hypoxia-ischemia [177]. The mechanism of action of these compounds is still not known.
One hypothesis has been advanced by Halestrap and co-workers, who showed that that
the number of binding sites for another cinnamic anilide derivative (GNX-4975) depends
on the conformation assumed by the PTP. They also proposed that GNX-4975 enhances
the association of ANT to the phosphate carrier and potentially prevents a Ca®*-triggered-
conformational change that would open the ANT interface into a pore [178]. However, this
hypothesis still requires direct experimental validation.

ER-000444793 is another small CyPD-independent inhibitor derived from an HTS of
50,000 compounds that decreased mitochondrial swelling while increasing Ca?* retention
capacity in a dose-dependent manner [99]. ER-000444793 failed to affect ATP synthesis up
to a concentration of 50 UM, suggesting, reassuringly, the absence of effects on the catalytic
activity of the complex, although a potential effect on F-ATP synthase organization and
stability remains to be addressed.

Another HTS of the NIH Molecular Libraries Small Molecule Repository collection
of 363,827 compounds, followed by optimization, used mitochondrial swelling, CRC and
maintenance of membrane potential to identify two classes of PTP inhibitors with picomolar
inhibitory activity, i.e., isoxazoles [179] and benzamides [180]. Both classes of compounds
displayed synergistic effects with CsA and did not affect ATP synthesis or mitochondrial
respiration. From isoxazoles, second-generation compounds possessing a triazole in place
of the core isoxazole have been developed, showing improved plasma stability [181]. TR001
and TR002 are amongst the most potent PTP inhibitors, which have been successfully
applied in vivo to improve survival in a zebrafish muscular dystrophy model [97] and
decrease ischemia-reperfusion damage in perfused mouse hearts [98], respectively.

5.4. Fatty Acids and Phospholipase Inhibitors

The mechanism(s) through which FAs stimulate pore opening is an open issue [182].
Alterations of mitochondrial membrane stability by lipid extracts resulting in uncou-
pling were known since the early 1950s. This uncoupling factor [29,183] was identi-
fied as a mixture of long-chain non-esterified fatty acids with a more potent activity
showed by unsaturated fatty acids, e.g., oleic, linoleic, linolenic, and arachidonic acid [184].
The FAs-dependent enhancement of membrane leakage was initially attributed to their
protonophoric effect, but this process appears to occur over minutes (at least for long-chain
fatty acids), a time-frame that cannot account for the observed kinetics of dissipation of the
proton motive force [185]. One hypothesis was that FAs do not act as protonophores as
such, but rather require an additional mitochondrial component, which was then identified
to be the ANT [186,187]. Data in support of this were that (i) ANT inhibitors abolished
the FAs-mediated uncoupling [188,189], and (ii) reconstituted ANT showed proton chan-
nel activity in response to FAs [190]. The addition of FAs to mitochondrial preparations
not only uncoupled oxidative phosphorylation but also led to large-amplitude swelling,
thus activating a permeability transition process [183]. Interestingly, the mitochondrial
swelling capacity upon the addition of FAs strictly depends on the chain length of the FA
itself and on the presence of double bonds, which is consistent with the protonophoric
activity. The role of FAs in promoting PTP opening and cell death was documented by
Penzo et al. [191], who also showed that the minimal number of unsaturations required
increases along with the chain length. Whether FAs lead to pore opening because of their
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protonophoric activity or because they can directly target PTP constituents is still not
completely understood. FAs could modulate PTP opening by affecting membrane surface
potential, which could be detected by voltage-sensing elements [192] or through a possible
interaction with the pore complex [182]. For example, arachidonic acid was shown to
positively modulate PTP opening accompanied by cytochrome c release independently of
its uncoupling capacity [193].

One of the first demonstrations that FAs are involved in mitochondrial damage comes
from the evidence that nupercaine, a well-known inhibitor of PLAs, maintained mitochon-
dria tightly coupled for long periods of time, preventing in vitro aging. Mitochondrial dam-
age, in this case, was attributed to a gradual degradation of mitochondrial phospholipids
during storage, which could be inhibited by phospholipase inhibitor nupercaine [194]. Nu-
percaine was then used to prevent Ca?*-dependent swelling of NEM-treated mitochondria,
a condition under which very low amounts of exogenous FAs can profoundly stimulate
the rate of swelling [1]. Of note, tetracaine, another PLAs inhibitor, was shown to inhibit
PTP opening in drosophila mitochondria [20]. The effect was immediate, which suggests a
direct interaction with pore components rather than inhibition of PLAs.

6. Conclusions

Over the last few years, substantial progress has been made in the identification of
the molecular nature of the PT. Channel formation by both F-ATP synthase and ANT has
provided a very useful framework that allows to solve many apparent discrepancies in the
literature and to accommodate a variety of effectors. Defining the detailed mechanisms of
channel formation remains a challenge, but one that can now be addressed by mutagenesis
and structure determination with high-resolution techniques. With these approaches, it
will also be possible to readdress the role of the PT in pathophysiology.
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