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Abstract: Bloodstains found at crime scenes represent a crucial source of information for investigative
purposes. However, in forensic practice, no technique is currently used to estimate the time from
deposition of bloodstains. This preliminary study focuses on the age estimation of bloodstains by
exploiting the color variations over time due to the oxidation of the blood. For this purpose, we used
a colorimetric methodology in order to easily obtain objective, univocal and reproducible results. We
developed two bloodstain age prediction algorithms: a short-term and a long-term useful model for
the first 24h and 60 days, respectively. Both models showed high levels of classification accuracy,
particularly for the long-term model. Although a small-scale study, these results improve the potential
application of colorimetric analysis in the time-line reconstruction of violent criminal events.

Keywords: bloodstains; bloodstain age estimation; colorimetric analysis

1. Introduction

In the forensic field, the temporal reconstruction of the events represents a key point
for the correct interpretation of the crime scene as it allows the revealing of the dynamics
of the criminal event. In homicide cases, the determination of the post-mortem interval
(PMI) through the classic triad (livor, frigor, rigor mortis) is the most used factor for timeline
determination in the early period (up to 72 h). However, there is objective evidence
present in all violent crime cases that can give important temporal information even in the
longer term, and that is the blood. Indeed, blood can be the primary body fluid at many
crime scenes and the crucial information that a bloodstain can provide is extensive and of
particular importance with the emerging analytical and bio-analytical approaches.

Over the years, several studies have been carried out to identify an effective method-
ology that would allow the dating of a bloodstain [1,2]. All the methods proposed so far
confirm that the physical and chemical properties of the bloodstain change over time, and
in effect most attempts to estimate the age of a bloodstain have focused on the spectral
changes of hemoglobin [3], on changes in enzymatic activity [4], on erythrocytes’ elasticity
changes [5], or, more generally, on the degradation levels that occur over time for all macro-
molecules (DNA, RNA and proteins) [6]. A biochemical approach was also attempted
through the analysis of circadian biomarkers [7]. However, none of these approaches
has shown the reliability required to be used in forensic practice. In recent years, several
novel techniques have been explored to determine the age of bloodstains with predictive
power from a few hours up to four months, including raman spectroscopy [8,9], ATR-FTIR
spectroscopy [10,11], fluorescence lifetime imaging [12,13], vibrational spectroscopy [14],
infrared spectroscopy [15], and colorimetric analysis [16,17].
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Despite all attempts, no technique is currently used to estimate the time since deposi-
tion (TSD) of a bloodstain in forensic practice, basically because each of these techniques is
characterized by limitations in predictive power, poor analytical sensitivity and inadequate
resolution between the age of the spots, and also for their complexity and costs. In addition,
transferring the methodologies from laboratory conditions to real cases implies variable
environmental conditions that will contribute to the complexity and difficulty of estimating
the age of the bloodstain.

In the present research, a colorimetric methodology was used for age estimation of
bloodstains using color change over time caused by the oxidation of blood. We have chosen
to use a colorimeter that guarantees both ease of use and high precision as the detected
color is converted into quantitative coordinates according to international standards. This
methodology, currently used in various fields (from industrial production to cultural
heritage), allows for the definition of the color of a sample in an objective, univocal and
reproducible way, allowing a fine tuning of the changes over time, even for long periods.
Our pilot study represents a starting point to evaluate the feasibility and reliability of the
colorimetric methodology applied to forensic studies for future research.

2. Results

Color change over time in eight bloodstains was measured using two different color
spaces, namely CIELAB and CIELCh, thus quantifying each color shade according to
CIELAB colorimetric coordinates L, a, and b, as well as CIELCh coordinates C and h
(details in methods). Measurements were taken once every hour for the first 24 h (except
from the thirteenth to the twentieth hour) and then once a day for the remaining 60 days
(details in methods).

First, we quantified the Pearson correlation coefficient between each pair of colorimet-
ric coordinates, as well as between colorimetric coordinates and time (Figure 1).
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Figure 1. Heatmap of the level of correlation of the five analysed colorimetric coordinates with time
since deposition. Positive and negative correlations are depicted in red and blue color schemes,
respectively. Higher correlations are shown by dark tonalities, whereas weak correlations are
represented by light colors.

For both observational periods, the h* parameter of the CIELCh space color correlated
highly with TSD with correlation values of 0.67 (within 24 h) and 0.83 (within 60 days). The
a*, b*, and C* parameters were negatively correlated with TSD with correlation values of
approximately −0.60 (within 24 h) and −0.50 (within 60 days).In contrast, the L* parameter
hadno significant correlation with time within the 24 h (r = 0.127, p-value = 0.140), and
a week correlation (r = 0.293, p-value = 6.41 × 10−9) within 60 days. Consequently, all
color coordinates but L* were used as input for building predictive models able to estimate
bloodstain age.

Bloodstain Age Estimation Models

We aimed at developing statistical/machine learning models able to estimate the TSD
of a bloodstain on the basis of its color. To this end, we used and contrasted against each
other five different statistical/machine learning approaches. Each approach was applied
on data from four randomly chosen bloodstains, namely the training set, for deriving
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predictive models whose predictive capabilities were then assessed on the data from the
remaining four bloodstains (test set). The whole training and test process was repeated
five times, each time splitting the data differently. Each split was performed so as to ensure
that the distribution of bloodstain TSD was roughly the same between the two sets, as well
as to ensure that data from the same bloodstain was not present in both training and test
sets [18].

The first approach was a multiple linear regression model (MLR) using the colorimetric
coordinates as independent variables. The second one was a multiple quadratic regression
(MQR), including the single colorimetric coordinates along with their pairwise interactions
and their square powers. The third approach was a support-vector machine for regression
with Gaussian kernel (SVMr), while the fourth approach was a SVM with polynomial
kernel (SVMp). Finally, we trained a multiple linear model using the first two principal
components (PCs) derived through principal components analysis (PCA).For ensuring
an unbiased assessment of this approach, the PCs loadings derived from the training set
were used for computing the PCs on the test set as well. The predictive capability of
each bloodstain age prediction model was evaluated through the mean absolute deviation
(MAD), Pearson correlation (r) and correct classification rate (CCR).

The results obtained within both observational periods for each tested model are
shown in Table 1. Within the 24 h observational period, the model giving the best age
prediction accuracy on both the training and test set was the SVMr, with an error less
than three hours in over 70% of test samples, a MAD of about two hours and a correlation
coefficient of 0.93. The poor performance of the MQR model on the test set was mainly
due to the influence of outliers with abnormally large errors (Figure 2). Once these outliers
were removed, the MQR model validation results were much closer to the ones of the other
models (r = 0.680, MAD = 3.42 and CCR = 66.0%). The performances of other models were
not significantly affected by outliers.

The results obtained within the 60 day observational period showed that the model
giving the best age prediction accuracy on both the training and the test set was once again
the SVMr with an error less than three days in over 60% of samples, a MAD of about three
days and a correlation coefficient of 0.98.

Table 1. Predictive performances of the bloodstain age estimation models. For each model the correlation coefficient r, the
mean absolute deviance (MAD) and the correct classification rate (CCR) metrics are reported, both for the 24 h and 60 days
prediction tasks. MLR: Multiple Linear Regression; MQR: Multiple Quadratic Regression; SVMr: Support Vector Machine
with radial kernel; SVMp: Support Vector Machine with polynomial kernel; PCs: Principal Components.

Period

24 h 60 days

Training Test Training Test

Prediction
Models r MAD CCR r MAD CCR r MAD CCR r MAD CCR

MLR 0.902
(0.009)

2.70
(0.25)

59.1
(6.69)

0.743
(0.041)

3.82
(0.32)

53.8
(4.4)

0.964
(0.003)

3.80
(0.19)

49.5
(2.8)

0.957
(0.005)

3.92
(0.35)

52.6
(6.0)

MQR 0.967
(0.007)

1.54
(0.16)

87.6
(2.23)

0.281
(0.193)

8.93
(5.79)

64.7
(6.66)

0.993
(0.001)

1.72
(0.17)

82.8
(3.9)

0.820
(0.135)

3.48
(0.65)

64.7
(4.1)

SVMr 0.982
(0.006)

1.12
(0.18)

94.1
(2.75)

0.933
(0.012)

2.29
(0.27)

71.2
(5.6)

0.995
(0.001)

1.56
(0.10)

91.5
(2.8)

0.982
(0.003)

3.05
(0.18)

60.6
(3.7)

SVMp 0.961
(0.006)

1.69
(0.19)

80.0
(2.46)

0.942
(0.013)

2.32
(0.28)

69.7
(6.5)

0.988
(0.003)

2.24
(0.36)

74.3
(9.0)

0.974
(0.002)

3.17
(0.09)

58.7
(3.6)

PCs 0.682
(0.010)

4.85
(0.11)

29.7
(2.83)

0.687
(0.005)

4.80
(0.09)

32.9
(4.0)

0.944
(0.008)

4.79
(0.42)

41.1
(5.7)

0.941
(0.008)

4.99
(0.25)

43.2
(4.7)

Note: performances are reported as the average and standard deviation over the five different random splits.
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Figure 2. Scatterplots contrasting observed and predicted bloodstain ages. Each dot corresponds to a single prediction, either on the training set (blue dots) or on the test set (red dots). (A)
Predictions generated on the short-term period (0 to 24 h). Scatterplots correspond to five ML approaches, which are, from left to right: Multiple Linear Regression (MLR); Multiple
Quadratic Regression (MQR); Support Vector Machine with radial kernel (SVMr); Support Vector Machine with polynomial kernel (SVMp), and Principal Components (PC). (B) As in (A),
but for the long-term period (1 to 60 days).
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3. Discussion

In forensic science, age determination of bloodstains can be decisive in reconstructing
homicide cases and, more generally, in all violent crimes. To estimate TSD, changes in the
color of blood outside the body have been and are often used in an approximate manner,
as over time bloodstains transit from bright red to dark brown. Indeed, as the blood leaks
from the vessels, hemoglobin saturates with ambient oxygen and auto-oxidizes to met-Hb
and then denatures to hemichrome. The kinetics of these processes have been extensively
analyzed, revealing that the oxidation of oxyhemoglobin in bloodstains follows a biphasic
decay with a positive correlation of both temperature and humidity [3]. However, to obtain
scientifically proven data that is useful in forensic practice, an exact estimation of timeline
color variation is needed. In this work, we have employed a methodology already widely
used in different research fields, the colorimetric method, that it has allowed us to develop
bloodstain age prediction models in a simple, objective and also non-destructive way. It is
suitable that the techniques applied on a crime scene are as non-invasive as possible both
to avoid contamination and to allow for any new analyses.

The results obtained within the 24 h observational period showed that TSD predictions
strongly depend on the adopted model. Using the best-performing SVMr model, the
technique predicted the ages of test samples with a MAD of about two hours, a correlation
coefficient of 0.93, and an error less than three hours in over 70% of samples. Using the
MQR model, the technique predicted the ages of test samples with a MAD of about nine
hours, a correlation coefficient of 0.06, and an error less than three hours in over 60% of
samples.

Although a comparison with previous methods is made difficult by the absence
of clear quantitative accuracy, it is evident that our simple and easy to use approach
allows for the obtaining of a notable strictness both in the short and in the longer term
periods. Using hyperspectral image analysis, Li and coworkers [19] reported an accuracy
in TSD dating of 84% (CCR 83.9%) only in the first seven days with an increasing error,
especially after 14 days. Kumar and coworkers [15] presented models with accuracy
similar to our methodology (error in estimated date ~3–4 ± 1 days) using a much more
complex method than ours (ATR-FTIR spectroscopy coupled with chemometric methods)
and not practicable directly at the crime scene. Indeed, the use of a colorimeter would
allow direct measurements to be made without even moving the object from its original
position, avoiding any type of interference. Other complex and expensive experimental
methodologies (ATR-FTIR [10], Raman Spectroscopy [20,21]) did not show particular
accuracy in age estimation either in the short or the long-term.

The results obtained within the 24 h observational period showed that TSD predictions
strongly depend on the adopted model. In fact, using the SVMr, the technique predicted
the ages of test samples with a MAD of approximately two hours, a correlation coefficient
of 0.94, and an error less than three hours in over 70% of samples (CCR =70.6%). Using the
MQR model, the technique predicted the ages of test samples with a MAD of about nine
hours, a correlation coefficient of 0.06, and an error less than three hours in over 60% of
samples.

In recent years, a Korean group used a colorimetric method to analyze the aging
of bloodstains in the first three days after deposition on a variety of supports [16,17] by
an imaging and analysis integrated device. Their method involved acquiring images of
bloodstains using a smartphone, but this implied that factors such as the type/quality of
the lighting source and image capture distance can influence the colorimetric analysis. The
colorimeter we used instead resets these external influences as the measurement is carried
out through a system integrated into the instrument (a closed chamber with constant
lighting and distance) that allows for standard measurements. Since the colorimetric
analysis has been applied to a surface that is not perfectly smooth but has roughness
due to the texture of the fabric, the light beam, even if projected on the same point, can
give reflectance results that are not always the same, so, in order to obtain a robust and
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reliable evaluation which can be used for subsequent comparisons, we performed five
measurements for each point. The colorimetric calculation was performed on the average
spectrum of each point and the standard deviation was calculated for each point. We have
chosen to use the fabric as a support because at crime scenes bloodstains can often be found
on textile supports (clothes, sheets, furniture upholstery, etc.) but above all because when
the bloodstains are completely absorbed the dehydration and aging process is uniform.
Indeed, when the blood is deposited on not completely permeable materials, the aging
process and therefore the chromatic variation is greatly influenced by different dehydration
processes with the formation of inhomogeneous areas.

The high capability and reliability demonstrated by our method has enabled us to
perform both short- and long-term measurements. The literature data currently available
on the estimate of the age of blood stains by exploiting color variations are limited from the
first hours [16,17] up to a maximum of eight days [1] and 30 days [19], while in our work
we have documented detectable color variations up to 60 days.

Clearly, bloodstains left on different fabrics (texture, composition, color of the fabric)
as well as the effects of environmental conditions (temperature, humidity, sunlight) will
require additional analysis for accurate TSD predictions. Moreover, further validation
studies involving an evaluation of actual casework samples would be required.

In conclusion, in this work we verified the ability and reliability of colorimetric analysis
in dating the age of a bloodstain for forensic purposes. Although preliminary, our results
show that this methodology can be considered fully adequate and up to the requirements
of forensic medicine both in terms of reliability and practicability. To increase the general
impact of our data, it would be necessary to increase the number of samples used and
also to evaluate different experimental conditions (temperature, humidity, etc.). However,
our work underscores the possibility of providing investigators of violent crimes with a
non-destructive, simple, and objective method for estimating the age of bloodstains at the
crime scene.

4. Materials and Methods
4.1. Preparation of the Blood Samples

For preparation of bloodstains, we used untreated whole blood from healthy volun-
teers (four males and four females) aged between 25 and 35 years. Blood samples were
obtained by capillary sampling with blood lancets and bloodstains were made immediately
by dropping a few drops from the fingertip on the target substrate (100% white cotton
fabric). We created 40 bloodstains (five stains from each subject) with an average diameter
of 17.0 mm and a volume of 0.5 mL (Figure 3). To simulate an indoor crime scene, we
placed the blood samples on tissue in an air-conditioned room at 25◦ C during the day
(from 8 a.m. to 8 p.m.) with natural lighting but not in direct sunlight. Measurements were
carried out over a period of two months (May and June 2020).
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4.2. Colorimetric Analysis of the Blood Samples

Bloodstain colorimetric analysis for age estimation was detected by using a spectropho-
tometer (3NH, NS800, SHENZHEN TreeNH TECHNOLOGY CO., LTD, SHENZHEN, P.R.
China) with a spot diameter of 8 mm. The lighting system, color evaluation and calculation
formulas were set upstream of the measurement and the results were obtained directly
as CIELAB/CIELCh parameters. During the first 24 h, we performed a measurement
every hour (except from the thirteenth to the twentieth hour) while, thereafter, we mea-
sured the bloodstains once a day, around the same time the stains were originally laid,
for the next 60 days. Each bloodstain was scanned five times and only the average of the
five measurements was used for the following analyses. After the bloodstains scan, the
spectrophotometer system returns the color intensity in two different color spaces: the
CIELAB and CIELCh. In the CIELAB color space, the L* coordinate represents the lightness
dimension and ranges from 0 to 100, with 0 being black and 100 being white. The red/green
colors are represented along the a* coordinate, with green at negative a* values and red at
positive a* values. The yellow/blue colors are represented along the b* coordinate, with
blue at negative b* values and yellow at positive b* values. The CIELCh space is a color
space based on CIELAB, which uses the polar coordinates C* (chroma, relative saturation)
and h* (hue angle, angle of the hue in the CIELAB color wheel) instead of the Cartesian
coordinates a* and b*. The conversion of a* and b* to C* and h* is based on the following
formula:

C∗ =

√
a∗2 + b∗2; h = arctan

(
b∗

a∗

)
All five parameters of the CIELAB and CIELCh color spaces (L*, a*, b*, C* and h*)

were used to predict the TSD of the bloodstains.

4.3. Statistical Analyses

Two different time horizons were adopted to investigate the change in color intensity
of a bloodstain over time: the first one was based on the data obtained in the first 24 h of
observation, and the second one was based on the data obtained in the first 60 days. For
each time horizon, machine learning models were used for predicting bloodstain age on the
basis of the five parameters (L*, a*, b*, C* and h*) of the CIELAB and CIELCh colorimetric
models.

First, a training set was created by randomly selecting four bloodstains. Data from the
remaining bloodstains were included in the corresponding test set. Five different machine
learning approaches were then used for deriving predictive models on the training set,
while the predictive capabilities of these models were assessed on the test set. The whole
process was repeated five times with different data splits, so as to gauge the associated
variance. Notably, during each split each bloodstain was assigned either to the training or
to the test set. In such a way we ensured that (a) both sets cover equal time periods, and (b)
data from the same bloodstain was not used at the same time for training and validation,
so as to guarantee an unbiased estimation of predictive performance [18].

The first machine learning approach was based on a multiple linear regression model
(MLR) using the single colorimetric coordinates as independent variables. The second one
was a multiple quadratic regression (MQR), including the single colorimetric coordinates
along with their pairwise interactions and their square powers. The third and fourth
approaches were based on support vector machines for regression (SVM): the first one
exploited a Gaussian kernel (SVMr), the second one a polynomial kernel (SVMp). Both
these SVM non-linear machine learning algorithms were able to capture complex patterns
and interactions within data [22]. Finally, we trained a multiple linear model using the first
two principal components (PCs) derived through principal component analysis (PCA) of
the colorimetric coordinates [23]. For ensuring an unbiased assessment of this approach,
the PCs loadings derived from the training set were used for computing the PCs on the
test set as well. The predictive capability of each bloodstain age prediction model was
evaluated through the mean absolute deviation (MAD), Pearson correlation (r) and correct
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classification rate (CCR). MAD provides an immediately comprehensible quantification
of the prediction error in terms of how many hours/days each prediction is, on average,
off. The Pearson correlation indicates how well predictions and observed values vary
together. With respect to the CCR, the obtained results were evaluated as either correct (if
the predicted age was concordant with the TSD ±three hours in the short period or ±three
days in the long period), or incorrect (if these values differed by more than three units of
measurement).The final performances are reported as the average and standard deviation
over the five different splits. Outliers were identified as measurements whose standardized
residuals were larger than three units (in absolute value).

All statistical analyses and graphical representations were performed using R v 4.04
(https://www.r-project.org/, accessed on 24 May 2021), using a custom script.
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