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Matczyszyn, K. Prospects for More

Efficient Multi-Photon Absorption

Photosensitizers Exhibiting Both

Reactive Oxygen Species Generation

and Luminescence. Molecules 2021, 26,

6323. https://doi.org/10.3390/

molecules26206323

Academic Editors: M. Amparo

F. Faustino, Carlos J. P. Monteiro and

Catarina I. V. Ramos

Received: 20 September 2021

Accepted: 14 October 2021

Published: 19 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratoire PEIRENE, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France;
emma.robbins@etu.unilim.fr (E.R.); stephanie.lhez@unilim.fr (S.L.-L.); nicolas.villandier@unilim.fr (N.V.)

2 Advanced Materials Engineering and Modelling Group, Faculty of Chemistry,
Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wrocław, Poland;
marek.samoc@pwr.edu.pl

* Correspondence: katarzyna.matczyszyn@pwr.edu.pl

Abstract: The use of two-photon absorption (TPA) for such applications as microscopy, imaging,
and photodynamic therapy (PDT) offers several advantages over the usual one-photon excitation.
This creates a need for photosensitizers that exhibit both strong two-photon absorption and the
highly efficient generation of reactive oxygen species (ROS), as well as, ideally, bright luminescence.
This review focuses on different strategies utilized to improve the TPA properties of various multi-
photon absorbing species that have the required photophysical properties. Along with well-known
families of photosensitizers, including porphyrins, we also describe other promising organic and
organometallic structures and more complex systems involving organic and inorganic nanoparticles.
We concentrate on the published studies that provide two-photon absorption cross-section values
and the singlet oxygen (or other ROS) and luminescence quantum yields, which are crucial for
potential use within PDT and diagnostics. We hope that this review will aid in the design and
modification of novel TPA photosensitizers, which can help in exploiting the features of nonlinear
absorption processes.

Keywords: photosensitizers; multi-photon absorption; two-photon absorption; reactive oxygen
species; photodynamic therapy; nanoparticles; gold nanoparticles

1. Introduction
1.1. TPA and Its Applications

TPA is the simultaneous absorption of two photons by the same species (e.g., molecule,
nanoparticle, crystal). The combined energy of the two photons equals the transition
energy [1]. The final state that is reached may be the same as that accessible through
one-photon transition, but this is not always the case. Figure 1 displays an example of a
two-photon absorption spectrum, i.e., the dependence of the TPA cross-section on the excita-
tion wavelengths overlaid with one-photon absorption plotted against twice the excitation
wavelength. Notably, the two curves do not overlap, which is typical for centrosymmetric
molecules. It should be noted that two-photon absorption can also occur in a step-wise
manner (with participation of an intermediate excited state), which is not discussed herein
in detail; that process has been the topic of a recent review [2]. TPA was first theoretically
analyzed by Maria Göppert-Mayer (the two-photon absorption cross-section unit is named
after her, 1 GM = 10−50 cm4s) in the 1930s [3]; however, it was not until the development of
the laser that two-photon absorption was experimentally observed in CaF2:Eu2+ crystal
in 1961 [4]. With the developments and increased availability of short pulse (picosecond
and femtosecond) lasers, the studies of TPA became more widespread and detailed in the
1990s, and much information has been collected on the materials that provide effective
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TPA. Many applications of this effect, such as those in photodynamic therapy (PDT) [5–7],
optical data storage [8,9], optical power limiting [10], imaging [11,12], 3D photopolymer-
ization [13,14], microfabrication and lithography [15–17], photodiodes [18,19], and laser
pulse characterization [20] have been suggested. Applications of TPA exploit several fea-
tures of this phenomenon. First of all, TPA uses photons of lower energy than the usual
one-photon absorption process; often, it is possible to reach the same excited state by two
photons at twice longer wavelength (e.g., 800 nm) than that for one-photon excitation (e.g.,
400 nm). This may provide better penetration of the exciting beam due to less absorption
and scattering. The fact that the transition probability for the TPA process is dependent on
the square of the intensity of the light beam used for the excitation (in the most common
case of degenerate TPA, i.e., the two absorbed photons having the same energy), allows one
to spatially control the excitation of a specimen in three-dimensions, to the region tightly
confined to the vicinity of the focus of the beam [1,21].
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Figure 1. An example of a comparison of a TPA spectrum with one-photon absorption. The red
curve represents the linear, one-photon absorption plotted at twice the wavelength, overlaid with the
two-photon absorption cross-section spectrum (16, Section 4.1) [22]. Figure used with permission
from © Mazur, et al.

We focus in this review on the special kind of two-photon absorbing species that are
called photosensitizers. These are basically molecules, or more complicated systems such
as nanoparticles, that are capable of producing so-called reactive oxygen species (ROS) that
may be used in biological applications including Photodynamic Therapy (PDT). PDT is a
non-invasive procedure used in the treatment of certain cancers that utilizes three main
components: a light source, a photosensitizer (PS), and molecular oxygen that is present in
the tissue. The light source is used to activate the PS (usually an organic or organometallic
molecule) to its excited state, which can then interact with molecular oxygen to produce
ROS such as singlet oxygen (1O2), peroxide, or hydroxyl radical for the use in the killing of
the cancer cells. The formation of radical oxygen species is often denoted as Type I and that
of singlet oxygen is denoted as Type II PDT. The process, which is depicted schematically
in Figure 2, is recognised as being minimally toxic. Many studies have been done regarding
the currently used clinical procedure of PDT [23–28], and a well-recognized limitation
of most existing photosensitizers is that they require excitation in the visible range (e.g.,
600–700 nm) where absorption and scattering of the exciting light by tissues is relatively
strong, and thus, an efficient treatment of deep lying tumors is not possible [21].



Molecules 2021, 26, 6323 3 of 39

Molecules 2021, 26, 6323 3 of 40 
 

nized limitation of most existing photosensitizers is that they require excitation in the vis-

ible range (e.g., 600–700 nm) where absorption and scattering of the exciting light by tis-

sues is relatively strong, and thus, an efficient treatment of deep lying tumors is not pos-

sible [21].  

 

Figure 2. Scheme of TPA driven PDT. The depicted S0 → Sn transition must be two-photon allowed, which is generally the 

case for non-centrosymmetric species (in such a case it is possible for n = 1). In the presence of a center of symmetry, the 

one- and two-photon transitions are mutually exclusive, thus not all excited states are available for the TPA process (and 

often n = 2) [29].  

One avenue for the improvement in this area is the development of PSs that absorb 

in the near infrared (NIR), but another possibility to address this goal is to use the two-

photon absorption (TPA) as first proposed by Bhawalkar et al. [30].  

The use of TPA in PDT applications allows, indeed, for reduced photodamage of the 

healthy tissue surrounding the cancerous area when using an NIR excitation source in 

comparison to that operating in the UV-Vis range. These longer wavelengths (700–1100 

nm) also allow for the treatment of deeper lying tumors. The depth of tumor that can be 

treated is dependent on the wavelength, which is determined by the photosensitizer that 

is used. Another factor is the illumination light dose that is used. For example, 0.75 mg 

kg−1 of redaporfin with a light dose of 10 J cm−2 (750 nm) leads to a necrosis depth of 2.5 

mm [31]. Increasing the light dose to 25 J cm−2 leads to an improved necrosis depth of 4 

mm. This was compared to the less potent Photofrin, where 10 mg kg−1 of Photofrin was 

administered with 90 J cm−2 (630 nm), leading to a necrosis depth of 3 mm. Preferential 

absorption within the beam focal region also helps in the fluorescence imaging of the area 

of interest because a high longitudinal image resolution is enabled through the use of TPA 

which, in effect, provides confocal imaging without the use of an aperture and with re-

duced interference from fluorescence light not created in the image plane [32]. 

However, there are several drawbacks to the use of TPA in PDT, one of them being 

the need for the use of relatively expensive laser sources, which are required to reach suf-

ficiently high intensities (upon focusing the beam), typically in the order of GW/cm2 [33]. 

Apart from the progress in the technology of inexpensive femtosecond and picosecond 

laser sources, one avenue toward making TPA PDT more practical is through the devel-

opment of specially designed photosensitizers that feature very high values of the TPA 

cross-sections. Much work has been done in the area of both the theoretical research and 

measurements of TPA spectra of newly developed sensitizers. The number of materials 

that can be used as reliable standards for the comparisons of TPA properties has also re-

cently increased [1]. 

Figure 2. Scheme of TPA driven PDT. The depicted S0 → Sn transition must be two-photon allowed, which is generally the
case for non-centrosymmetric species (in such a case it is possible for n = 1). In the presence of a center of symmetry, the one-
and two-photon transitions are mutually exclusive, thus not all excited states are available for the TPA process (and often
n = 2) [29].

One avenue for the improvement in this area is the development of PSs that absorb in
the near infrared (NIR), but another possibility to address this goal is to use the two-photon
absorption (TPA) as first proposed by Bhawalkar et al. [30].

The use of TPA in PDT applications allows, indeed, for reduced photodamage of the
healthy tissue surrounding the cancerous area when using an NIR excitation source in
comparison to that operating in the UV-Vis range. These longer wavelengths (700–1100 nm)
also allow for the treatment of deeper lying tumors. The depth of tumor that can be treated
is dependent on the wavelength, which is determined by the photosensitizer that is used.
Another factor is the illumination light dose that is used. For example, 0.75 mg kg−1 of
redaporfin with a light dose of 10 J cm−2 (750 nm) leads to a necrosis depth of 2.5 mm [31].
Increasing the light dose to 25 J cm−2 leads to an improved necrosis depth of 4 mm.
This was compared to the less potent Photofrin, where 10 mg kg−1 of Photofrin was
administered with 90 J cm−2 (630 nm), leading to a necrosis depth of 3 mm. Preferential
absorption within the beam focal region also helps in the fluorescence imaging of the area
of interest because a high longitudinal image resolution is enabled through the use of
TPA which, in effect, provides confocal imaging without the use of an aperture and with
reduced interference from fluorescence light not created in the image plane [32].

However, there are several drawbacks to the use of TPA in PDT, one of them being
the need for the use of relatively expensive laser sources, which are required to reach
sufficiently high intensities (upon focusing the beam), typically in the order of GW/cm2 [33].
Apart from the progress in the technology of inexpensive femtosecond and picosecond laser
sources, one avenue toward making TPA PDT more practical is through the development of
specially designed photosensitizers that feature very high values of the TPA cross-sections.
Much work has been done in the area of both the theoretical research and measurements of
TPA spectra of newly developed sensitizers. The number of materials that can be used as
reliable standards for the comparisons of TPA properties has also recently increased [1].

In addition to the efficiency of TPA, there are other factors that need to be considered
when evaluating photosensitizers for TPA PDT, which are going to be discussed in more
detail in the following sections, among which the most important are the singlet oxygen
(or other ROS) quantum yield and the fluorescence quantum yield. 1O2, the form of
molecular oxygen that has the total electron spin of zero, unlike the usual oxygen molecule
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in which there are two unpaired electron spins, being in the triplet state, is the main
reactive species that causes the cytotoxicity desired for Type II PDT; the efficiency of its
generation by a PS is quantified by the singlet oxygen quantum yield (Φ∆). The process
of 1O2 generation involves the intersystem crossing (ISC) of the PS [34]; the process is
known to be enhanced by the heavy atom effect [35–37], for example where the oxygen
atom in molecules has been replaced by sulfur or selenium [38–40]. The efficiency of 1O2
generation also depends on the environment the compounds are present in; common PSs,
Foscan®, and protoporphyrin IX are known to aggregate in aqueous media, thus limiting
their 1O2 generation capabilities [41,42]. However, Foscan® has a reasonably high Φ∆
of 0.65, whereas its fluorescence quantum yield (ΦF) is 0.07 [43]. This low-fluorescence
yield is also influenced by the formation of aggregates owing to the hydrophobic nature
of these types of PSs. The PSs with low ΦF cannot be utilized for simultaneous therapy
and imaging. However, they can be combined with other more fluorescent molecules to
enhance their potential for use as theranostic (therapy + diagnostic) tools.

There is a continued strong demand for the development of two-photon absorbing
molecules in various applications; some well-known PSs are based on porphyrins or a
related structure, such as chlorin and bacteriochlorin [44]. However, there are many other
types of photosensitizers, and here, we will discuss a range of small and large molecules,
which exhibit TPA, that can be used in PDT applications.

1.2. Evaluation of Parameters Relevant for the Use of Photosensitizers

As mentioned above, the development of photosensitizers for TPA PDT involves
the evaluation of several parameters that are critical for a PSs application potential, the
primary photophysical measurements being those of the TPA properties as well as those
concerning the singlet oxygen production. We list here some of the experimental techniques
and mention also an alternative approach of quantum chemistry-based estimation of TPA
properties that can provide a useful guidance for the synthesis of new PSs.

Two-photon excited fluorescence (TPEF) [45,46]: The principle of this technique is
that a sample, typically a solution of a TPA active and fluorescent dye, is exposed to the
excitation by short laser pulses and the resulting luminescence is recorded and compared
with the emission of a dye with well-known TPA spectrum. The technique is widely used
for the determination of the TPA cross-section of photosensitizers. Its relative simplicity
allows for rapid estimation of TPA properties of a number of candidate compounds. The
factor that may be a difficulty here is that the technique essentially determines the so-
called two-photon brightness, that is the product of the two-photon cross-section and
the fluorescence quantum yield, i.e., σ2ΦF [47]. This can be converted to the absolute
two-photon cross-section value if the quantum yield of luminescence is assumed to be the
same for TPA as that for one-photon excitation, which can be readily determined [48].

Z- scan [49–52]: The Z-scan technique is a direct way of recording nonlinear absorption,
which is detected by moving the sample along the axis of a focused laser beam and
observing changes in the transmittance, either of the whole beam (so-called open-aperture
scan) or by probing only the central part of the beam with an aperture placed in the far field
(closed-aperture scan) [49,53–56]. The advantage of the technique is that materials with low-
fluorescence efficiency can be studied, since emission from the sample is not required, the
data processing does not require calibration by nonlinear absorption standards (although
relative measurements can be readily performed), and the closed-aperture version of
the measurement is sensitive to both the nonlinear absorption and nonlinear refraction.
However, the TPA cross-section values measured using the Z-scan method are sometimes
exaggerated, since the technique does not distinguish between different mechanisms of
nonlinear losses in the sample, and it includes also such effects as nonlinear scattering and
excited state absorption. The measurements are also more tedious than in the case of TPEF.
A modification of the technique called f-scan uses an electrically tuned variable focal length
lens, which has the advantage of fast measurements and does not require the movement of
the sample [22,57–59].
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The TPA probability, as quantified by the value of the two-photon absorption cross-
section σ2, can be related to the imaginary part of the cubic (third-order) hyperpolarizability
of a molecule, which can be computed by quantum mechanics [60]; however, the com-
putation of the dispersion of the hyperpolarizability to extract its imaginary part at the
two-photon resonance would be extremely tedious. Instead, the properties are calculated
at the two-photon resonance, and the two-photon spectrum is modeled by assuming a
certain spectral shape of a given band. The expression for two-photon matrix elements
(Sαβ) for the absorption of photons with identical energies is shown in Equation (1) [61,62]:

Sαβ = ∑
i

〈0|µα|i〉
〈
i
∣∣µβ

∣∣ f 〉
ωi −ω f /2

+

〈
0
∣∣µβ

∣∣i〉〈i|µα| f 〉
ωi −ω f /2

(1)

µα (or µβ) is the dipole moment operator (along a Cartesian direction, i.e., one of x, y, and
z axes), ωi is the excitation energy of the intermediate state |i〉, and ωf is the excitation
energy of the final excited state | f 〉.

The TPA absorption strength δTPA is deduced via the averaging of TPA probability
over orientation (for molecules in solution or gas phase) according to Equation (2) [61]:

δTPA = ∑
αβ

[
F× SααS∗ββ + G× SαβS∗αβ + H × SαβS∗βα

]
(2)

where F, G, and H are factors related to the polarization of the light source (F, G, H = 2, 2, 2
for linearly polarized light and -2, 3, 3 for circularly polarized light, assuming the interaction
of two identical photons). The TPA cross-section at the absorption band maximum can
be computed with accounting for the factor describing the broadening of the band using
Equation (3) [61,62], which allows for comparison to experimental measurements:

σ2 =
4π3a5

0α

c
ω2

Γƒ
δTPA (3)

where a0 is the Bohr radius, α is the fine structure constant, c is the speed of light,ω is the
photon frequency, and Γƒ is the broadening factor (typically chosen as 0.1 eV) [60,63,64].

Singlet oxygen detection: 1O2 detection can be performed in two ways. The first
option is that of using direct detection, which is usually performed by steady-state or time-
resolved phosphorescence measurements, with an emission detection at ≈1270 nm [65–68].
This can prove to be challenging in some cases, because 1O2 phosphorescence is very weak
compared to the fluorescence of PSs, so it is reliant on the medium used for the experiment,
the emission efficiency in water being particularly weak compared to other solvents. The
presence of singlet oxygen can also be detected using indirect, chemical means, such as
monitoring the oxidation of 9,10-diphenylanthracene via UV-Vis absorption spectroscopy
at 372 nm [69–71], as well as the monitoring of N, N-dimethyl-4-nitrosoaniline bleaching
at 440 nm [72–74]; these methods can be used to test for the presence of 1O2 in aqueous
solutions. Electron spin resonance (ESR), or electron paramagnetic resonance (EPR), is a
technique used in the study of molecules with unpaired electrons. ESR is a spin-trapping
method to detect free radicals as well as 1O2 [75]. The direct observation of most free
radicals is not possible due to them being highly reactive and having a short half-life;
thus, they do not reach a measurable concentration. Indirect observation is done with ESR
and the use of spin traps and spin-label reagents. A spin trap is a diamagnetic molecule
used to stabilize the radical species by forming a spin adduct; this more stable species can
reach measurable levels [76]. Some commonly used spin-label reagents for 1O2 trapping
are 2,2,6,6-tetramethylpiperidine (TEMP) [77–79] and 2, 2, 6, 6-tetramethyl-4-piperidone
(TMPD) [80–82]. For the indirect detection of 1O2, TEMP in the presence of 1O2 produces
the stable nitroxide radical 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO), and ESR is able
to detect the presence of this radical. This technique is suitable for organic solvents, such
as DMF [83], as well as aqueous solutions [84,85].
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2. Modifications of Photosensitizers for Improved Two-Photon Absorption

There have been many studies concerning the design and optimization of the pho-
tosensitizer structures in order to enhance their TPA properties [86,87]. Modification of
the molecular structure and performance of the PS has been performed in several ways
including extension of the π-conjugated backbone [3,88], addition of a TPA antenna [89,90],
metalation [91,92], encapsulation of the PS [7], and dimerization [93,94], amongst oth-
ers. This discussion will begin with the modification of the conjugated π-system of the
molecule. This can be accomplished in several ways, including modifying the symmetry
of the molecule, its π-conjugated backbone, and the donor and acceptor behavior of the
terminal and core groups.

Several requirements for maximizing the TPA cross-section of a chromophore are
well known:

1. The presence of a long π-conjugated system with enforced co-planarity ensures large
conjugation lengths to provide ease of delocalization of π-electrons;

2. Donor (D) and acceptor (A) groups located at the ends of the molecule and also
possibly at its center (giving e.g., A-π-D or A-π-D-π-A or D-π-A-π-D structures
where -π- denotes the conjugated linker) to provide dipolar or multipolar structures
(quadrupolar, octupolar etc.) and large transition dipole moments;

3. Narrow one-photon and two-photon absorption bands.

In general, increasing the strength of the donors and acceptors, whether symmetrically
or asymmetrically, may lead to the enhancement of the TPA cross-section values. The
TPA cross-section may also be significantly enhanced by increasing the spatial extent of
the π-conjugation, which leads to the increase in the delocalization of the electrons [61].
The planarity and rigidity of a molecule also seem to be critical in obtaining high TPA
cross-section values [95].

One should distinguish between the cases of asymmetric molecules (in the simplest
case of the A-π-D type), thus possessing a non-zero dipole moment, both in the ground
state and in its excited states and centrosymmetric molecules where the dipole moment is
null. The fundamental difference between these two types of two-photon chromophores is
in the selection rules applying to the absorption transition [3]: for the non-centrosymmetric
ones, the excited states (S1, S2 etc.) are accessible by both one-photon and two-photon
transitions (note that in naming the states Sn, we assume that the molecules possess a singlet
ground state, which is true for most organics), while the centrosymmetric systems allow
only one-photon transitions between states of different parity (gerade↔ungerade) and two-
photon transitions between states of the same parity (gerade↔gerade or ungerade↔ungerade).
Quite often, the lowest lying one-photon transition (e.g., from 1Ag ↔ 1Bu) is not two-
photon allowed, while the transition from 1Ag ↔ 2Ag, which may be at a higher energy, is
one-photon forbidden but two-photon allowed.

In the case of non-centrosymmetric molecules, absorption may result in a large change
of the dipole moment. In fact, for charge-transfer molecules, the sign of the dipole moment
may even be inverted. For centrosymmetric systems, on the other hand, the electronic
excitation may be accompanied by a considerable charge transfer from the end groups
to the central linkages; this results in a large change in the quadrupole moment. Sym-
metrically substituted molecules that show this behavior may have quite large TPA cross-
section values [96]. However, asymmetrically substituted molecules can also compete
with the increased TPA cross-section values, as described in more detail in the following
sections [97,98].

An important thing to note is that the TPA cross-sections measured in non-polar
solvents are usually larger than the values for the same compounds determined in more
polar solvents. This is due to a solvatochromic effect, which is a complex phenomenon
as described in more detail by Reinhardt et al. [95] and discussed for the two-photon
absorption case by Wielgus et al. [99–103].
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3. Two-Photon Absorption Molecules: Small Molecules

Surprisingly, some relatively small organic molecules may be interesting compounds for
TPA-based applications in therapy and diagnostics. One such example is 2,5-dithienylpyrrole
(DTP), which is an excellent electron-donating compound, used by Sharmoukh et al. They
demonstrated that the modification of DTP could improve its TPA efficiency [104]. Two
DTP-based dyes, 1 and 2 (see Figure 3), were designed and synthesized, and their nonlinear
absorption properties and photophysical profiles and behaviors were assessed [105].
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Figure 3. Structure of 1 and 2.

The D-π-A structure of 1 and 2 [104,106] allows the presence of charge-transfer elec-
tronic excited states. It has been shown that 1 and 2 have large TPA cross-sections, espe-
cially for the S0→S2 transition (between 500 and 700 nm) with values of 1300 and 8000 GM,
respectively. The result for 2 is among the highest TPA cross-sections found in the liter-
ature for small molecule compounds [3]. The S0→S1 TPA transitions were seen in the
700–1000 nm range, with cross-section values of 400 and 1000 GM for 1 and 2, respectively.
These values have been related to the presence of the conjugated thiophene rings, similar
to boron-containing arenes that were previously studied by some of the same authors [107].
The larger cross-section values are attributed to the thiophene ring being covalently linked
to the π-bridge, as seen in 2. In addition, in 2, the phenyl group is almost orthogonal to the
rest of the chromophore and does not participate in the π-conjugated backbone.

3.1. Highly Branched Molecules

Chromophores featuring dibromobenzene moiety and diyne bridges (chromophores 3
and 4, Figure 4) have been studied [108]. The long terminal alkyl chains of chromophore 3
and 4 reduce aggregation and improve their solubility. Even though both structures look
centrosymmetric, chromophore 4 was found to exhibit a non-centrosymmetric behavior,
which is due to the non-planar conformation it adopts in its ground state (shown in
Figure 4b), resulting in its “broken symmetry”.

From theoretical considerations, it is known that the sum-over-state terms including
the difference between the dipole moments of the ground state and the excited state
contribute to the TPA cross-section of non-centrosymmetric molecules, the contribution
being absent in centrosymmetric molecules [97]. The effect of breaking the symmetry, due
to the addition of the second diyne bridge and second dibromobenzene moiety in 4, causes
the red shift of TPA spectrum observed for chromophore 4, in comparison to that of 3,
with the TPA cross-sections at 800 nm being ca. 200 GM and 31 GM (800 nm) for 3 and
4, respectively.
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3.2. Zwitterion Molecules

In an interesting study, Hu et al. described a nitric oxide (NO) activatable fluorescent
photosensitizer, 5 (Figure 5) [109]. When 5 interacts with NO, the o-phenylenediamine moi-
ety is removed, leaving a more fluorescent molecule (6). Compound 6 was shown to have
an increased TPA cross-section value of 2800 GM (710 nm) compared to a value of 270 GM
(710 nm) for 5. It was reported that the formation of the zwitterion structure of 6 was
responsible for this improved TPA cross-section value. The generation of ROS was mon-
itored chemically following the degradation of anthracene-9,10-diyl-bis-methylmalonat.
The results determined the singlet oxygen quantum yield (Φ∆) of 6 to be 89%, while only
1.2% was obtained for 5. The fluorescence quantum yield (ΦF) was also calculated to
be higher for 6 compared to 5, 9.3% and 1.2%, respectively. These results display great
potential for these molecules to be used for both NO-activatable two-photon imaging and
two-photon PDT.
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Figure 5. Molecular structure of the two-photon absorbing fluorescent PS (TP-FPS) 5 (top) and after
its interaction with NO to form the zwitterionic structure 6 (bottom).

Another interesting example of a small molecular photosensitizer is the inner-salt
structure (8) designed by Hu et al. (Figure 6). This molecule contains two phenyl-acetylene
units, which is a frequently used backbone in the design of two-photon absorbing com-
pounds, acting as the main π-conjugated linker between the two end donor groups and the
central acceptor moiety [110]. Additional bridging leads to an increase in the conjugation
length, thus increasing the distance over which the charge inside the molecule can be
transferred, which is a key point of these structures. This, together with the increase in the
extent of symmetrical charge transfer from the donor ends of the molecule to the acceptor
moiety in the middle, results in a large increase TPA cross-section, to 4857.4 GM (720 nm,
methanol), and the shift of the absorption maxima to shorter wavelengths (λ = 309 nm and
356 nm compared to λ = 320 nm and 381 nm of its precursor, 7).



Molecules 2021, 26, 6323 10 of 39

Molecules 2021, 26, 6323 10 of 40 
 

moiety in the middle, results in a large increase TPA cross-section, to 4857.4 GM (720 nm, 

methanol), and the shift of the absorption maxima to shorter wavelengths (λ = 309 nm and 

356 nm compared to λ = 320 nm and 381 nm of its precursor, 7). 

 

Figure 6. Structure of the precursor (7) and the inner-salt-like TPA-PS (8). 

3.3. Small Molecule-Based Salts 

Carbazole-based cyanines were found to be suitable as TPEF probes for both DNA 

and cell imaging due to their high binding affinity to DNA; they also possess large TPA 

cross-sections and good water solubility [111,112]. For example, two carbazole deriva-

tives, 9 and 10, whose structures are displayed in Figure 7, were designed and synthesized 

by Zheng et al. [113]. 

Figure 7. Structures of 9 and 10. 

These molecules display a C2v symmetric A-π-D-π-A structure, with strong intramo-

lecular charge transfer and planarity, with positive charges. All these factors contribute to 

the large two-photon absorption cross-section, the low fluorescence quantum yield and 

the high binding affinity toward DNA by the intercalation mode [114–116]. The molecules 

show ability for the efficient photocleavage of DNA, which may be excited not only by 

visible light but also by 800 nm NIR under both aerobic or anaerobic condition via a type 

I mechanism. The ionic groups act as the electron acceptor groups of the molecule and are 

introduced by salification (conversion to a salt) reaction. The two-photon absorption 

cross-sections were determined, and their values at 760 nm were 522 GM and 492 GM for 

9 and 10, respectively. The high binding affinity to DNA of these molecules is due to their 

symmetric bis-cationic and planar structures, implying the potential for them to be DNA 

photocleavers. The experimental evidence indicated that DNA photocleavage occurs 

mainly via the abstraction of hydrogen by N-centered radicals (type I mechanism), con-

tributing to the DNA photocleavage abilities in anaerobic conditions. These carbazole-

based photocleavers gave valuable results for the further development of new two-photon 

excited PDT agents. 

7 8  

(9) 

(10) 

Figure 6. Structure of the precursor (7) and the inner-salt-like TPA-PS (8).

3.3. Small Molecule-Based Salts

Carbazole-based cyanines were found to be suitable as TPEF probes for both DNA
and cell imaging due to their high binding affinity to DNA; they also possess large TPA
cross-sections and good water solubility [111,112]. For example, two carbazole derivatives,
9 and 10, whose structures are displayed in Figure 7, were designed and synthesized by
Zheng et al. [113].
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Figure 7. Structures of 9 and 10.

These molecules display a C2v symmetric A-π-D-π-A structure, with strong intramolec-
ular charge transfer and planarity, with positive charges. All these factors contribute to
the large two-photon absorption cross-section, the low fluorescence quantum yield and
the high binding affinity toward DNA by the intercalation mode [114–116]. The molecules
show ability for the efficient photocleavage of DNA, which may be excited not only by
visible light but also by 800 nm NIR under both aerobic or anaerobic condition via a type
I mechanism. The ionic groups act as the electron acceptor groups of the molecule and
are introduced by salification (conversion to a salt) reaction. The two-photon absorption
cross-sections were determined, and their values at 760 nm were 522 GM and 492 GM
for 9 and 10, respectively. The high binding affinity to DNA of these molecules is due
to their symmetric bis-cationic and planar structures, implying the potential for them to
be DNA photocleavers. The experimental evidence indicated that DNA photocleavage
occurs mainly via the abstraction of hydrogen by N-centered radicals (type I mechanism),
contributing to the DNA photocleavage abilities in anaerobic conditions. These carbazole-
based photocleavers gave valuable results for the further development of new two-photon
excited PDT agents.

Following on from the above-mentioned study, the same two carbazole-based ethynylpyri-
dine salts, 9 and 10, were further utilized as photosensitizers for antibacterial studies. Their
antibacterial activity was tested against Escherichia coli (E. coli) [117]. An antibacterial mech-
anism was proposed based on electron paramagnetic resonance characterization, which
indicated that a nitride radical is generated upon laser irradiation. This would allow the
potential for further applications of 9 and 10 in PDT. Carbazole compound families have
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been known to have a variety of properties including anticancer, antibacterial, anti-HIV,
and anti-inflammatory [118]. Their affinity toward DNA allows the drugs to bind more
easily with bacterial DNA, displaying their potency against bacteria [112]. Carbazole-based
derivatives have a large conjugated system that leads to a large TPA cross-section and
contributes to the large intramolecular electron transfer, thus helping to stabilize the cation
that is formed [119]. These cations that are formed by the carbazole-based derivatives
have been known to demonstrate high photochemical stability, unique biological activity,
and photoelectronic properties which are expected to be of greater importance against the
inhibition of Gram-negative bacteria [118,120,121]. The fluorescence emission spectra for
9 and 10 were measured with an excitation wavelength of 425 nm in phosphate-buffered
saline (PBS) solution. They exhibited fluorescence emission peaks at 576 and 592 nm
for 9 and 10, respectively. Their fluorescence quantum yields were also calculated using
fluorescein as a reference standard (ΦF = 0.9) in PBS buffer solution, to be 2.0 × 10−4

and 6.0 × 10−5 for 9 and 10, respectively [122]. These quantum yields are so low due
to the fluorescence quenching that occurs because of the intramolecular D–A electron
transfer [123,124]. Results from this study showed that almost no E. coli cells can survive
in the presence of 10 under laser irradiation (442 nm, 20 mW/cm2) for 10 minutes. When
9 is used, E. coli was shown to be inhibited after only 30 seconds of laser irradiation; this
improved photoinduced antibacterial activity is mostly attributed to the strong one-photon
absorption and the cationic radicals that are formed under laser irradiation.

3.4. Organometallic Molecules

Due to their remarkable photophysical properties, transition metal complexes can be
viewed as attractive PS candidates [6,92,125]. In particular, ruthenium (II) polypyridyl com-
plexes have gained widespread attention over the years due to their evident advantages,
including large TPA cross-section, long triplet lifetime, high chemical stability, photosta-
bility, and high 1O2 yields. In addition, their properties can also be easily tuned [91].
Ruthenium is a popular choice for metalation as it has low toxicity, its compounds can
have good water solubility, and it is rapidly excreted in vitro. However, ruthenium is a
metal with a high price tag; hence, the more common metal choices are also explored, e.g.,
zinc. The design of two [Zn(phen)2 dppz]2+ derivatives for two-photon PDT, as well as the
photophysical properties of [Ru(phen)2 dppz]2+, evaluated by the time-dependent density
functional theory were reported [126]. Recent work by Hess et al. demonstrated that the
[Ru(phen)2 dppz]2+ derivative (11, Figure 8), with the modification of having two OMe
groups on the dppz ligand, could successfully be used as a PS for two-photon PDT [127].
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The complex demonstrated strong anticancer activity, high 1O2 quantum yields, ef-
ficient cellular uptake, and a large TPA cross-section (σ2 = 245 GM, 800 nm) [126]. The
photophysical properties of 11 and 2, which were relatively inexpensive because of the use
of zinc instead of ruthenium [Zn(phen)2 dppz]2+ complexes (12 and 13, Figure 8), were
measured. For 12, the central ruthenium in 11 is replaced with zinc, for 13, the π-conjugated
backbone is further extended compared to the first two complexes. For compounds 11–13,
it has been shown that changing the central metal has a great effect on the TPA properties.
It has already been mentioned that in order to produce high 1O2 quantum yields, the PS
needs to have sufficiently high triplet (T1) energy that is larger than that of singlet oxygen
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(0.98 eV) [128,129]. The T1 energy values were determined to be 2.13 eV for 11, 2.13 eV for
12, and 2.00 eV for 13. In reference to spin-orbit coupling, the heavy atoms increase the
ISC because the SOC effect increases with the atomic weight. Thus, the heavy atom effect
of Ru is larger than that of Zn. Nevertheless, complex 11 showed efficient production of
1O2 (Φ∆ = 0.75), and the T1 states of 12 and 13 are higher than 0.98 eV, making sure they
can also effectively produce singlet oxygen. They all demonstrate the potential to be used
as PSs for two-photon PDT application. In particular, 13 has demonstrated an improved
TPA cross-section through extended π-conjugation (σ2 = 98.9 GM, 705 nm) compared to
12 (σ2 = 10.58 GM, 705 nm), and it comes at a reduced cost compared to the ruthenium
containing 11.

4. Two-Photon Absorption Molecules: Large Molecules
4.1. Dimers

Porphyrin-based compounds, and various tetrapyrrolic-based compounds, have
found widespread application as PSs for PDT. In this review, we survey the modifications
that have been introduced to improve their TPA capabilities needed for two-photon-based
PDT. One strategy of increasing the π-conjugation and therefore, the TPA properties of the
compound is simply to have additional functional groups attached to the core molecule
such as a macrocycle. An example of the use of that strategy is the diketopyrrolopyrrole–
metalloporphyrin conjugate (14), the structure of which can be seen in Figure 9a [125].
To further expand upon molecule 14, its Zn-porphyrin dimer can also be utilized with
the further extended π-conjugation via the addition of the two diketopyrrolopyrrole
(DPP) moieties, 5-(4-diphenylaminostilbene),15-(2,6-dichlorophenyl)-21H,23H-porphine
(15) (Figure 9b) [130].
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The extension of the porphyrin π-conjugated aromatic system is an effective method
to decrease the HOMO-LUMO gap for the development of NIR absorbing and emitting
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materials. The dimer species shown in Figure 9b features splitting of the Soret absorption
band (ca. 460 nm and 505 nm), which is indicative of strong electronic interactions between
the two porphyrins. A bathochromic shift observed in the absorption spectra for 15 is
ascribed to the enhanced conjugation of the molecule. With an increase in the conjugation
length and the introduction of the electro-active DPP system on either side of the porphyrin
dimer, a strong increase in the two-photon absorption cross-section value is observed to
21,500 GM at 910 nm compared to 4000 GM for the monomer. The TPA maximum is
also red-shifted, but there is a decrease in the singlet oxygen quantum yield (0.19 for the
dimer species, compared to 0.38 for the monomer species), which can be attributed to
the lowering of the triplet energy level (ca. 1.0 eV compared to 1.80 eV for the monomer)
due to the extended conjugation of the dimer [131]. Due to the lower energy of the triplet
state, because of the closeness of the triplet energy level to that of singlet oxygen (0.98 eV),
there is less efficient triplet–triplet energy transfer; thus, a lower singlet oxygen quantum
yield is observed for the dimer 15. However, with the large TPA cross-section value of
21,500 GM, the conjugated dimer can still be considered as a promising candidate for
imaging applications.

Another example of the conjugated linkage of zinc porphyrins to form dimers for TPA
and 1O2 generation was discussed by Mazur et al. [22]. 1O2 yield was determined for the
dimers 16 and 17 (Figure 10) to be Φ∆ = 0.47 and 0.27, respectively. The TPA cross-section
values of 3115 GM and 3700 GM (725 nm and 775 nm), respectively, show that especially the
dimer 17, absorbing at longer wavelengths, can be promising for the treatment of deeper
lying tumors.
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Another effect, which can be utilized to improve the TPA properties of the porphyrins
is that of metalation. However, this can have both positive and negative effects. The
metal ion in the porphyrin usually leads to a decrease in Φ∆ but an increase in σ2, so there
can be a trade-off between the two factors in the influence on the TPA PDT suitability
(which depends on the σ2Φ∆ product) of the compounds [22]. A reason for this observed
decrease in ϕ∆ values is an increase in the back intersystem crossing (ISC) rate to the
ground state [132]. Compounds with a torsional angle of 0◦, planar molecules, such as
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the dimers linked by ethyne (16) and di-ethyne (17), show an enhanced TPA cross-section
and 1O2 generation, as well as faster ISC compared to twisted conformers. The large
π-delocalization of dimers 16 and 17 leads to Φ∆ = 0.27–0.47. The maximum value of σ2
measured at 725 nm was for dimer 16 (8200 GM) compared to dimer 17 (5500 GM). There
was a strong enhancement of the singlet oxygen quantum yields observed for dimer 17.
Two-photon excited singlet oxygen generation was found to be 500 times more efficient than
that for tetraphenyl porphyrin alone [133], which is due to an increase in the conjugation
length, where the π-delocalization is maximized in the large planar structure.

4.2. Dendrimers

Another interesting study by Kim and Cho deals with a series of conjugated meso-
porphyrin dendrimers containing conjugated fluorenyl dendrons (Figure 11a), which is
based on a central meso-tetra(thien-2-yl) porphyrin core (TThP, Figure 11b) [134].
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Dendrimers 18 and 19 were able to efficiently photogenerate singlet oxygen; they
also turned out to be fairly good two-photon absorbers, showing their potential as TPA-
based photosensitizers. In that respect, the advantage of the thienylene linkers over the
phenylene linkers on the TPA cross-sections is clearly evidenced. Indeed, the meso-2,5-
thienylene groups within the given conjugated π-manifold (while preserving its overall
symmetry) resulted in a significant improvement of the TPA cross-section (σ2) compared
to TThP (13 GM). The ΦF values of analogues 18 and 19 were 0.04 and 0.025, respectively,
as determined by using TThP as a reference (ΦF = 0.05). Energy transfer (ET) between
the peripheral dendrons and the porphyrin core was probed, 18 and 19 being excited at
the dendron absorption wavelength of ca. 320 nm. Dendrimer 18 displays exclusively
red emission, which reveals efficient ET from the dendrons to the core. Dendrimer 19
also shows strong red emission, but it also exhibits a broad, weak residual band at ca.
375 nm. This suggests that ET from the dendrons to the porphyrin core is less efficient
in 19, indicating that higher generation dendrons are less effective in transferring their
energy in spite of their larger linear absorption. TPEF of the dendrimers was measured in
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dichloromethane. The results showed a quadratic dependence of fluorescence intensity
on the excitation power at all wavelengths of the spectra, as expected for TPA, and the
maximum cross-sections were 730 GM for dendrimer 18 and 580 GM for 19 (λex = 800 nm).
The singlet oxygen quantum yields were determined to be 0.73 and 0.50 for 18 and 19,
respectively. The Soret band of 18 (442 nm) and 19 (438 nm) is red-shifted (compared
to the Soret band of TThP (425 nm)), which was recognized as being indicative of better
π-conjugation of the peripheral dendrons with the central porphyrin core. The decrease
in ΦF (18 = 0.04, 19 = 0.025 compared to tetraphenylporphyrin (TPP, Figure 11c) = 0.11,
all in toluene) can be related to the presence of the S atom, which may possibly favor
a non-radiative decay process via spin–orbit coupling. This study reinforces the idea
that improving the conjugation, in this case between the porphyrin core and the meso-
substituents, is a key factor in improving the TPA potential of a molecule. Here, the
2,5-thienylene spacer allows for better conjugation. The dendrimers in this study displayed
improvements in σ2 values, while still maintaining sufficient fluorescence for measuring
TPA cross-sections by TPEF.

4.3. BODIPYs

There is also much interest in BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, the
abbreviation comes from the common name boron-dipyrromethane)-based compounds for
various applications related to their favorable optical properties such as high fluorescence
quantum yields, narrow emission bands and small Stokes shifts; however, the unmodified
BODIPY structure molecule, which has long been used in bioimaging and as a chemo-
sensor [135–142], has a relatively low two-photon absorption cross-section, about 50 GM,
which limits its nonlinear optical applications.

There has been recent interest in the modification of BODIPY dyes with truxene
derivatives [143]. The truxene molecule is a C3-symmetric aromatic structure with high
delocalization of the π-electrons. These truxene molecules also exhibit good co-planarity
and thermal stability. In a recent study, eight green and blue BODIPY dyes substituted by a
range of truxene derivatives were characterized (Figure 12) [144].
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Different functional groups including bromine, thiophene, and ethynylthiophene were
introduced at the 7, 12-positions of the truxene moiety in order to further extend the π-
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conjugation and thus improve the TPA properties of the resulting structures. As mentioned
previously, several different strategies can be utilized in order to enhance the TPA cross-
section of compounds, such as extending the π-conjugation backbone [145], the introduction
of strong electron acceptor and/or donor groups at the center or at the terminal parts of
the molecule [146,147], increasing the amount of branching of the molecule [148,149], and
(or) improving the co-planarity of the molecules [150]. The unsubstituted compounds 20
and 24 displayed the characteristic absorption band of the truxene core at 307 nm, while
for the bromine-substituted compounds 21 and 25, it was 313 nm and 307 nm, respectively.
A red-shift to 340 nm is observed with the addition of thiophene, for compounds 22 and
compound 26, and to 341 nm with the addition of ethynylthiophene, both 23 and 27, which
can be explained by the extension of the π-conjugation between the truxene unit and the
thiophene and ethynylthiophene moieties. The mono-truxene substituted BODIPYs (dyads,
compounds 20–23) displayed higher fluorescence quantum yields, in the range of 0.55–0.63,
compared to those displayed by the di-truxene substituted BODIPYs (triads, compounds
24–27), with fluorescence quantum yields measured to be 0.36–0.52. These lower observed
fluorescence quantum yields could be due to the increase in internal conversion between
the narrower band gaps of the triad truxene BODIPYs [151,152]. There was no heavy atom
effect observed for compound 21 and compound 25, which was most likely due to the
long distance between the BODIPY species and the Br atoms [144,153]. The σ2 values were
calculated to be 1000 GM, 880 GM, 1100 GM, 750 GM, 1600 GM, 1750 GM, 1100 GM, and
980 GM for 20–27, respectively. Between the one- vs. two-truxene units, no significant
impact was observed on their TPA cross-section values.

Another BODIPY-based dye containing iodine substituents, 28 (Figure 13), was
studied as a possible cationic TPA photosensitizer that could efficiently target tumor
cells [154]. Two neutral molecules were also synthesized (29 and 30) for comparison to the
cationic derivative.
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It has been shown that the cationic group of 28 better improves solubility and cellular
uptake, with structure-inherent targeting in vivo, and also inducing early apoptosis. It is
known that dyes containing a cationic group usually show subcellular localization in the
mitochondria; this is due to the high affinity of the cationic group toward the negative
potential of the mitochondrial membrane [155,156]. The TPA of 28 was tested in PBS using
the TPEF method with rhodamine B as a reference; the TPA maximum was observed at
808 nm, and the cross-section was calculated to be 25.5 GM. The addition of iodine in
28 promotes the ISC process of S1 → T1 transition, leading to more efficient and greater
generation of ROS, including 1O2. The 1O2 production was followed chemically using
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1,3-diphenylisobenzofuran (DPBF) as a scavenger, in dichloromethane. The singlet oxygen
quantum yields (Φ∆) were determined, using methylene blue as reference, to be 0.39,
0.31, and 0.33 for 28, 29, and 30, respectively. These results confirm the potential for 28,
in particular, to be used in deep tissue tumor therapy [154,157] as well as for imaging-
mediated PDT [137–139].

4.4. FRET Systems

An example of the effects of metalation, as underlined previously, was reported in
a study that explored the development of two different fluorescence (Förster) resonant
energy transfer (FRET) dyads for two-photon excitation PDT (TPE-PDT) and fluorescence
imaging [158]. In addition to the factors that relate directly to those modalities, cellular
uptake efficacy and subcellular localization should be considered for the development
of effective imaging and PDT agents. A TPA donor and lysosome targeted moiety were
attached to a porphyrin acceptor, one being a free base (31) and the other being a Zn-
metallated porphyrin (32); their structures are shown in Figure 14. The AceDAN donor (2-
acetyl-6-dimethyl amino naphthalene), upon irradiation (using 740 nm NIR light), transfers
its excited state energy to the porphyrin acceptor via the FRET mechanism.
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AceDAN is a typical two-photon excitable chromophore. The morpholine moiety
is included for lysosome-targeted cell imaging. 3,5-di-tert-butylphenyl groups on the
porphyrin are expected to suppress the tendency of aggregation; this could increase the
solubility of the compounds, being beneficial for fluorescence emission and 1O2 gener-
ation. 31 has a TPA cross-section of 112 GM, and 32 has a slightly smaller cross-section
of 95 GM (λex = 740 nm); these large TPA cross-sections are inherited from the AceDAN
moiety (without AceDAN, the TPA cross-section values of the porphyrins are 25 and 11
GM, respectively). The TPA of the AceDAN donor can be utilized to efficiently generate
the excited states of the porphyrin acceptor via FRET. To evaluate the potential of 1O2
generation, a chemical trapping method was utilized with DPBF as an 1O2 scavenger. The
presence of 31 and 32 leads to a fast decay of DPBF upon irradiation (31 > 32). Upon one-
or two-photon excitation of the AceDAN donor, intramolecular FRET processes occur with
high energy transfer efficiencies (ηFRET = 97–98%), leading to formation of the excited por-
phyrin acceptor, from which deep red fluorescence and 1O2 can be generated and utilized
for simultaneous cell imaging and PDT. The generation of 1O2 involves ISC of the excited
porphyrin moiety and intermolecular triplet-triplet energy transfer to ground-state 3O2.
NIR phosphorescence of 1O2 data shows Φ∆ = 0.57 and 0.66 for 31 and 32, respectively.
Therefore, 32 shows increased 1O2 Φ∆; this is attributed to the different distribution of S1
and T1 states between the metalated and non-metalated porphyrins. Strong red fluores-



Molecules 2021, 26, 6323 18 of 39

cence of 31 and 32 was employed for TPEF cell imaging experiments under irradiation with
a 740 nm femtosecond laser for tracking the significant morphology changes of A549 cells.

In general, the combination of a PS and a red-emitting dye is an interesting avenue for
the combined imaging and PDT application. Multifunctional polymer-based nanoparticles
that consist of a conjugated polymer (PPBF), a two-photon absorbing PS (TPP), and a
red-emitting dye (4,4′-([1,2,5]thiadiazolo[3,4-c]pyridine-4,7-diyl)bis(N,N-diphenylaniline),
TPD), and co-polymer poly (styrene-co-maleic anhydride) (PSMA) were studied by Duan et al.
(Figure 15) [159].
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Functionalization of the photosensitizers with folic acid (FA) (34) groups allows for the
selective targeting of cancer cells. PPBF acts as the donor moiety with TPP and TPD each
acting as an acceptor. PPBF has a large two-photon absorption cross-section of 529 GM per
repeat unit (λ = 750 nm) and a high fluorescence quantum yield (ca. 0.84 in tetrahydrofuran
(THF)). TPP has been extensively studied and used for such applications; here, it was
chosen for its high singlet oxygen generation capability (yield of ca. 0.63) [160]. The
red-emitting component, TPD, is known for its imaging contrast properties and its high
fluorescence quantum yield of ca. 0.44 (in hexane) [161]. Efficient energy transfer for this
particular combination is assured by the emission spectrum of PPBF overlapping reasonably
well with the corresponding absorption spectra of TPP and TPD. The inclusion of poly
(styrene-co-maleic anhydride), PSMA, a non-emitting co-polymer, provides hydrophilicity
to the nanophotosensitizer, improves the stability through the carbonyls of PSMA, and
suppresses the self-quenching of PPBF. The two-photon absorption cross-section was
measured for the nanoparticles 34 to be ca. 8.6× 106 GM (λ = 750 nm), which is a significant
increase when compared to bare TPP and TPD, 12 GM and 97 GM, respectively. The
singlet oxygen production of nanophotosensitizers 33 was determined photochemically
by following the oxidation of 9,10-anthracenediyl-bis(methylene)dimalonic acid. The
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combined PPBF/TPP/TPD/PSMA structure shows enhancement of the TPP and TPD two-
photon emission by ca. 161 and ca. 23 times, respectively. Two-photon excited fluorescence
signals from cancer cells incubated with 34 and TPD-FA were compared; strong emission
was observed with those incubated with 34, whereas almost no florescence was observed
from the cells incubated with just TPD-FA; this attests to the potential for the use of
nanophotosensitizers 34 as markers for imaging. The nanophotosensitizers designed here
(34) display both two-photon excited therapeutic and imaging potential, with enhancement
due to the improved FRET between the PPBF to the TPP and TPD moieties; those without
the conjugated polymer are ca. 149 times less efficient. These nanophotosensitizers have
potential to be used for concurrent two-photon PDT and fluorescence imaging, displaying
both target specificity of cancer cells and low dark toxicity.

A porphyrin derivative with aggregation-induced emission (AIE) properties has been
developed (35, Figure 16); this was done via the introduction of diphenyl acrylonitrile
units onto a porphyrin core [162]. A strong FRET effect was shown between the diphenyl
acrylonitrile and porphyrin units; this led to the AIE-based porphyrin displaying high
fluorescence in both the solution and solid states established due to the AIE and FRET effect.
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This novel AIE-based porphyrin was also successfully utilized within living HeLa
cells for fluorescence imaging, demonstrating a prospective application for this type of
molecule. These fluorescence imaging properties were also shown to be an improvement
on traditionally used aggregation-caused quenching porphyrins. The AIE-based porphyrin
displayed a long emission wavelength, with both high photostability and fluorescence
imaging capabilities, and biocompatibility, demonstrating the excellent prospects for near-
infrared fluorescence imaging of living cells. Further studies will need to be done to see
if these types of aggregates could have any therapeutic application combined with their
imaging capabilities. This shows the wide range of molecules that can be utilized within
the AIE fluorophore scope and the wide range of fields to which these molecules can
be applied.
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4.5. Large PEGylated Photosensitizers

Zhang et al. designed and synthesized a water-soluble photosensitizer (37) [163],
the structure of which was based on a novel pyrazino [2,3-g] quinoxaline (PQ) prototype
compound (36). PQ contains an aromatic skeleton featuring a tricyclic planar system in
which a benzene ring is fused symmetrically with two pyrazine rings. Due to the electron-
deficient and planar π-conjugated properties of PQ, it has been utilized as a building block
for the construction of low band-gap small molecular- and polymeric-semiconductors used
in the field of organic electroluminescence [164–167]. Then, the PQ moiety was modified
with the addition of four pentaethylene glycol (PEG) groups (shown in red in Figure 17) to
obtain the water-soluble 37, allowing for good biocompatibility.
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The PQ moiety acts as the central electron-deficient acceptor, with peripheral groups,
N, N-diethyl phenylamine and PEG chain acting as the electron donors. The UV-Vis
absorption and fluorescence emission of 37 were recorded in a mixture of THF and water,
and with different ratios of water, the changes observed in both the absorption and emission
showed the formation of aggregates with the increased ratio of water. The Φf of the two
PSs, measured using Rhodamine B as the reference, amounted to 0.55 and 0.54 for 36 and
37, respectively. The fluorescence lifetimes were also obtained, 1.99 ns for 36 in toluene
and 2.0 ns and 1.5 ns, both for 37, in toluene and water, respectively. The Φ∆ values were
obtained by monitoring the decay of DPBF (in toluene) and found to be 0.49 and 0.47,
for 36 and 37 respectively. The two-photon absorption spectra were measured within the
740–1000 nm range, using Rhodamine B as the standard reference [48]. Both PSs exhibited
large cross-section values; the maxima were found at 820 nm with 1207 ± 69 GM for 36 and
1293 ± 72 GM for 37. These TPA cross-section values, in combination with their respective
Φf and Φ∆ values, are high enough for the simultaneous application of bioimaging and
PDT. After irradiation with a high-intensity laser (532 or 635 nm, 100 mW/cm2, 30 mins),
there was no significant photobleaching detected. One drawback was seen for 36; due to
the near planar central tricyclic PQ chromophore and the four peripheral N, N-diethyl
phenylamines, this rigid and highly symmetric configuration favored the formation of π–π
stacking aggregates. The substitution of four penta-PEG chains in the peripheral positions
in 37 allowed more flexibility in the compound and not only provided adequate water
solubility but also decreased the trend of π–π stacking. The results indicated that 37 was
effectively taken up by tumor cells with excellent mitochondrial-targeting abilities [168,169].
The compound can effectively induce cell death under both one-photon excitation (1PE)
and two-photon excitation (2PE). Good performance in cell imaging was observed under
both one-photon (635 nm) and two-photon (800–1000 nm) excitation. Further tests revealed
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that the cytotoxicity of 37 was negligible in the dark, even with high concentrations of
100 µM.

5. Nanoparticles as Two-Photon Absorption Species
5.1. Polymer Nanoparticles

The encapsulation of porphyrins and other tetrapyrrolic-based PSs in nanoparticles
(NPs) is a good way to overcome certain drawbacks of large, organic molecules. In this con-
text, the use of conjugated polymers is of special interest. With excellent biocompatibility,
high fluorescence quantum yields, and large extinction coefficients [170–172], conjugated
polymers have gained a lot of attention for their potential in clinical applications [173]. Sev-
eral studies were concerned with utilizing the combination of such polymers and PSs, such
as in the report by Shen et al [174]. The authors studied nanoparticles resulting from the
combination of poly[9,9-dibromohexylfluorene-2,7-ylenethylene-alt-1,4-(2,5-dimethoxy)
phenylene] (PFEMO) as the polymer moiety, and the PS used was the well-known TPP. An
extra donor moiety, polyoxyethylene nonylphenylether (CO-520), was conjugated to TPP
in order to enhance the TPA properties of the porphyrin by providing extra conjugation.
The structure of these three components can be seen in Figure 18.
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The two-photon excited emission of the nanoparticles, originating from TPP, was
found to be enhanced by a factor of ca. 20 upon the addition of the PFEMO polymer. Re-
cently, water-dispersible conjugated polymer nanoparticles were successfully prepared via
mini-emulsion and re-precipitation methods [175–177]. Conjugated polymer nanoparticles
were also constructed by blending two polymers or doping with specific dyes that can be
tuned to alter their excitation and emission properties [178–181]. The PFEMO conjugated
polymer can act as both the hosting material and the two-photon light-harvesting complex.
The TPA cross-section of the doped conjugated polymer nanoparticles was measured to
be 2160 GM per molecule (and 54 GM per repeating unit) at 800 nm. TPP was chosen as
the photosensitizer moiety because of the good overlap of its Soret and Q-band absorption
with the emission spectrum of PFEMO. The average size of the nanoparticles (38) was deter-
mined to be 80 nm by dynamic light scattering. Nanoparticles without PFEMO displayed
only a weak emission peak at 652 nm due to the small TPA cross-section of TPP, this being
in contrast to the emission peak of 38 containing the same concentration of TPP. The singlet
oxygen generation of 38 was monitored by measuring its phosphorescence at 1270 nm with
D2O being used as the solvent, which extends the emission lifetime of 1O2 to ca. 67 µs, in
comparison to ca. 3.5 µs in H2O, as well as increases its emission yield [182]. The observed
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two-fold enhancement of singlet oxygen emission in 38, compared to the nanoparticles
without PFEMO, further confirms that PFEMO could act as an efficient light-harvesting
component to enhance the photosensitizing capability of TPP via energy transfer. This
significant enhancement of the two-photon singlet oxygen generation is also due to the
large TPA cross-section of PFEMO. The nanoparticles were shown to have low cytotoxicity
in the dark, ensuring their biological application potential. The incorporation of the CO-520
chains onto the surface of the nanoparticles ensures good stability, particularly for cellular
applications. While this work has demonstrated two-photon photodynamic therapy on
living cancer cells using photosensitizer-doped conjugated polymer nanoparticles as novel
photosensitizing agents, there can be further optimizations to improve the cellular uptake
efficiency, biocompatibility, and cancer cell targeting capability via the introduction of vari-
ous functional groups onto the surface of the nanoparticles. Due to the strong two-photon
excited emission of the used conjugated polymers, simultaneous two-photon imaging
of the cells and monitoring of the distribution of the photosensitizing drug molecules
was possible.

In a next example, several approaches to formulating a better two-photon PS have
been taken together: a conjugated polymer, a photosensitizer, and gold nanorods (AuNRs)
were combined in order to be used for TPA-PDT application (Figure 19) [183]. The well-
studied photosensitizer, TPP, was encapsulated in poly[9,9’-bis(6”-bromohexyl)fluorene-
2,7-ylenevinylene-co-alt-1,4-phenylene] (PFV), a conjugated polymer, with PMSA used
as surfactant, to form conjugated polymer nanoparticles (CPNs); these CPNs (39) were
covalently linked to AuNRs, which have been coated in silica (thickness of 9 nm). The
improvement of two-photon absorption cross-sections in metal-containing nanoparticles
has been well recognized [184–186].
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The encapsulation of photosensitizers into nanoparticles is one way to overcome
problems with the aggregation of PSs that takes place in aqueous media [187,188]. TPP is a
well-known hydrophobic PS with a high Φ∆ (singlet oxygen quantum yield) = 0.67, but its
two-photon absorption cross-section is quite small, 8–12 GM [189,190]. PFV, a conjugated
polymer, apart from being the host for TPP, can also have a role of a light-harvesting com-
ponent through two-photon absorption. This polymer has a relatively large two-photon
cross-section of 256 GM (at 820 nm) per each repeating unit and is capable of fluorescence
energy transfer to TPP. The conjugated polymer-based NPs have been shown to exhibit
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excellent photophysical properties such as high brightness, good photostability, biocom-
patibility, easily tuned photophysical properties, and surface modification [170,191–193].
Thus, upon encapsulation, the two-photon optical properties of the system are enhanced.
The third component of the system is the gold nanorods that display chemical inertness
and biocompatibility, and they also have tunable extinction properties as well as strong
two-photon excited photoluminescence [194]. AuNRs alone have been known to be able
to produce 1O2, but as previously mentioned, they can also lead to the enhancement of
1O2 production by the PS in their vicinity due to their localized surface plasmon resonance
(LSPR) properties (discussed in more detail in the following section) [195–198].

5.2. Gold Nanoparticles

Elemental gold, in the form of bulk solid or nanostructures, is well-known to be
biocompatible and chemically inert. Gold nanostructures of various kinds, nanoparticles
or nanostructured surfaces, can support conduction electrons’ excitations known as lo-
calized surface plasmons, which have potential applications, in e.g., bioimaging [199], as
biosensors [200], for drug delivery [183], in photovoltaics [201], and also in PDT. Gold
nanoparticles (AuNPs) are also known for their ability to be highly functionalized as well
as their low cytotoxicity [202,203].

LSPR associated with the metal nanostructure can lead to the enhancement of fluo-
rescence of weakly emitting fluorophores in its close proximity [204]. This enhancement
can occur due to two factors: (1) increased absorption equating to excitation enhancement
and (2) modified radiative and non-radiative decay rates equating to fluorescence emission
enhancement [205]. The first effect is maximized when the plasmon resonance wavelength
overlaps with the absorption band of the fluorophore/PS. The second effect is at maximum
enhancement when the resonance wavelength overlaps with the emission band of the
fluorophore/PS [206]. These enhancement factors can be dependent on several parameters
such as the size and shape of the NP, composition of the NP, position of the fluorophore/PS
in relation to the metal NP, and the spectral overlap of the relevant absorption and emis-
sion spectra [205–208]. A maximum enhancement was found to be when the plasmonic
resonance of the metal nanoparticle matched the laser source operating wavelength [209].
However, there is also another effect that acts in the opposite way, namely, fluorescence
quenching by the metal NPs, which occurs when the fluorophore/photosensitizer is too
close to the metal NP, typically less than 5 nm [210].

In general, gold (or other metal) nanoparticles have been demonstrated to have
positive effects on the optical properties of a PS through electric field amplification as
well as the enhancement of the radiative and non-radiative decay rates [211]. In previous
studies, it has been found that AuNRs are able to modulate the TPEF of neighboring
fluorophores via modulation of the quantum yield combined with the enhancement of the
two-photon excitation efficiency [212,213]. This has been tested by using several thicknesses
of silica shell deposited on an NR, acting as a spacer between the metal surface and the
fluorophore [214]. It was found that a thinner (<10 nm) SiO2 shell was more desirable
for more optimal TPEF but proved more difficult to prepare. The increased amount of
surfactant (cetyltrimethylammonium bromide), on the surface of the AuNRs, was shown to
produce thinner silica shells. A study by Zhao et al. showed that it was possible to prepare
AuNRs having a silica coating of between 13 and 42 nm thickness separating the Au core
and the fluorophore, T790 (meso-tetra(4-carboxyphenyl) porphyrin, Figure 20) [215]. A
thickness of 20 nm demonstrated the greatest enhancement of 1O2 generation efficiency via
two-photon excitation with a simultaneous enhancement in TPEF.
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5.2.1. Gold Nanorods

In another study of gold nanorods combined with conjugated oligomers, it was also
hoped that such combination may reduce the photodegradation of the PS molecules whilst
preserving their photosensitizing capabilities as well as improving their solubility in biolog-
ical media [201]. A core–shell nanostructure with an AuNR core and a silica shell whose thick-
ness was controllable and an outer layer of a water-soluble oligomer, oligo-[9,9-bis(600-(N,N,N-
trimethylammonium)hexyl)fluorene-2,7-ylenevinylene-co-alt-1,4-(2,5-dibromophenylene)]
(40) (Figure 21), was investigated.
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Figure 21. Structure of oligomer 40.

The oligomer was designed to have a large two-photon absorption cross-section and
high singlet oxygen quantum yield. The fluorescence quantum yield of 40 was calculated
to be 0.115 in water and 0.48 in methanol. The two-photon absorption cross-section was
measured to be ≈280 GM (at 800 nm) per unit (mer). This relatively low value has been
ascribed to the presence of the bromine, as this distorts the planarity of the molecule. The
singlet oxygen quantum yield of 40 was measured to be 0.46. With the shell thickness at
15 nm (SiO2) in the AuNR/SiO2 core–shell, an enhancement factor of 14.2 in TPEF of 40 was
determined. Since the noble metal nanoparticles can influence the fluorescence intensity of
the PS-type molecule in their vicinity through three mechanisms [214,216,217], the question
was which ones were responsible for this large enhancement. The amplification of the local
electric field due to the plasmon resonance, which improves the excitation efficiency, largely
depends on the overlap between the plasmon resonance and the excitation wavelength;
however, this effect should have no effect on the lifetime of fluorescence of the PS. The
plasmon resonance also increases the radiative decay rate of the nearby PS-type molecules,
which enhances their fluorescence quantum yields but will also reduce the fluorescence
lifetimes. This effect relies on the spectral overlap between the plasmon resonance band
of the metal nanorods and the emission spectrum of the PS. A third effect is the energy
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transfer from the PS to the metal nanoparticle, which usually results in the quenching of
fluorescence and reduced fluorescence lifetimes of the PS. All of these effects are dependent
on the distance between the PS and metal nanoparticle. The optimum distance between
the two components was found to be 15 nm. Therefore, such a core–shell structure was
made, and 40 was adsorbed onto the surface of the silica-coated AuNRs via electrostatic
attraction. The already mentioned enhancement of the TPEF by a factor of 14.2 was found
to be due to the amplification of the electric field.

5.2.2. Gold Nanoclusters

Recent studies have shown the promise of gold nanoclusters (AuNCs) as a PS compo-
nent of PDT; they are composed of several tens of gold atoms, have an average diameter of
<2 nm [218], and are too small to support plasmon excitations. Gold (Au25(Captopril)18)
nanoclusters (41) (Figure 22) are a new generation of water-soluble atomically precise
gold nanoclusters, having improved thermal stability. They also demonstrate the genera-
tion of ROS under two-photon excitation; however, they were found to have low cellular
uptake, limiting their potential for biomedical application. However, an improvement
of the biocompatibility of these nanoclusters was reported upon incorporating them in
hydrogel nanoparticles [219]. Polyacrylamide nanohydrogels (PAAm) have been previ-
ously shown to be useful at improving the biocompatibility of photodynamic agents by
encapsulation [220]. These nanohydrogels have demonstrated the capacity to maintain
the photodynamic properties of PS-type compounds (methylene blue), due to their highly
stable solvent environment [221].
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Figure 22. Structure of Captopril (left) and scheme of the Au25(Captopril)18 nanoclusters 41 (right).

It was found that the encapsulated nanoclusters had greater in vitro cellular uptake
and were more easily conjugated to cell surfaces, contributing to the overall improvement of
the biocompatibility. Two-photon absorption and the singlet oxygen generation capabilities
of the nanoclusters were preserved when encapsulated. The two-photon absorption cross-
section of 41 (Au25(Captopril)18) was determined via Z-scan to be 830 GM (λ = 800 nm) [222].
The singlet oxygen yield was also determined to be 1.6% for 41 and 1.4% for PAAm-
Au25(Captopril)18 (42) by comparing to 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin
tetra(p-toluenesulfonate (TMPyP, Figure 23), a known PS for which it is 18.2%. Although
the singlet oxygen efficiencies are much lower than that for the reference, the two-photon
absorption cross-section value is ≈8x higher than that of TMPyP. The gold nanoclusters
also show potential as X-ray contrast agents (there are many examples in the literature that
demonstrate how gold-containing compounds enhance the scattering of X-rays [223,224]);
thus, they display a theranostic property that TMPyP and many other organic PSs do
not possess. The non-encapsulated clusters 41 (without PAAm) were tested with HeLa
229 cancer cells in the dark for 24 hours; the cells displayed approximately 50% viability at
concentrations as low as 0.1 mg/mL. However, when the encapsulated nanoclusters 42
were tested, the cells demonstrated >85% viability at concentrations of up to 10 mg/mL.
The cells that were incubated with nanoparticles 42 showed no cell death with one-photon
excitation, even after 30 minutes of irradiation. Upon two-photon irradiation of 42, there
was a much higher rate of cell death; >99% of the cells in the irradiated region were dead
after 30 minutes (800 nm, 100 mW/cm2 (average power)). Due to the properties of gold
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nanoclusters, these nanoparticles could also potentially be used as CT contrast agents for
soft tumors.
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Figure 23. Structure of TMPyP.

5.2.3. Gold Nanobipyramids

An example of the use of gold nanostructures in two-photon PDT is a study where sul-
fonated aluminum phthalocyanine (AlPcS 43 conjugated to gold nanobipyramids (GBPs)),
the structure shown in Figure 24, was excited via a two-photon process [225]. AlPcS has
two absorption bands, at ca. 355 nm and 670 nm, with the fluorescence band at ca. 680 nm.
The sulfonated phthalocyanine core has four negative charges, which can easily bind to the
surface of the positively charged gold nanobipyramids to form conjugates. The AlPcS-GBP
conjugates showed a large two-photon absorption cross-section, 26,000 ± 4000 GM (com-
pared to 1200 ± 300 GM for gold nanospheres and 3700 ± 1100 GM for gold nanorods, all
measured in aqueous solution, 800 nm) as well as good photostability and biocompatibility.
Al-phthalocyanine alone has a measured TPA cross-section of 543 ± 16 GM (800 nm, in
ethanol) [226]). 1O2 generation by 43 was confirmed by monitoring the decomposition of
DPBF (λem = 410 nm). It was also confirmed by the ESR technique using TEMP as a 1O2
trap. 5,5-Dimethyl-1-pyrroline-N-oxide was utilized to confirm that no other ROS species
were being generated (O2

•− or •OH); no signal was observed, so it was confirmed that
only 1O2 was being generated under two-photon excitation (800 nm). Under 800 nm fs
laser excitation, efficient antitumor activity was observed both in vivo and in vitro.
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5.3. Hybrid Nanoparticles

Hybrid CdS-Au nanoparticles (NPs) were studied by Nawrot et al. (44) [227]. Two-
photon excited luminescence measurements were performed on the 44 NPs, and their
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TPA cross-section was determined. The obtained water-soluble NPs 44 were found to be
multifunctional: as photocatalysts for both reduction and oxidation reactions, and for TPA
applications, including theranostic purposes. ROS generation by 44 was observed, which
is relevant for the use of such metal/semiconductor nanoparticles as possible antimicrobial
agents for tumor cell death in targeted therapies.

The TPA cross-section value for 44 was determined to be 15.8 × 103 GM at 725 nm,
which exceeded the value observed for the non-metalated CdS NPs. This increase was
attributed to the overlap of the semiconductor exciton band edge absorption and the
plasmon resonance. Embedding of the gold nanostructures on the CdS NPs not only
significantly enhanced their reduction and oxidation capabilities but also preserved their
two-photon brightness, allowing the material to perform multiple functions.

5.4. Nanocontainers with Nanoparticles and Photosensitizers

Another approach of using FRET, different from that described in Section 4.4, was
demonstrated in several papers from the Wilk group [228–230]. The principle employed
here was that of splitting the functions of a TPA absorber and that of a ROS generator. To
assure that a two-photon absorber will transfer its excitation energy to a photosensitizer
(e.g., phthalocyanine or verteporfin, Figure 25), both components of the FRET system were
encapsulated inside relatively large (≈100 nm) nanocapsules. Such a size appears suitable
for efficient PDT because of the so-called EPR (enhanced permeability and retention) ef-
fect [231,232], and it provides a possibility of having a large number, e.g., on the order of
hundreds, nanoparticles embedded in a single nanocarrier. This results in entities that have
cross-sections that are orders of magnitude larger than a single nanoparticle, thus, being
very bright markers for two-photon-based imaging. The two-photon absorbers utilized
in that approach were nanoparticles, which could be core–shell quantum dots that have
relatively large two-photon absorption cross-sections in the 800–1000 nm region, or, im-
portantly, lanthanide-based nanoparticles in which photon upconversion occurs [233–237].
In the latter case, the process that is in the end responsible for the excitation of the photo-
sensitizer is not a direct two-photon absorption but rather a sequential process involving
the lanthanide ions. This has an important advantage of not requiring femtosecond laser
excitation but just pumping the lanthanide (ytterbium in that case) at its absorption band
in the NIR with a continuous wave (CW) laser diode [238–240].
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6. Summary and Outlook

In recent years, many developments of TPA capabilities of various molecules for
PDT, bioimaging, optoelectronics, drug delivery, and more, have been made. This review
provided certain examples of recent strategies used to improve the TPA properties, and
two-photon induced 1O2 or other ROS types generation, of various chromophores and
molecules. Table 1 provides a summary of the relevant properties of the photosensitizers
described in this review. The relationship between the structure and the photophysical
properties of these compounds has been described. To improve the TPA properties, the
compounds presented here have increased π-conjugated systems for improved TPA cross-
section values, improvements in SOC and ISC pathways, as well as being more highly
branched for improved planarity and solubility (namely in aqueous media). The advan-
tages of combining TPA with PDT can only be exploited with photosensitizers having large
TPA cross-sections within the optimal biological window (700–1100 nm) and high ROS
quantum yields. TPA-PDT prospects have been greatly improved by the use of highly
conjugated and highly branched molecules, although the introduction of heteroatoms
has also displayed unique possibilities for the use of the well-designed photosensitizers
within TPA therapy and diagnostics. Metalated and non-metalated chromophores present
additional choices for PSs for PDT/fluorescence imaging. Other modifications, such as
photosensitizers/chromophores combined with various gold-based nanostructures, have
also improved the prospects of TPA-PDT and imaging, due to the LSPR effect. Furthermore,
there is also the interesting prospect of AIEgens for imaging-guided PDT. Improvements
in the designs of these molecules have enhanced their ROS generation abilities with NIR
excitation, thus improving the overall TPA-PDT prospect.

Table 1. Summary of photophysical parameters of the molecules described in this review.

Molecule Number λex (nm) σ2 (GM) Φ∆ ΦF Page Number

1 700–1000 400 - - 7

2 700–1000 1000 - - 7

3 800 200 - - 8

4 800 31 - - 8

5 710 270 0.12 0.12 10

6 710 2800 0.89 0.93 10

7 - - - - 10

8 720 4857.4 - - 10

9 760 522 - 2.0 × 10−4 11

10 760 492 - 6.0 × 10−5 11

11 800 245 0.75 - 12

12 705 10.58 - - 12

13 705 98.9 - - 12

14 910 4000 0.38 - 13

15 910 21,500 0.19 - 13

16 725 3115 0.47 - 15

17 775 3700 0.27 - 15

18 800 730 0.73 0.04 15

19 800 580 0.50 0.025 15

20 820 1000 - 0.59 17

21 820 880 - 0.62 17
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Table 1. Cont.

Molecule Number λex (nm) σ2 (GM) Φ∆ ΦF Page Number

22 820 1100 - 0.55 17

23 820 750 - 0.63 17

24 820 1600 - 0.48 17

25 820 1750 - 0.52 17

26 820 1100 - 0.36 17

27 820 980 - 0.38 17

28 808 25.5 0.39 - 17

29 - - 0.31 - 17

30 - - 0.33 - 17

31 740 112 0.57 - 19

32 740 95 0.66 - 19

33 - - - - 20

34 750 8.6 × 106 - - 20

35 - - - - 22

36 820 1207 0.49 0.55 23

37 820 1293 0.47 0.54 23

38 800 2160 - - 24

39 820 256 - - 25

40 800 280 0.46 0.48 27

41 800 830 0.16 - 28

42 - - 0.14 - 28

43 800 26,000 - - 30

44 725 15.8 × 103 - - 30

The combination of TPA and PDT is invaluable for its reduced photothermal damages
during treatment, along with its safer higher thresholds due to the femtosecond NIR
laser source and its overall improved singlet oxygen quantum yields. Ensuring large TPA
cross-sections with high 1O2 quantum yields and thus more efficient PDT has opened
the doors for the combined use of TPA-PDT applications. The successful modifications
of these TPA chromophores combined with the ever-advancing technology of medical
devices and techniques could lead to the treatment of a wider range of cancers, particularly
deeper-lying tumors, in a non-invasive manner. Regarding the future outlook of the types
of TPA molecules, much progress has been made on their structure–photophysical property
relationship; however, the following points require further investigation. (1) First, the
increased use of DFT and TD-DFT calculations should provide information not only on
the singlet and triplet energies (as well as ISC efficiency) but also how easily the molecules
can be tuned. (2) Second, there ought to be more biological studies, as more information
is required about how PS molecules behave in vivo and whether their efficiency and
high-quantum yields in organic media translate to TPA-PDT application.
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