
molecules

Article

Multifunctional Viologen-Derived Supramolecular Network
with Photo/Vapochromic and Proton Conduction Properties

Chuanqi Zhang 1,2,3,†, Huaizhong Shi 1,†, Chenghui Zhang 1, Yan Yan 1, Zhiqiang Liang 1 and Jiyang Li 1,*

����������
�������

Citation: Zhang, C.; Shi, H.; Zhang,

C.; Yan, Y.; Liang, Z.; Li, J.

Multifunctional Viologen-Derived

Supramolecular Network with

Photo/Vapochromic and Proton

Conduction Properties. Molecules

2021, 26, 6209. https://doi.org/

10.3390/molecules26206209

Academic Editor: Sergey V. Kolotilov

Received: 9 September 2021

Accepted: 12 October 2021

Published: 14 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China;
cq.zhang1@siat.ac.cn (C.Z.); shihz16@mails.jlu.edu.cn (H.S.); mse_zhangch@ujn.edu.cn (C.Z.);
yanyan@jlu.edu.cn (Y.Y.); liangzq@jlu.edu.cn (Z.L.)

2 Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, China

3 Laboratoire Catalyse et Spectrochimie (LCS), Normandie University, ENSICAEN, CNRS, 6 Boulevard du
Marechal Juin, 14050 Caen, France

* Correspondence: lijiyang@jlu.edu.cn
† These authors contributed equally to this work.

Abstract: A supramolecular network [H4bdcbpy(NO3)2·H2O] (H4bdcbpy = 1,1′-Bis(3,5-
dicarboxybenzyl)-4,4′-bipyridinium) (1) was prepared by a zwitterionic viologen carboxylate ligand
in hydrothermal synthesis conditions. The as-synthesized (1) has been well characterized by means
of single-crystal/powder X-ray diffraction, elemental analysis, thermogravimetric analysis and in-
frared and UV-vis spectroscopy. This compound possesses a three-dimensional supramolecular
structure, formed by the hydrogen bond and π–π interaction between the organic ligands. This
compound shows photochromic properties under UV light, as well as vapochromic behavior upon
exposure to volatile amines and ammonia, in which the electron transfer from electron-rich parts to
the electron-deficient viologen unit gives rise to colored radicals. Moreover, the intensive intermolec-
ular H-bonding networks in 1 endows it with a proton conductivity of 1.06 × 10−3 S cm−1 in water
at 90 ◦C.

Keywords: supramolecular network; viologen ligand; photo/vapochromism; proton conductivity

1. Introduction

Crystalline chromic materials have attracted considerable attention for optical memory,
visual monitoring, digital anti-counterfeit measures, and environmental detection [1–3].
Compared to traditional inorganic/organic chromic materials, the introduction of pho-
toelectric organic motifs in crystal engineering is one of the most promising strategies
to produce target photochromic materials due to their designable and controllable struc-
tures [4,5]. Viologens (4,4′-quartinized bipyridinium salts) and their derivatives are known
to produce colored viologen radicals under light [6], electricity [7], heat or chemical stim-
uli [8] for photochromism, electrochromism and thermochromism; thus, they have been
extensively used in chromic materials and devices [9,10]. It was noted that zwitterionic
bipyridinium carboxylate ligands contain redox-active bipyridinium cationic groups as
cores and carboxylate groups as building blocks. The presence of the electron donor (car-
boxylate) and acceptor (bipyridinium) on the same structural unit ensures the availability
of chromic behaviors. Recently, bipyridinium carboxylate-based metal-organic frameworks
(MOFs) have emerged and have been well-studied in relation to the merits of these in-
triguing photoelectrochemical properties [11–13]. For instance, Zhang et al. reported the
incorporation of flexible bipyridinium carboxylate ligands into MOFs, which exhibited
highly reversible rapid X-ray-induced photochromism in a broad temperature range [14].
In addition, chromic MOFs exhibiting a differentiable color response to relatively small
primary/secondary/tertiary amines were prepared using rigid 4,4′-bipyridinium-1,1′-
bis(phenylene-3-carboxylate) [15].
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In contrast to the large number of chromic MOFs, supramolecular networks containing
bipyridinium carboxylate unit are still rare [16,17], and the further research to understand
the chromic mechanism and enhance the chromic properties of supramolecular networks is
highly desirable [18]. On the other hand, supramolecular networks possessing hydrophilic
groups (such as -COOH, -SO3H and -PO3H2) and well-defined hydrogen bond paths may
be eligible proton conductors for hydrogen fuel-cell applications [19,20]. Nevertheless, the
related reports on the crystalline supramolecular networks are inadequate [21].

In this work, we report the structure of the supramolecular network assembled by flex-
ible zwitterionic 1,1′-bis(3,5-dicarboxybenzyl)-4,4′-bipyridinium dibromide (H4bdcbpy·Br2,
displayed in Scheme 1), where the intermolecular hydrogen bond and π–π stacking inter-
actions dominate the formation of the network. Compound 1 features photochromism upon
UV light stimulation and vapochromism when fumed with electron-rich primary/secondary
amines and ammonia. Meanwhile, compound 1 exhibits the proton conduction of
1.06 × 10−3 S cm−1 at 90 ◦C in water, as displayed in Scheme 2.
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2. Results
2.1. Structural Description

Compound 1 was prepared using the hydrothermal synthesis method, in which
the combination of pressure and temperature facilitate the formation of crystal materi-
als [22–24]. This compound crystallizes in the monoclinic crystal system and P21/c space
group (Table 1). In the asymmetric unit, it contains a H4bdcbpy molecule, two nitrate
ions and one water molecule (Figure S1). Interestingly, the H4bdcbpy in the structure
adapts the U-type cis-conformation with the dihedral angles of 110.13◦ and 110.20◦ be-
tween the bipyridinium unit and the isophthalate moiety (Figure 1a). As far as we know,
the cis-conformation of this ligand has been rarely observed in other H4bdcbpy-based
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MOFs [25,26]. In the structure of 1, the U-type H4bdcbpy molecules interdigitate each other
up and down to assemble a supramolecular chain through the continuously alternating
π–π type interactions with the centroid–centroid distance of 3.75 and 3.76 Å alternatively
along the b axis (Figure 1a). These chains were further assembled to a layer through π–π
stacking, with the distance of 3.82 Å between the adjacent bipyridinium units. Finally,
a three-dimensional supramolecular network was formed by the intensive O–H···O hy-
drogen bonds between the lateral carboxylic groups along a direction (Figure 1b), and
information on the lengths and the angles of the hydrogen bonds are listed in Table S2
in the Supporting Information (SI). It is noteworthy that there are free H2O and nitrate
counter anions between the molecular layers (Figure 1c). The existence of these guest
molecules not only generates a continuous hydrogen bond pathway with bipyridinium
carboxylate ligands but also can exert an important impact on its inherent properties [27].

Table 1. Crystal data and structure refinement for compound 1.

Empirical Formula C28 H24 N4 O15

Formula weight 656.51
Temperature 293(2) K
Wavelength 0.71073 Å

Crystal system, space group Monoclinic, P21/c
a = 16.653(3) Å α = 90◦

Unit cell dimensions b = 13.379(2) Å β = 98.486(3)◦

c = 24.101(4) Å γ = 90◦

Volume 5310.9(15) Å3

Z 8
Absorption coefficient 1.36 mm−1

F (000) 2720
Theta range for data collection 1.26 to 28.31◦

Limiting indices −22 ≤ h ≤ 11, −17 ≤ k ≤ 17, −31 ≤ l ≤ 32
Reflections collected/unique 37,987

Rint 0.0943
Completeness to theta = 28.31 99.4%

Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9759 and 0.9720

Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 13,137/4/851
Goodness-of-fit on F2 1.004

Final R indices [I > 2σ(I)] R1 = 0.0859, wR2 = 0.2112
R indices (all data) R1 = 0.1813, wR2 = 0.2675

Largest diff. peak and hole 0.749 and −0.555 e Å−3

R1 = Σ||Fo| − |Fc||/Σ|Fo|. wR2 = [Σ[w (Fo
2 − Fc

2)2]/Σ[w (Fo
2)2]]1/2.

2.2. Proton Conduction Properties

Encouraged by previous work on intensive intermolecular H-bonding networks,
which may provide a proton transport pathway [20,28,29], we investigated the proton
conduction properties of compound 1 by means of AC impedance spectroscopy in water.
A compacted pellet sample of 1 was prepared and measured for impedance analyses;
more details on the conductivity measurements are provided in Section 3.2. As revealed
in the AC impedance plots shown in Figure 2a, the proton conductivity of compound
1 at 23 ◦C is 1.38 × 10−4 S cm−1. Furthermore, the proton conductivity of 1 presents a
temperature-dependent trend. It increases to 1.06 × 10−3 S cm−1 when the temperature
is raised to 90 ◦C. It is remarkable that the PXRD of compound 1 maintains its structure
after the proton conduction test in water, which indicates the moderate hydrothermal
stability of this compound (Figure S2). In addition, thermogravimetric analysis (TGA)
shows that this compound can remain stable up to 200 ◦C. Crystal lattice H2O and nitrate
counter anions are eliminated between 200 ◦C and 260 ◦C, and then the ligand starts to
decompose upon further heating (Figure S3). As is well known, the activation energy (Ea)
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for the proton transfer can be calculated using Arrhenius plots (ln(σT) vs. 1000 T−1) to
figure out the proton conduction mechanism [30]. The calculated Ea value of compound
1 is 0.28 eV, in the range of 0.1–0.4 eV, demonstrating that the proton conduction process
follows the Grotthuss mechanism. The proton conductivity of 1 is not comparable to the
ultrahigh proton conductivity of hydrogen-based organic framework (HOF) materials
HOF-GS-10 (0.75 × 10−2 S cm−1) and HOF-GS-11 (1.8 × 10−2 S cm−1) at 30 ◦C and 95%
relative humidity (RH), respectively [31]. However, it is several orders of magnitude higher
than other reported HOFs, such as HOF-H3L (6.91 × 10−5 S cm−1) at 100 ◦C and 98%
RH [32], hydrated HOF-6a (3.4 × 10−6 S cm−1 at 300 K and ∼97 % RH) [21] and the pair
of zwitterionic supramolecular structures of 2-phenylbenzimidazole-5-sulfonicacid, with
magnitudes of 1 × 10−5 S cm−1 for the mono-hydrated form and 5 × 10−5 S cm−1 for the
di-hydrated form [33]. The decent proton conductivity of compound 1 may be explained by
the continuous hydrogen bond pathway established by the ligands, guest water molecules
and nitrate ions, as discussed in the structural section (Figure 1b) [34].
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2.3. Photo/Vapochromic Properties

In general, bipyridinium carboxylate ligands in the crystal structure may undergo
a two-step redox process and exhibit three different states through the electron transfer
from electron donors (carboxylate groups) towards electron acceptors (bipyridinium units),
which is accompanied by a color change due to the formation of viologen radicals [35].
The photochromic behavior of compound 1 was studied for this reason, as shown in
Figure 3a. The yellowish crystals become dark yellow after UV irradiation for 30 mins.
The electron transfer process was verified by solid-state UV-vis adsorption spectra and
electron paramagnetic resonance (EPR). As shown in Figure 3b, two new characteristic
absorption bands around 420 and 630 nm appear after UV irradiation [17,36–38]. Moreover,
an intensive signal with g = 2.00 occurs, indicating the generation of viologen radicals in 1
during the photochromic process (Figure 3c). It has been well recognized that the distance
between electron donors and acceptors plays an essential role in determining the efficiency
of photochromism [39]. As shown in Figure 1d, in compound 1, the closest O···N distance
between the adjacent oxygen atoms of nitrate, carboxylate O atoms of the isophthalate
moiety and the nitrogen atoms of the bipyridinium unit are 3.341 and 3.459 Å, respectively,
which are in the range of UV-light-induced photochromism [40,41].

Molecules 2021, 26, x  6 of 11 
 

 

 
Figure 3. (a) Photographs, (b) Normalized UV−vis adsorption spectra and (c) EPR spectra of com-
pound 1 before and after irradiation with a UV lamp. 

The detection of volatile amines has attracted extensive attention because the wide-
spread existence of these toxic, corrosive chemicals greatly threatens human health and 
the ecological system [42,43]. Chromic MOF materials are capable of detecting volatile 
organic compounds through a visual color response [44,45], we studied the sensing ability 
of compound 1 for amine vapors. Although the yellowish compound 1 has a negligible 
response to tertiary amines (e.g., triethylamine (TEA) and tri-n-propylamine (TPA)), it 
shows different color responses to primary/secondary amines and ammonia. As pictured 
in Figure 4, compound 1 turns deep purple immediately when exposed to the vapor of 
primary amine (e.g., ethylamine (EA), n-propylamine (PA) and n-butylamine (BA)) and 
secondary amine (e.g., diethylamine (DEA) and dipropylamine (DPA)). Moreover, fum-
ing the compound 1 with ammonia leads to the color light blue. The solid-state UV-vis 
and EPR spectra were performed to verify the vapochromic mechanism. As shown in Fig-
ure 5a, the deep purple samples fumed with EA and DEA show intensive absorptions in 
the visible region. The light blue sample resulting from ammonia exhibits a week adsorp-
tion around 600 nm, and there is no obvious absorption change in the spectra of the TEA-
treated sample. Moreover, the EPR spectra of those vapochromic samples show single 
signals with g = 1.99 that can be ascribed to viologen radicals (Figure 5b). Thus, it is rea-
sonable to suppose that the vapochromic mechanism occurs due to the formation of vio-
logen radicals caused by electron transfer from electron-rich amines or ammonia to the 
viologen unit in 1. Although thermal electron transfer from the amines to the viologen 
moiety seems unfavorable in compound 1, the acid−base interaction between the ammo-
nia/amines (Lewis base) and the viologen moiety (Lewis acidic site) may facilitate inter-
molecular electron transfer [43,46,47]. It was noteworthy that the interactions between 
ammonia/amines and compound 1 should be on its surface due to the absence of porosity 
in its structure. In addition, the three alkyl groups on the tertiary amines impose steric 
hindrance for the amino group to interact with the viologen unit of compound 1, which 
could be the reason for the negligible responses of TEA and TPA [48]. Impressively, those 
vapochromic samples are able to turn back to their pristine yellowish form after standing 
in air at room temperature for several minutes, suggesting that the vapochromic behaviors 
are reversible. 

Figure 3. (a) Photographs, (b) Normalized UV−vis adsorption spectra and (c) EPR spectra of compound 1 before and after
irradiation with a UV lamp.



Molecules 2021, 26, 6209 6 of 10

The detection of volatile amines has attracted extensive attention because the widespread
existence of these toxic, corrosive chemicals greatly threatens human health and the eco-
logical system [42,43]. Chromic MOF materials are capable of detecting volatile organic
compounds through a visual color response [44,45], we studied the sensing ability of com-
pound 1 for amine vapors. Although the yellowish compound 1 has a negligible response
to tertiary amines (e.g., triethylamine (TEA) and tri-n-propylamine (TPA)), it shows differ-
ent color responses to primary/secondary amines and ammonia. As pictured in Figure 4,
compound 1 turns deep purple immediately when exposed to the vapor of primary amine
(e.g., ethylamine (EA), n-propylamine (PA) and n-butylamine (BA)) and secondary amine
(e.g., diethylamine (DEA) and dipropylamine (DPA)). Moreover, fuming the compound 1
with ammonia leads to the color light blue. The solid-state UV-vis and EPR spectra were
performed to verify the vapochromic mechanism. As shown in Figure 5a, the deep purple
samples fumed with EA and DEA show intensive absorptions in the visible region. The light
blue sample resulting from ammonia exhibits a week adsorption around 600 nm, and there
is no obvious absorption change in the spectra of the TEA-treated sample. Moreover, the
EPR spectra of those vapochromic samples show single signals with g = 1.99 that can be
ascribed to viologen radicals (Figure 5b). Thus, it is reasonable to suppose that the vapoc-
hromic mechanism occurs due to the formation of viologen radicals caused by electron
transfer from electron-rich amines or ammonia to the viologen unit in 1. Although thermal
electron transfer from the amines to the viologen moiety seems unfavorable in compound
1, the acid−base interaction between the ammonia/amines (Lewis base) and the viologen
moiety (Lewis acidic site) may facilitate intermolecular electron transfer [43,46,47]. It was
noteworthy that the interactions between ammonia/amines and compound 1 should be
on its surface due to the absence of porosity in its structure. In addition, the three alkyl
groups on the tertiary amines impose steric hindrance for the amino group to interact with
the viologen unit of compound 1, which could be the reason for the negligible responses
of TEA and TPA [48]. Impressively, those vapochromic samples are able to turn back to
their pristine yellowish form after standing in air at room temperature for several minutes,
suggesting that the vapochromic behaviors are reversible.
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3. Materials and Methods
3.1. Materials and General Methods

1,1′-Bis(3,5-dicarboxybenzyl)-4,4′-bipyridinium dibromide (H4bdcbpy·Br2,) was ob-
tained according to the procedure in the literature [26], all the other chemical reagents were
commercially obtained and used without further purification. Powder X-ray diffraction
(PXRD) patterns were performed on a Rigaku D-Max 2550 diffractometer (Rigaku Corpo-
ration, Tokyo, Japan), using Cu-Kα radiation (α = 1.5418 Å) in a 2θ range of 4–40◦. The
elemental analysis was performed on a Perkin-Elmer 2400 elemental analyzer (PerkinElmer,
Waltham, MA, USA). The infrared spectrum was collected in the range of 400–4000 cm−1

on a Nicolet 6700 FT-IR spectrometer (Thermo Scientific, Waltham, MA, USA). The UV-vis
absorption spectra were recorded on a Shimadzu UV-2450 spectrophotometer (Shimadzu
Corporation, Kyoto, Japan). Electron paramagnetic resonance (EPR) spectra were collected
using a JEOL JES-FA200 EPR spectrometer (JEOL Ltd., Tokyo, Japan). Thermo-gravimetric
analysis (TGA) was carried out on a Perkin-Elmer TGA-7 thermogravimetric analyzer
(PerkinElmer, Waltham, MA, USA) from room temperature to 800 ◦C in air atmosphere at
a heating rate of 10 ◦C min−1.

3.2. Conductivity Measurements

Proton conductivity analyses were measured via impedance spectroscopy on a So-
lartron 1260 + 1287 impedance analyzer. The powder samples of compound 1 were pressed
into a wafer on a tablet machine under 10 GPa. Both sides of the obtained tablet sample
were coated with silver glue and stuck with silver wire for the proton conductivity analy-
ses. Impedance data of these samples were collected in water with temperatures ranging
from 23 ◦C–90 ◦C, performed in a water bath. The ranges of the applied frequency and
alternating current voltage were from 10 Hz to 1 MHz and 300–500 mV, respectively. It is
worth mentioning that the test was completed within 40 minutes because the silver glue
on both surfaces of the tablet sample would be warped if immersed in water for a long
time. The conductivity was calculated using the following equation: σ = l/(Rs × S), where
l and S are the thickness (cm) and cross-sectional area (cm2) of the pellet, respectively, and
Rs was extracted directly from the impedance plots, indicating the bulk resistance of the
sample (Ω).

3.3. Crystal Structure Determination

Single crystal X-ray diffraction measurements were collected on a Bruker AXS SMART
APEX II (Bruker, Karlsruhe, Germany) diffractometer for compound 1 with graphite
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monochromated Mo-Kα (λ = 0.71073 Å) radiation at 293 K. Data processing was performed
using the SAINT processing program. The structure was solved through direct methods
and refined on F2 by means of the full-matrix least-squares method with the SHELX-97
program. All the non-hydrogen atoms were refined with anisotropic thermal parameters.
A summary of the detailed crystallographic data and structure refinement parameters for 1
(CCDC No. 2106882) are given in Tables S1–S3 in the SI.

3.4. Synthesis of [H4bdcbpy(NO3)2·H2O] (1)

30 mg of H4bdcbpy·Br2 was dispersed into 10 mL distilled water, then 0.85 mL of
NaOH (1 M) and 1.5 mL of HNO3 (0.9 M) were added to obtain a clear solution. The
mixture was sealed in a 20 mL glass bottle, and then heated at 100 ◦C for 1 day under static
conditions. The light-yellow crystal was produced, washed by distilled water and dried
at room temperature. As shown in Figure S2 in the SI, the experimental PXRD pattern of
the as-made compound 1 matched well with the simulated one from its crystal structure,
which confirms the purity of the phase. Figure S4, in the SI, displays the IR spectrum
of compound 1; the adsorption around 1354, 1631 and 3530 cm−1 may be assigned to
the presence of nitrate ion and guest water molecule, respectively. The sharp adsorption
peak near 3050 cm−1 can be attributed to the stretching vibrations of the aromatic C-H
bond. Importantly, the stretching vibration peaks at 1710 and 3400 cm−1 of the carboxylic
acid group indicate the organic ligand is not deprotonated. Elemental Anal. Calcd. for 1:
C28H24N4O15 (M = 656.52); C: 51.23, N:8.53, H:3.68. Found: C: 49.84, N:8.08, H:3.60%.

4. Conclusions

In summary, an organic supramolecular framework for compound 1 was constructed
by means of intensive π–π stacking interactions and hydrogen bonds between the flexible
bipyridinium tetradentate carboxylate ligand and guest molecules. Benefiting from the
intermolecular H-bonding networks, in water at 90 ◦C, compound 1 has a high proton
conductivity of 1.06 × 10−3 S cm−1, and its proton-conducting mechanisms have also
been discussed. Meanwhile, compound 1 exhibits photochromic properties, changing
from yellowish to dark yellow upon UV irradiation, and distinct vapochromic sensing for
ammonia, primary/secondary amines. The results of UV-vis and EPR spectrum analyses
indicate that the photochromism and vapochromic responses to ammonia/amines result
from the formation of viologen radicals through reversible electron transfer. Compound
1 represents a rare supramolecular structure, featuring moderate hydrothermal stability,
high proton conductivity and photo/vapochromic properties. This research proves that the
utilization of zwitterionic bipyridinium carboxylate ligands to establish supramolecular
networks offers a promising strategy for the synthesis of new multifunctional materials in
sensors and fuel cells. Moreover, more researches on the in-depth mechanism are needed
to obtain a better understanding of the vapochromic behaviors of supramolecular materials
in the future.

Supplementary Materials: The following Supporting Information is available online, Figure S1:
The asymmetric unit of the structure for compound 1; Figure S2: The PXRD patterns of simulated
and as-synthesized compound 1; Figure S3: The TG curve of compound 1 determined in the air
atmosphere. Figure S4: The infrared spectrum of compound 1. Selected bond lengths and angles and
hydrogen bonds for compound 1 are provided in Tables S1 and S2.
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