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Abstract: The accurate prediction of molecular properties, such as lipophilicity and aqueous solubility,
are of great importance and pose challenges in several stages of the drug discovery pipeline. Machine
learning methods, such as graph-based neural networks (GNNs), have shown exceptionally good
performance in predicting these properties. In this work, we introduce a novel GNN architecture,
called directed edge graph isomorphism network (D-GIN). It is composed of two distinct sub-
architectures (D-MPNN, GIN) and achieves an improvement in accuracy over its sub-architectures
employing various learning, and featurization strategies. We argue that combining models with
different key aspects help make graph neural networks deeper and simultaneously increase their
predictive power. Furthermore, we address current limitations in assessment of deep-learning
models, namely, comparison of single training run performance metrics, and offer a more robust
solution.

Keywords: AI, deep-learning; neural-networks; graph neural-networks; cheminformatics; molecular
property; machine-learning; computational chemistry; lipophilicity; solubility

1. Introduction

Oral bio-availability, drug uptake, and ADME-related properties of small molecules
are key properties in pharmacokinetics. For drugs to reach their intended target, they need
to pass through several barriers either by passive diffusion or carrier-mediated uptake
typically mediated by lipophilicity and aqueous solubility. Compounds with poor solubility
are unable to achieve that and, therefore, pose a higher risk in attrition and overall cost
during development [1].

Methods based on deep-learning have proven successful in predicting molecular prop-
erties [2] and are becoming more and more a routine part of the modern computer-aided
drug design toolbox for molecular design and med-chem decision support. Since molecules
can be represented as graphs, an obvious approach is to employ a graph-based architecture
for deep-learning, which leads to the utilization of graph-based neural networks (GNNs).
These kinds of networks are capable of learning representations for a specific task in an
automated way and, therefore, can eliminate the complicated feature engineering process
where domain specialists have to select the list of descriptors themselves [3]. They became
increasingly popular in the last few years [4–6] especially due to their success in chemical
property prediction [7–12].

One of the first GNN models used for physicochemical property prediction was intro-
duced by Micheli [13] in 2009. It predicted the boiling point of alkanes with a recursive
architecture for structured data input and achieved an improved state-of-the-art perfor-
mance. Lusci et al. [14] were the first to apply an undirected cyclic graph recurrent neural
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network on predicting aqueous solubility successfully. In the following years, several
recurrent, spatial, and spectral graph-based neural networks were introduced [3,15–17].
One of them was the message passing framework, which was extended to include directed
edges [3]. This network, called directed-edge message passing network (D-MPNN), is one
of the most successful GNNs to predict chemical properties [1].

Despite the success, one important limitation with message passing networks is the
graph isomorphism problem, meaning that they are unaware of the structural role of
each node or edge [18]. Most standard GNNs, such as the D-MPNN, are incapable of
distinguishing between different types of graph structures to determine whether they are
topologically identical [19]. Compounds, such as naphthalene and 1,1-bi(cyclopentane),
are perceived as the same structure by these networks. This can be problematic because
they have vastly different chemical properties. To address this issue, graph isomophism
networks (GIN), another group of GNNs, have recently received attention [19,19,20]. They
are capable of distinguishing between these compounds by reformulating the message
passing framework to incorporate the Weisfeiler–Lehman (WL) hierarchy. They try to be
at least as expressive as the Weisfeiler–Lehman graph isomorphism test (WL-test) [21]
and have shown good results in chemical property prediction [19,20] despite often falling
short with respect to speed and accuracy to other frameworks, such as the D-MPNN [22].
Inspired by the key property of the GIN and the success of the D-MPNN framework, we
combined the key characteristics of both architectures. By doing so we not only address
the isomorphism problem but also incorporate one of the most successful and powerful
GNN frameworks to improve lipophilicity and aqueous solubility prediction.

When comparing new machine learning architectures with previously published
methods, the standard approach is to compare single performance metrics, such as root
mean squared error (RMSE) values on a test set to show model performance [22,23].
This can lead to reproducibility issues as stochastic algorithms like neural networks can
vary greatly in their prediction, even without changing their hyperparameters, simply by
using different training, validation, test set splits or non-deterministic weight initializations
[24,25]. One of the reasons for this is the complex landscape that optimizers have to navigate
through in modern machine learning models. In real world applications these landscapes
can have multiple local minima and it is especially hard for non-deterministic optimization
algorithms like stochastic gradient descent to find the global minimum, therefore often
retrieving different results when repeated [26]. This problem can be intensified by using
small datasets with different random splits for training and evaluation. Such an approach
can lead the optimization algorithm into different local minima and makes it almost
impossible for the model to generalize [2]. It is, therefore, difficult to compare different
deep-learning model architectures with each other even when using the same data [24].
Another challenge is especially prominent in the GNN domain, where the optimal features
for node or edge representation are unknown. Deep-learning benchmark studies often use
the same data but different representations for their input data which makes it difficult to
make a fair comparison between the models [2,3].

To mitigate these problems, we use the exact same data split to train, evaluate, and test
each of the used models with different node and edge features, as well as learning strategies
to obtain an average performance independent of the used features and training approaches.
Such a procedure is time consuming as multiple models have to be evaluated several times.
Nevertheless, obtaining a better overview of the behaviour of GNNs under these different
constraints will facilitate the understanding of these architectures and ultimately help
advance GNNs beyond the current hype to more explainable and robust models.

Our contribution is a novel graph neural network architecture called directed edge
graph isomorphism network (D-GIN). It extends the directed edge message passing (D-
MPNN) framework [1] by the graph isomorphism network (GIN) [19]. An overview of the
D-GIN model is shown in Figure 1. Our novel architecture shows improved performance
compared to its individual, less complex networks, and we demonstrate that combin-
ing models with different key aspects help make graph neural networks deeper while
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simultaneously increasing their predictive power. We evaluated our models by applying
different learning and featurization strategies and compared their average performance
under different constraints.

Figure 1. High level representation of the directed-edge graph isomorphism network (D-GIN)
architecture for physicochemical prediction (logD, logS, or logP). (a) High level workflow depicting
how a graph and its nodes and edges are featurized, then fed into the D-GIN to generate a molecular
graph embedding. (b) The D-GIN architecture at a low level. Steps involved in generating input
to make predictions: 1) Initial hidden directed-edge features (h0

uv) are initialized by concatenating
the corresponding node (xv) and directed edge (xuv) features. (2) Directed edge messages (muv) are
used to update the hidden directed-edge features (ht

uv). (3) Directed messages are combined with
their corresponding hidden node features (hv), and (4) iteratively updated by an additional trainable
identifier (epsilon). (5) Hidden node features are aggregated to generate the molecular embedding
(hG) which is used as input for (6), the feed-forward neural network.
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2. Materials and Methods

This section gives a detailed overview of the used data, molecular representation, and
the different machine learning methods used throughout this work. The most common
notations are shown in Table 1.

Table 1. Common notations used throughout this publication.

Notation Definition

τ A non-linear function (e.g., sigmoid or relu)
cat(, ) Vector concatenation

t Iterator of t steps
G A graph
V Set of nodes
E Set of edges
v Node v ∈ V

euv Edge euv ∈ E between node u and v
N(u) Neighbors of node u

N(u)/w Neighbors of node u except w
n The number of nodes
m The number of edges
d The dimension of a node feature vector
b The dimension of a edge feature vector

X ∈n×d Feature matrix of a graph
xv ∈d Feature vector of node v

xe
uv ∈ b Feature vector of edge euv

hv ∈c Hidden feature vector of node v
mv ∈c Message feature vector to node v
hG ∈c Feature vector of the graph G
huv ∈d Hidden feature vector of edge euv
muv ∈d Message feature vector to edge euv

W Weight matrix of a neural network
A ∈ {1, 0}|n|x|n| Adjacency matrix

RMSE Root mean squared error
GNN Graph neural network
GIN Graph isomorphic network as in [19]

ε Epsilon as described in [19]
D-MPNN Directed-edge message passing network as in [1]

D-GIN Directed-edge graph isomorphic network
CI 95% confidence interval calculated via bootstrapping
f (·) Feed forward neural network

2.1. Experimental Data

A total of 10,617 molecules annotated with experimentally derived logD and logP
values or logS and logP values were used for model training and predictions. The selected
molecules were derived from the Delaney lipophilicity dataset containing experimentally
evaluated logD and logP values at pH 7.4 [27] and an aqueous solubility set with logS
and logP values [28]. Each dataset was evaluated and molecules were neutralized in both
sets. For the aqueous solubility data, salts were stripped off and molecules with logS
values lower than −10.0 or higher than 0.0 were removed. The original preprocessed and
post-processed data can be found in the GitHub repository [29]. The splitting of each
dataset into three subsets for training, evaluation, and testing was completed randomly in a
ratio of 81:9:10 for the (training, evaluation, and testing). The data splitting was performed
with the same seed for each of the models to be able to compare them using the exact same
training, evaluation, and test data. The minimum value of each of the logD, logP, and logS
properties was used as an offset to ensure only positive property values. The resulting
lipophilicity dataset consisted of 4174 compounds. In total, 3380 were used for training,
376 for evaluating and model selection, and 418 for testing. The post processed solubility
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dataset contained 6443 molecules. Overall, 5219 compounds were allocated for training,
579 for evaluation, and model selection, and 645 for testing

2.2. Training Approaches

The training strategies differ in the used dataset and the training target (logD, logP,
or logS). Under these constraints, seven different types of strategies were used. The first
multi-task learning strategy used a combined approach of logD, logP, and logS values
referred to as “logD/P/S”. Three additional multi-task strategies utilized a combination of
two physicochemical properties and are notated as either “logD/P”, “logD/S”, or “logS/P”.
Three other single task strategies are only learned on a single physicochemical property
and are referred to as either “single task logD”, “logP”, or “logS”. When physicochemi-
cal properties from different datasets were used, the individual datasets were first split
into training, evaluation, and test sets. Afterwards, each physicochemical property was
evaluated and tested individually so that the evaluation and test results of the multi-task
learning approaches can be compared to those with a single-task learning strategy.

When testing either single-, or multi-task models, the combined root mean squared
error (RMSE) for all properties was calculated as the measure for the best model. For logP,
we only used the results from either the first multi-task approach (“multi-task logS/D/P”)
or the single-task approach with logP values. The reasoning behind this was to use the
same test and evaluation data for all models while trying to avoid an unbalanced data bias
in favor of logP values. When training with two physicochemical properties where one was
logP, we only used the data that had both properties. For example, when training on the
lipophilicity dataset which had logP and logD values, we did not include logP compounds
from the aqueous solubility dataset and vice versa.

2.3. Molecular Graphs

A graph is defined as G = (V, E), where V is a set of nodes and E denotes a set of
edges. Let v ∈ V be a node with feature vector xv and euv ∈ E be an edge pointing from u
to v with feature vector xe

uv. The adjacency matrix A shows the connectivity of the nodes
and in our case it was binary as we did not weigh any connections. It is defined as a n× n
matrix with Auv = 1 if euv ∈ E and Auv = 0 if euv /∈ E. We use directed, heterogeneous
graphs where euv 6= evu. Heterogeneous graphs contain different types of nodes and edges
with their corresponding featurizations.

2.4. Molecular Featurization

Five different types of edge and vertex featurizations X were being used for the GNNs.
The detailed description of x and xe can be found in Tables A1–A6 in the Appendix A. The
feature vectors for the non-GNN models consist of 8 different settings-fingerprints (ECFP
or MACCSKeys-shown in Table A7 in the Appendix A) used either in combination with
standardized RDKit [30] descriptors or without the descriptors. The descriptors were a
combination of all possible and standardized RDKit descriptors, which had a total length
of 208. The parametrization of the ECFP was either 1024, 1536, or 2048 bits with a radius
of 4. Featurization 3 (Table A1 in the Appendix A) and 4 (Table A2 in the Appendix A)
only differ in the way the size of ring systems are being represented. Either as a float
value calculated by 1 divided by the size of the ring or as a one-hot encoding with 10
possibilities. The node and edge featurization in 5 (Table A3 in the Appendix A) includes
two node features (chemical element and formal charge) and one edge feature (bond order).
Featurization 6 (Table A4 in the Appendix A) includes the same node description as 5 and
the edge featurization of 3. Featurization 7 (Table A5 in the Appendix A) has the same
node featurization as 3 and the same edge featurization as 5. Featurization 8 (Table A6 in
the Appendix A) includes a set of optimized node and edge features. This was performed
by using a trained D-GIN model and then removing one node or edge feature at a time
and observing the RMSE of the prediction. The five node features and the three edge
features that had the biggest impact on the RMSE were then taken as the featurization.
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The graphs and their featurization were implemented using python version 3.7.8 and the
toolkit CDPKit [31].

2.5. Directed-Edge GIN (D-GIN) and Reference Models

D-GIN is an extension of the directed-edge message passing neural network of Yang
et al. [1] without the additional feature engineering in combination with the graph isomor-
phic network (GIN) of Xu et al. [19]. Its high level representation can be seen in Figure 1.
The principle construction of the network can be seen in the Equations (1)–(8). First, the
directed edges were initialized as

h0
uw = τ(Winit(cat(xu, xe

uw))) (1)

followed by a t ∈ 1, . . . , T iteration of

m(t+1)
uw =


∑

k∈N(u)/w
h0

ku, if t == 0.

∑
k∈N(u)/w

ht
ku, otherwise.

(2)

h(t+1)
uw = τ(h0

uw + Wmmt+1
uw ) (3)

after which the messages for each directed-edge was being summed as

mu = ∑
w∈N(u)

hT
uw (4)

then the message mu was being concatenated as

hu =

{
cat(mu, xu), if D-GIN.
(Wagg(cat(mu, xu)), if D-MPNN.

(5)

and another message passing over l ∈ 1, . . . , T2 was performed by

h(l)u =

 ∑
w∈N(u)

hw, if D-GIN.

xu, if GIN.
(6)

h(l+1)
u = (Wagg(1 + ε)h0

u + h(l)u ) (7)

afterwards the updated feature vectors hT
node of each node were aggregated over the whole

molecule as
hG = ∑

h∈(H(T))

h. (8)

The readout phase was then defined as ŷ = f (hG) where f (·) was a feed-forward neural
network. The D-MPNN consisted of Equations (1)–(5) but then used the hidden feature
vectors for each node directly by applying Equation (5) and then immediately Equation (7)
to encode the whole graph as hG.

GIN on the other hand was initialized and trained, as shown in Equation (6) in
order to update the hidden feature vectors of each node. After l update step, the hidden
feature vector of each node served as the input of Equation (7) to achieve the aggregated
representation hG for the whole graph. D-GIN used all of these functions in a combined
way described above Equations (1)–(8). The main principle behind this approach was to
first use the key aspect of directed-edge message passing to propagate information via
directed-edges to form messages Equations (1)–(4), which then updated the hidden node
features Equations (5). These updated hidden node features were then used in the GIN
message passing to further propagate information Equations (6) and (7) while also learning
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ε. These two information propagation phases are the key aspects of the two different
sub-architectures.

2.6. Graph Neural Network Implementation, Training, and Hyper-Parameter Search

All GNNs have been implemented and trained using python version 3.7.8 and Tensor-
Flow 2.3.0 [? ]. We used TensorFlow’s keras models as our super-class and then transferred
Equations (1)–(8) into the “fit” method of the keras model. A hyper-parameter search was
conducted to find the best parameters which were further used to train all models. Further
details on the hyper-parameters are given in the corresponding model’s configuration files
accessible via the graph_networks Github repository [29].

Each GNN model type was trained twice with either 24 different settings when
training on the logD or logS property or 12 on the logP property-in total 48 or 24 training
runs per model type were performed. Each non-GNN model type was trained with 8
different settings. For training, evaluation, and testing we split each of the datasets as
described in Section Experimental Data. Each of the GNNs were trained for 1600 epochs
and the model with the best performance was identified using RMSE as the evaluation
metric on the validation set. To evaluate the model type performance, we used the model
with the best RMSE of the two runs performed for each model setting. When evaluating
the average model type performance, the average RMSE of the different model settings
was used for the calculation. To evaluate models with several properties, we summed all
RMSEs. For example, when using logD and logP for training, we summed the RMSE of
the logD and logP prediction on the evaluation set to receive a combined RMSE. When the
combined RMSE was below the last best combined RMSE, the model weights were saved.
We used these models to test the model on the test set. Each model was run two times and
the results with the best test set performance were taken.

Additionally, the 95% confidence interval range was calculated by applying bootstrap-
ping 100 times while leaving out 10% of the test dataset.

To generate consensus models between GNN and non-GNN models, we combined
the best GNN model for each physicochemical property with the best non-GNN model. We
did this by adding the predicted log values of one model with the other and then divided
it by two. These hybrid models are then called according to their GNN model type plus
consensus (e.g., D-GIN cons.).

2.7. Other Machine Learning Approaches

We used the random forest (RF), support vector machine (SVM), and k-nearest neigh-
bor (K-NN) implementations of scikit-learn (Version 0.23.2 [33]). Default hyperparameters
were used. The featurization is described in Table A7. When using descriptors as input, we
standardized them with the scikit-learn StandardScaler. For the fingerprints and descrip-
tors we used version 2020.09.2 of the RDKit [30] python package. Each of the models were
trained in a single-task manner for each of the property values.

2.8. Hardware and Run-Time

Calculations were performed on machines within the Department of Pharmaceutical
Sciences at the University of Vienna, Austria. We ran each model on a single CPU (Intel(R)
Core(TM) i7-8700K CPU @ 3.70GHz). The run-time to fit the used RF, SVM, and KNN
models with 3380 compounds on logD property values is approximately 50 s (RF), 25 s
(SVM), and 0.5 s (KNN). When training the GNN model types on the 3380 logD compounds
it takes for each epoch approximately 56 s (D-GIN), 35 s (D-MPNN), and 28 s (GIN).
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3. Results and Discussion

For clarity, we define certain terms used throughout this publication that might have
ambiguous meanings. The term “model type” refers to different kinds of machine learning
algorithms. For example, a model type can be RF, SVM, KNN, D-GIN, GIN, or D-MPNN.
The term “model” refers to a trained model instance with particular training and featuriza-
tion strategies. The term “training strategy” is used to distinguish between different single-
and multi-task training approaches trained with a combination of molecular properties.
For example, logD/S/P is used to show that logD, logS, and logP values were used during
training. The term “featurization strategy” is used to describe the different node and
edge features utilized for the models to train on (Tables A1–A6 in the Appendix A). In
addition, we distinguish between consensus (cons.) and non-consensus models. These
hybrid models are a combination of the best GNN and best non-GNN models (SVM and
D-GIN for logD and logS and RF and D-GIN for logP). To obtain consensus predictions, the
predicted property values of the two models were combined and averaged. The averaged
values were used as “new” predictions for the RMSE calculation and referred to their GNN
model type plus cons (e.g., D-GIN cons).

Overall, 6 different machine learning model types were used in this study. The three
GNN model types were D-MPNN, GIN, and D-GIN. The three non-GNN model types were
random forest (RF) regression, support vector machines (SVM), and the k-nearest-neighbor
(KNN) algorithm. Each model type was trained with the same hyperparameters, but 7
different learning strategies and 6 different node/edge featurization strategies. We trained
each GNN model type for each physico-chemical property with all possible strategies twice.
Subsequently, the best performing model from each of the two runs (measured on the
evaluation set) was selected resulting in 24 models for the logD and logS property and
12 for the logP property, which were then used on the test set and their performance was
reported.

The results of this approach are reported and discussed in two parts. First, we discuss
different GNNs and non-GNN methods used in this work to identify the best performing
model type according to its average performance across all used strategies (discussed in
Section General Model Performance). Subsequently, we investigate the impact of the 6
different training strategies (i.e., multi-task vs. single task learning), as well as different
featurizations on the performance (discussed in Sections Impact of Molecular Featurization
and Impact of Training Strategies).

A dataset of 10,617 molecular structures with annotations for one of the three physico-
chemical properties was assembled for model training, evaluation, and testing. It included
4174 logD, 6443 logS, and 10,617 logP experimentally measured values. The same training,
evaluation, test set was used for all GNN and non-GNN model types.

3.1. General Model Performance

In the following, the reported results vary by the used model type. Each combination
of featurization and training strategy was used to calculate a total of 24 RMSE values for
the logD and logS property, and 12 for the logP property per model type. This resulted
in a RMSE distribution shown in Table 2 and Figure 2. For each of these distributions,
the average, minimum, and maximum RMSE was calculated and will be reported and
discussed subsequently.
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Table 2. Overview of the best performing machine learning model types independent of training and
featurization strategy for prediction of logD, logS, and logP. The performance was calculated as the
distribution average over all used model root mean squared error (RMSE) values. In total 24 models
were used for the loD and logS property, and 12 for the logP property. RMSE values highlighted in
dark and light gray show the best and next best models. Red asterisks mark the lowest RMSE for the
non-consensus models for each property prediction.

Molecular Model Type Mean Min Max
Property RMSE RMSE RMSE

logD

D-GIN 0.615 ± 0.039 * 0.553 0.704
D-MPNN 0.762 ± 0.065 0.686 0.911
GIN 0.804 ± 0.061 0.738 0.911

RF 0.780 ± 0.084 0.699 0.890
SVM 0.740 ± 0.068 0.639 0.814
KNN 0.951 ± 0.067 0.801 1.003

D-GIN cons. 0.575 ± 0.019 0.548 0.622
D-MPNN cons. 0.647 ± 0.028 0.613 0.710
GIN cons. 0.666 ± 0.029 0.627 0.719

logS

D-GIN 0.867 ± 0.070 * 0.795 1.061
D-MPNN 0.896 ± 0.030 0.857 0.961
GIN 1.210 ± 0.102 1.088 1.400

RF 0.997 ± 0.253 0.760 1.284
SVM 1.006 ± 0.154 0.729 1.162
KNN 1.500 ± 0.217 1.057 1.676

D-GIN cons. 0.738 ± 0.028 0.705 0.820
D-MPNN cons. 0.762 ± 0.012 0.743 0.785
GIN cons. 0.881 ± 0.045 0.825 0.969

logP

D-GIN 0.529 ± 0.064* 0.472 0.662
D-MPNN 0.600 ± 0.063 0.540 0.734
GIN 0.784 ± 0.077 0.716 0.901

RF 0.681 ± 0.224 0.470 0.928
SVM 0.693 ± 0.134 0.493 0.833
KNN 1.014 ± 0.123 0.743 1.102

D-GIN cons. 0.455 ± 0.028 0.428 0.515
D-MPNN cons. 0.475 ± 0.027 0.443 0.532
GIN cons. 0.566 ± 0.034 0.533 0.618
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Figure 2. LogD, logS, and logP property prediction results for GNN and non-GNN model types with
different featurization and training strategies. The different GNN architectures are colored in blue
(D-GIN), orange (D MPNN), and green (GIN), the non-GNN architectures in gray (SVM), salmon
pink (RF), and red (KNN) For logD and logS, 24 individual RMSE values were calculated for each
model type. For logP 12 individual RMSE values were calculated. The individual boxplots show the
average value of each model type as white dot and the median as a dark gray line. The values are
listed in Tables A8–A19 in the Appendix A.

Table 2 shows the RMSE distribution average of the different machine learning model
types regardless of their training and featurization strategy on the hold-out test set. For
each value the standard error of the mean was calculated and added.

For logD property prediction, the D-GIN model type performed with mean, minimum,
and maximum logD RMSE of 0.615 ± 0.039, 0.553, and 0.7048, and the corresponding
consensus model with 0.575 ± 0.0192, 0.548, and 0.622, making it the best performing model
type (results shown in Table 2, and Figure 2). The consensus GIN performed on average
(distribution mean of logD RMSE values of 0.666 ± 0.029) better than the best non-GNN
method (distribution mean logD RMSE of 0.740 ± 0.068).
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For the logS prediction, the best model type was the D-GIN consensus model with
a average RMSE value of 0.738 ± 0.028 (shown in Table 2 and Figure 2). It performed on
average better than the best performing non-GNN model type (SVM), which performed
with an average RMSE value of 1.006 ± 0.154 (but it also had a single run with a RMSE value
of 0.729 making it the model type with the best single run performance and highlighting the
importance of multiple repetitions for reporting model type performances). The consensus
D-MPNN also outperformed the D-GIN.

The consensus D-GIN (average RMSE value of 0.455 ± 0.028) and consensus D-MPNN
(average RMSE value of 0.475 ± 0.027) showed the best average performance for logP
prediction (Table 2, and Figure 2). The RF and SVM model types also performed with
low minimum RMSE values of 0.470 and 0.493, respectively. However, their average
RMSE values (RF: 0.681 ± 0.224 and SVM: 0.693 ± 0.134) were higher than the D-GIN and
D-MPNN model types.

Consensus models are often used in deep learning applications typically combining ei-
ther different models that were trained on slightly different training data or multiple model
architectures with different strengths and weaknesses. Nevertheless, further investigations
are required to give a rationale of why in all our invested cases, the consensus models
performed better than their individual counterparts. Furthermore, it should be noted
that a direct comparison between the average performance of the GNNs and non-GNN
models (RF, SVM, and KNN) can be difficult since the amount of information about a single
molecule fed to each of the different model classes is quite different. For example, the
non-GNN methods used a wide range of different descriptors and fingerprints shown in
Table A7.

Figures 3–5 show the best performing model architectures for prediction of each
physicochemical property. Each plot shows the RMSE values for each GNN model applying
all training and featurization strategies. It should be noted that the performance of many
model types with different training or features do not significantly differ from each other
and their CI overlap. Some trends are still visible: in Figures 3–5, regardless of the
physicochemical property, the D-GIN model type (shown in blue) performs overall better
than the D-MPNN (shown in orange) or the GIN (shown in green).

The reason why the D-GIN outperforms the GIN and D-MPNN could be its higher
complexity and network depth. It uses the key aspects of both sub-models and might be
able to better abstract higher-order features. This could be facilitated by including skip
connections between edge feature extraction mainly performed in the first (D-MPNN)
and node feature extraction while learning ε in the second (GIN) part. This increased
complexity could have helped to perform better than its individual parts.
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Figure 3. LogD prediction results for each GNN model instance. The left y-axis specifies the logD
RMSE and the right, secondary x-axis the corresponding r2 values for each GNN model. D-GIN
is colored blue, D-MPNN orange, and GIN green. Each of the bars represent a different trained
model-a detailed description can be found in Figure A1 in the Appendix A. The accumulated kernel
density for each model type is shown on the very left side. The red lines correspond to the 95%
confidence intervals. The model names are a combination of model type (D-GIN, GIN, D-MPNN),
training approach and featurization type-a detailed description of each model name can be found in
Tables A8–A19 in the Appendix A.

Figure 4. LogS prediction results for each GNN model instance. The left y-axis specifies the logS
RMSE and the right, secondary x-axis the corresponding r2 values for each GNN model. D-GIN
is colored blue, D-MPNN orange, and GIN green. Each of the bars represent a different trained
model-a detailed description can be found in Figure A3 in the Appendix A. The accumulated kernel
density for each model type is shown on the very left side. The red lines correspond to the 95%
confidence intervals. The model names are a combination of model type (D-GIN, GIN, D-MPNN),
training approach and featurization type-a detailed description of each model name can be found in
Tables A8–A19 in the Appendix A.
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Figure 5. LogP prediction results for each GNN model instance. The left y-axis specifies the logP
RMSE and the right, secondary x-axis the corresponding r2 values for each GNN model. D-GIN
is colored blue, D-MPNN orange, and GIN green. Each of the bars represent a different trained
model-a detailed description can be found in Figure A2 in the Appendix A. The accumulated kernel
density for each model type is shown on the very left side. The red lines correspond to the 95%
confidence intervals. The model names are a combination of model type (D-GIN, GIN, D-MPNN),
training approach and featurization type-a detailed description of each model name can be found in
Tables A8–A19 in the Appendix A.

3.2. Impact of Molecular Featurization

The average performance of each featurization strategy across all model types and
training strategies is shown in Table 3. Considering the performance for all physicochemical
properties, featurization strategy 5 showed the highest RMSE (mean logD/logS/logP RMSE
of 0.813 ± 0.099, 1.099 ± 0.180, and 0.760 ± 0.110). This trend was also observed when
separating according to the model type (shown in Table 4 and Figure 6). The reason for
the relatively bad performance of featurization 5 might be that it only included two node
properties (chemical element and formal charge), as well as only a single edge feature
(bond order-Table A3 in the Appendix A).

Featurization 6 (Table A4 in the Appendix A) also displayed considerably worse
performance than other strategies when used in combination with the GIN architecture, for
which the mean RMSE performance for logD and logS properties were worse than using
featurization strategy 5. One explanation could be that the GIN utilizes node features quite
extensively and featurization 6 only included two node feature types similar to featurization
5. The additional edge features in strategy 6 without the appropriate architecture to deal
with them could push the optimizer of the GIN network into the wrong direction rather
than help with the property prediction.

Although it is easy to identify bad featurization strategies, it is difficult to come up
with an unambiguous recommendation for the best performing featurization strategy. The
mean RMSE across all training strategies and model types in Table 3 show that featurization
3 and 4 (Tables A1 and A2 in the Appendix A) achieved very good results for logD with
a RMSE value of 0.689 ± 0.079 and 0.694 ± 0.072, for logS with a RMSE 0.954 ± 0.146 and
0.948 ± 0.142 and for logP with a RMSE 0.596 ± 0.120 and 0.591 ± 0.105, respectively. Both
featurization strategies utilize the maximum number of node and edge features used in this
work. They only differ in the way molecular ring sizes are described. Featurization 3 used
a float value calculated by 1 divided by the size of the ring system whereas featurization 4
used a one-hot encoding of ten instances (0,3,4,5,6,7,8,9,10,11).
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Table 3. Impact of the featurization and training strategy on the different molecular properties independent of what GNN model type was used. For each endpoint the mean, minimum,
and maximum RMSE can be seen. The dark gray boxes show the best RMSE for the particular property, the light gray the second best.

Featurization logD RMSE logS RMSE logP RMSE
Strategy Mean Min Max Mean Min Max Mean Min Max

3.0 0.689 ± 0.079 0.575 0.781 0.954 ± 0.146 0.831 1.177 0.596 ± 0.120 0.472 0.751
4.0 0.694 ± 0.072 0.587 0.791 0.948 ± 0.142 0.807 1.160 0.591 ± 0.105 0.487 0.725
5.0 0.813 ± 0.099 0.660 0.911 1.099 ± 0.180 0.938 1.361 0.760 ± 0.110 0.652 0.901
6.0 0.727 ± 0.132 0.553 0.900 1.015 ± 0.250 0.818 1.400 0.641 ± 0.183 0.493 0.883
7.0 0.732 ± 0.075 0.615 0.823 0.961 ± 0.113 0.851 1.144 0.629 ± 0.077 0.541 0.727
8.0 0.706 ± 0.083 0.579 0.814 0.970 ± 0.155 0.795 1.216 0.609 ± 0.114 0.477 0.750

Training logD RMSE logS RMSE logP RMSE
Strategy Mean Min Max Mean Min Max Mean Min Max

logD/P/S 0.730 ± 0.102 0.579 0.900 0.979 ± 0.166 0.795 1.325 0.639 ± 0.129 0.487 0.901
logD/P 0.719 ± 0.105 0.553 0.911 - - - - - -
logD/S 0.737 ± 0.106 0.582 0.911 0.993 ± 0.176 0.821 1.359 - - -
logS/P - - - 0.988 ± 0.173 0.812 1.333 - - -
logD 0.722 ± 0.087 0.596 0.881 - - - - - -
logS - - - 1.004 ± 0.187 0.818 1.400 - - -
logP - - - - - - 0.637 ± 0.130 0.472 0.894
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Figure 6. LogD, logS, and logP prediction results for all GNN model types depending on the
featurization used (see Section Molecular Featurization for a detailed description). The mean is
shown as a white dot whereas the median is shown as a dark gray line. Exact values are listed in
Tables A8–A19 in the Appendix A.

Table 4 shows the mean RMSE values concerning featurization and model type.
As performance criteria for featurization strategies we used the sum of model ranks
in Table 4. Applying this approach, featurization 3 with two models as best and three
models as second-best performers achieved a better ranking than featurization 4 with
one model ranked best and two models as second best. Both strategies perform similarly
well. Featurization 8 (shown in Table A6 in the Appendix A) used a set of optimized
node and edge features. Node and edge features were optimized by masking single edge
and node features at a time and evaluating their impact on the test set RMSE. The five
node features and the three edge features that had the biggest impact on the RMSE were
subsequently used. This approach also revealed that the size of ring systems for the node
features appears to be of importance and was, therefore, included in 8. Using featurization
8, we were able to achieve two times the second-best performance. It shows an average
good performance, but not as good as featurizations 3 or 4, even though its edge and node
features were selected for maximum impact on the final prediction. The mean RMSE of
featurization 6 and 7 (Table A5 in the Appendix A) in Table 3 show diminished results
compared to featurization 3 and 4.
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Table 4. Impact of the featurization on the different molecular properties. For each property and model type, the mean, minimum, and maximum RMSE are shown. The dark gray boxes
represent the best RMSE for the particular property and model type, the light gray the second best. The red asterisk is the overall best RMSE for the particular property.

Model Type Featurization logD RMSE logS RMSE logP RMSE
Strategy Mean Min Max Mean Min Max Mean Min Max

D-GIN

3.0 0.585 ± 0.011 0.575 0.601 0.835 ± 0.007 0.831 0.847 0.484 ± 0.017* 0.472 0.496
4.0 0.603 ± 0.014 0.587 0.622 0.827 ± 0.018 0.807 0.851 0.490 ± 0.004 0.487 0.493
5.0 0.682 ± 0.018 0.660 0.704 1.007 ± 0.039 0.969 1.061 0.657 ± 0.006 0.652 0.662
6.0 0.580 ± 0.019* 0.553 0.596 0.825 ± 0.008* 0.818 0.836 0.502 ± 0.012 0.493 0.511
7.0 0.637 ± 0.020 0.615 0.661 0.880 ± 0.025 0.851 0.906 0.550 ± 0.013 0.541 0.560
8.0 0.602 ± 0.020 0.579 0.629 0.826 ± 0.027 0.795 0.854 0.493 ± 0.023 0.477 0.509

D-MPNN

3.0 0.728 ± 0.023 0.703 0.759 0.835 ± 0.007 0.831 0.847 0.561 ± 0.012 0.552 0.570
4.0 0.715 ± 0.016 0.692 0.728 0.879 ± 0.017 0.862 0.896 0.563 ± 0.010 0.556 0.570
5.0 0.878 ± 0.023 0.857 0.911 0.951 ± 0.011 0.938 0.961 0.725 ± 0.012 0.716 0.734
6.0 0.712 ± 0.017 0.686 0.724 0.868 ± 0.011 0.857 0.879 0.545 ± 0.007 0.540 0.551
7.0 0.805 ± 0.016 0.783 0.823 0.892 ± 0.018 0.865 0.905 0.616 ± 0.017 0.604 0.629
8.0 0.734 ± 0.036 0.712 0.788 0.911 ± 0.007 0.905 0.921 0.588 ± 0.007 0.581 0.593

GIN

3.0 0.755 ± 0.018 0.741 0.781 1.149 ± 0.022 1.122 1.177 0.745 ± 0.009 0.738 0.751
4.0 0.765 ± 0.019 0.743 0.791 1.137 ± 0.020 1.116 1.160 0.720 ± 0.006 0.716 0.725
5.0 0.880 ± 0.026 0.856 0.911 1.339 ± 0.017 1.325 1.361 0.897 ± 0.005 0.894 0.901
6.0 0.889 ± 0.019 0.860 0.900 1.351 ± 0.037 1.314 1.400 0.877 ± 0.008 0.871 0.883
7.0 0.755 ± 0.007 0.747 0.765 1.112 ± 0.028 1.088 1.144 0.722 ± 0.007 0.716 0.727
8.0 0.781 ± 0.033 0.734 0.814 1.172 ± 0.033 1.135 1.216 0.745 ± 0.006 0.741 0.750
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When evaluating the rank score, the featurization strategy that performs either best or
second-best for each physicochemical property, the best featurization strategy was number
6. It was used in four of the best performing runs and once in a second-best run. However,
it only performed well in combination with two GNN architectures (D-GIN and D-MPNN)
and strongly underperformed with the GIN. The D-GIN and D-MPNN architecture types
use primarily edge features for their information propagation and featurization strategy 6
provided these. It utilized only two-node feature types, potentially reducing the noise for
the feature extraction to a minimum in this setting.

On average, featurization strategies 6 and 7 performed similarly well. However, when
separating the results at a model type level, it became evident that there was a strong
model architecture dependency, so it seems important to choose the features according to
the architecture at hand (Figures 3–5). Furthermore, featurization 3 might perform worse
than featurization 6 or 7. Nevertheless, when unsure which features to use, simply adding
more features could be the safer option rather than using less. This observation is also
supported by comparing featurization 3 or 4 to, e.g., 6, 7, or 8.

When analyzing the results for the non-GNN models and their different featurizations,
the mean RMSE variance was large in comparison to the GNN models. Moreover, in simi-
lar deep-learning benchmark studies that predicted molecular properties, predominantly
fingerprints have been used. From Tables A13–A15 in the Appendix A, one can see that
especially featurizations that include descriptors in addition to fingerprints perform excep-
tionally well. We think that when comparing GNN with non-GNN models, differences in
used features should be taken into consideration when trying to identify and understand
(deep-learning) method performance.

3.3. Impact of Training Strategies

The impact of different training strategies are shown in Table 3. The lowest mean logD
RMSE can be obtained by a multi-task strategy that involves learning on both logD and
logP values. This is similar to the best training strategy for the logS property, which is a
multi-task approach including logS and logP properties. As for the logP property, the best
approach is a single-task strategy including logP values, however the multi-task approach
which combines all physicochemical properties achieves similarly good performance.

When analyzing the logD/S/P RMSE predictions with respect to training strategy and
model type, Table 5 and Figures 7–9 show that there is no particularly favorable learning
strategy for any of the model types. The datasets used in this study are specific for one
particular physicochemical property. When comparing different learning strategies we
thus focused on one particular physicochemical property for each model type. Starting
with the results for the prediction of the logD property in Table 5, we can see that the
overall best model (red asterisk), as well as the two best models for each model type (dark
gray), are multi-task models. In particular, the models with a combination of logD and
logP properties perform well.

Considering all combinations of training and featurizations strategies for each model,
the learning strategy with the best average, as well as the best minimum logD RMSE
was obtained using the logD/P multi-task training approach resulting in RMSE values of
0.719 ± 0.105 and 0.553, respectively (Table 3. Yet, using this multi-task learning strategy we
also obtained single run performance worse than using a single-task learning strategy with
only logD values, showcasing once more the importance of validating multiple learning
and featurization strategies. The results are similar for the prediction of logS values: again,
the multi-task learning strategy performs better than its single task counterpart. The
best model for logS prediction was obtained by training on logD, logS, and logP values.
Considering all combinations of training and featurization strategies for each model, the
best average, minimum, and maximum logS RMSE of 0.979 ± 0.166, 0.795, and 1.325,
respectively, was observed during the multi-task training with all properties. We should
note here that while it seems that the average performance is improved by multi-task
learning, the variance of model performance is also increased.
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Table 5. Impact of the training strategies on the different molecular properties. Each model type is evaluated separately. For each property and model type, the mean, minimum, and
maximum RMSE are shown. The dark gray boxes represent the best RMSE for the particular property and model type, the light gray the second best. The red asterisk highlights the overall
best RMSE for the particular property.

Model Type Training logD RMSE logS RMSE logP RMSE
Strategy Mean Min Max Mean Min Max Mean Min Max

D-GIN

logD/P/S 0.617 ± 0.052 0.579 0.704 0.851 ± 0.071* 0.795 0.987 0.534 ± 0.067 0.487 0.662
logD/P 0.607 ± 0.044* 0.553 0.685 - - - - - -
logD/S 0.610 ± 0.036 0.582 0.679 0.875 ± 0.072 0.821 1.010 - - -
logS/P - - - 0.868 ± 0.095 0.812 1.061 - - -
logD 0.625 ± 0.024 0.596 0.660 - - - - - -
logS - - - 0.872 ± 0.053 0.818 0.969 - - -
logP - - - - - - 0.524 ± 0.067* 0.472 0.652

D-MPNN

logD/P/S 0.759 ± 0.063 0.712 0.864 0.903 ± 0.031 0.873 0.961 0.596 ± 0.062 0.551 0.716
logD/P 0.741 ± 0.066 0.686 0.857 - - - - - -
logD/S 0.788 ± 0.070 0.721 0.911 0.892 ± 0.039 0.857 0.960 - - -
logS/P - - - 0.894 ± 0.029 0.860 0.938 - - -
logD 0.761 ± 0.067 0.713 0.881 - - - - - -
logS - - - 0.897 ± 0.030 0.865 0.944 - - -
logP - - - - - - 0.603 ± 0.071 0.540 0.734

GIN

logD/P/S 0.815 ± 0.063 0.756 0.901 1.183 ± 0.106 1.089 1.325 0.786 ± 0.083 0.716 0.901
logD/P 0.809 ± 0.075 0.742 0.911 - - - - - -
logD/S 0.811 ± 0.056 0.751 0.896 1.213 ± 0.108 1.126 1.359 - - -
logS/P - - - 1.201 ± 0.102 1.088 1.333 - - -
logD 0.780 ± 0.060 0.734 0.860 - - - - - -
logS - - - 1.243 ± 0.109 1.144 1.400 - - -
logP - - - - - - 0.782 ± 0.077 0.725 0.894
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Figure 7. LogD prediction results for all GNN model types according to the used training strategy.
Blue box shows the performance of the multi-task training strategy using logD, logS, and logP. The
green and orange box show the results utilizing a combination of logD and logP and logD and logS
for training. The salmon pink box shows the results using logD for training. The mean is shown as a
white dot whereas the median is shown as a dark gray line. Exact values are listed in Tables A8–A11
in the Appendix A.

Figure 8. LogS prediction results for all GNN model types according to the used training strategy.
The blue box shows the performance of the multi-task training strategy using logD, logS, and logP.
The gray and orange box show the results utilizing a combination of logS and logP and logD and
logS properties, respectively. The red box shows the results using logS for training. The mean is
shown as a white dot whereas the median is shown as a dark gray line. Exact values are listed in
Tables A12–A15 in the Appendix A.
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Figure 9. LogP prediction results for all GNN model types according to the used training strategy.
Blue box shows the performance of the multi-task training strategy using logD, logS, and logP.
The dark orange box shows the results using logP for training. The mean is shown as a white dot,
whereas the median is shown as a dark gray line. Exact values are listed in Tables A16–A19 in the
Appendix A.

4. Conclusions

We introduced the directed-edge graph isomorphism network (D-GIN), a novel graph
neural network that showed improved average performance for aqueous solubility and
lipophilicity prediction compared with other baseline models. We showed that by com-
bining different models with distinct key characteristics, we can increase the depth of the
model while also improving its predictive power. Furthermore, applying different training
strategies and featurizations constraints enables to obtain more information regarding
general, average model performance. This strategy showed that the D-GIN model outper-
forms other machine-learning models on average and argued that comparing the mean
performance rather than single metric values of the best performing model type gives more
insight into the general behavior and ultimately facilitates a better understanding and
higher robustness of deep-learning models.

In concurrence with previous publications [34–36], we showed that there is a tendency
towards multi-task learning approaches for the GNNs utilized in this survey. On average
they performed better than their single-task counterpart for the corresponding physico-
chemical property. We could not find clear evidence that more than two properties increase
the model’s performance.

Furthermore, we highlighted that the usage of additional features did not improve
the GNN model performance. However, we also conclude that very little featurization led
to the worst performance. In general it is necessary to be aware of the type of GNN that is
used and whether its architecture focuses more on edge or node features. When trying to
obtain the best performing model it can be advisable to do feature engineering, but when
in doubt which features to use, it can be safer to use more than less. We showed that this
awareness can help improve the GNNs predictive power at hand.

For the non-GNN models, we could conclude that by excessively adding descriptors
to the molecular fingerprint the performance of these models increases substantially. We
further argued that for future comparisons it would be advisable to include not only
fingerprints but also descriptors to the non-GNN baseline models to be more competitive.

By combining the best GNN model with the best non-GNN model we could see a
slight improvement in the overall performance in all cases. Consensus models have often
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shown to improve performance. However, in this case, further investigations are needed to
attain to a conclusion on why this is the case.

We showed that advanced deep-learning methods such as GNNs do have great
potential in the physicochemical property prediction area and, when applied properly, can
serve as a promising and robust method for any computer-aided drug discovery pipeline,
especially for chemical property prediction.
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Appendix A

The appendix includes informational materials that show the featurization of the
GNN and non-GNN baseline models in Table A7, in Figures A1–A2 the individual models
and their corresponding names can be seen. These are the same Figures as in the main
body but include the unique identifiers. These identifiers show what kind of model type,
featurization and training approach was used when looked up in Tables A8–A19. The
run-time to fit the used RF, SVM, and KNN models with 3380 compounds on logD is
approximately 50 s (RF), 25 s (SVM), and 0.5 s (KNN). When training the GNN model
types on the 3380 logD compounds it takes for each epoch approximately 56 s (D-GIN), 35
s (D-MPNN), and 28 s (GIN).

https://github.com/spudlig/graph_networks
https://github.com/spudlig/graph_networks
https://zenodo.org/record/5137613#.YQortyWxVhG
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Table A1. Node and edge featurization of type 3. Each node or edge featurization vector consisted of
a concatenation of the different one-hot encoded or floating point feature vectors according to their
possible states (if present) and corresponding size-36 for nodes and 20 for edges.

Feature Possible States Size

chemical element H, C, N, O, S, F, P, Cl, Br, I 10
calculated formal charge −2, −1, 0, 1, 2 5
CIP configuration R, S, None, either 4
hybridization state sp, sp2, sp3, sp3d, sp3d2, none 6
amide center yes, no 2
present in aromatic ring yes, no 2
ring size 1/size 1
nr. of hydrogens 0, 1, 2, 3, 4, 5 6

bond order 1, 2, 3 3
conjugated yes, no 2
rotate−able yes, no 2
amide bond yes, no 2
present in aromatic ring yes, no 2
present in ring yes, no 2
ring size 1/size 1
CIP configuration none, E, Z, trans, cis, either 6

Table A2. Node and edge featurization of type 4. Each node or edge featurization vector consisted of
a concatenation of the different one-hot encoded or floating point feature vectors according to their
possible states (if present) and corresponding size-45 for nodes and 29 for edges.

Feature Possible States Size

chemical element H, C, N, O, S, F, P, Cl, Br, I 10
calculated formal charge −2, −1, 0, 1, 2 5
CIP configuration R, S, None, either 4
hybridization state sp, sp2, sp3, sp3d, sp3d2, none 6
amide center yes, no 2
present in aromatic ring yes, no 2
ring size 0, 3, 4, 5, 6, 7, 8, 9, 10, 11 1
nr. of hydrogens 0, 1, 2, 3, 4, 5 6

bond order 1, 2, 3 3
conjugated yes, no 2
rotate-able yes, no 2
amide bond yes, no 2
present in aromatic ring yes, no 2
present in ring yes, no 2
ring size 0, 3, 4, 5, 6, 7, 8, 9, 10, 11 1
CIP configuration none, E, Z, trans, cis, either 6
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Table A3. Node and edge featurization of type 5. Each node or edge featurization vector consisted of
a concatenation of the different one-hot encoded or floating point feature vectors according to their
possible states (if present) and corresponding size-15 for nodes and 3 for edges.

Feature Possible States Size

chemical element H, C, N, O, S, F, P, Cl, Br, I 10
calculated formal charge −2, −1, 0, 1, 2 5
CIP configuration - -
hybridization state - -
amide center - -
present in aromatic ring - -
ring size - -
nr. of hydrogens - -

bond order 1, 2, 3 3
conjugated - -
rotate-able - -
amide bond - -
present in aromatic ring - -
present in ring - -
ring size - -
CIP configuration - -

Table A4. Node and edge featurization of type 6. Each node or edge featurization vector consisted of
a concatenation of the different one-hot encoded or floating point feature vectors according to their
possible states (if present) and corresponding size-15 for nodes and 20 for edges.

Feature Possible States Size

chemical element H, C, N, O, S, F, P, Cl, Br, I 10
calculated formal charge −2, −1, 0, 1, 2 5
CIP configuration - -
hybridization state - -
amide center - -
present in aromatic ring - -
present in ring - -
nr. of hydrogens - -

bond order 1, 2, 3 3
conjugated yes, no 2
rotate-able yes, no 2
amide bond yes, no 2
present in aromatic ring yes, no 2
present in ring yes, no 2
ring size 1/size 1
CIP configuration none, E, Z, trans, cis, either 6
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Table A5. Node and edge featurization of type 7. Each node or edge featurization vector consisted of
a concatenation of the different one-hot encoded or floating point feature vectors according to their
possible states (if present) and corresponding size-36 for nodes and 3 for edges.

Feature Possible States Size

chemical element H, C, N, O, S, F, P, Cl, Br, I 10
calculated formal charge −2, −1, 0, 1, 2 5
CIP configuration R, S, None, either 4
hybridization state sp, sp2, sp3, sp3d, sp3d2, none 6
amide center yes, no 2
present in aromatic ring yes, no 2
ring size 0, 3, 4, 5, 6, 7, 8, 9, 10, 11 1
nr. of hydrogens 0, 1, 2, 3, 4, 5 6

bond order 1, 2, 3 3
conjugated - -
rotate-able - -
amide bond - -
present in aromatic ring - -
present in ring - -
ring size - -
CIP configuration - -

Table A6. Node and edge featurization of type 8. Each node or edge featurization vector consisted of
a concatenation of the different one-hot encoded or floating point feature vectors according to their
possible states (if present) and corresponding size-26 for nodes and 7 for edges.

Feature Possible States Size

chemical element H, C, N, O, S, F, P, Cl, Br, I 10
formal charge −2, −1, 0, 1, 2 5
CIP priority rule R, S, None, either 4
hybridization state sp, sp2, sp3, sp3d, sp3d2, none 6
amide center - -
aromaticity - -
ring size float (1/size) 1
nr. of hydrogens - -

bond order 1, 2, 3 3
conjugated - -
rotate-able yes, no 2
amide bond - -
aromaticity - -
present in ring yes, no 2
ring size - -
CIP priority rule - -

Table A7. Non-GNN featurization. The identifier is used as reference.

Identifier Fingerprint Radius nr. Bits Descriptor

10 ECFP 4 1024 No
11 ECFP 4 1536 No
12 ECFP 4 2048 No
13 MACCSKeys - - No
14 ECFP 4 1024 Yes
15 ECFP 4 1536 Yes
16 ECFP 4 2048 Yes
17 MACCSKeys - - Yes
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Figure A1. The first y-axis specifies the logD RMSE and the secondary x-axis the corresponding r2 values for each GNN model. The D-GIN is colored blue, the D-MPNN orange and the
GIN green. Each of the boxes represents one different model run. The kernel density of each model is shown on the very left side. The red lines correspond to the 95% confidence intervals.
The model names are a combination of model type (D-GIN, GIN, D-MPNN), training approach and featurization type-a detailed description of each model name can be found in Tables
A8–A19 in the Appendix A.
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Figure A2. The first y-axis specifies the logP RMSE and the secondary x-axis the corresponding r2 values for each GNN model. The D-GIN is colored blue, the D-MPNN orange and the
GIN green. Each of the boxes represents one different model run. The kernel density of each model is shown on the very left side. The red lines correspond to the 95% confidence intervals.
The model names are a combination of model type (D-GIN, GIN, D-MPNN), training approach and featurization type-a detailed description of each model name can be found in Tables
A8–A19 in the Appendix A.
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Figure A3. The first y-axis specifies the logS RMSE and the secondary x-axis the corresponding r2 values for each GNN model. The D-GIN is colored blue, the D-MPNN orange and
the GIN green. Each of the boxes represents one different model run. The kernel density of each model is shown on the very left side. The red lines correspond to the 95% confidence
intervals. The model names are a combination of model type (D-GIN, GIN, D-MPNN), training approach and featurization type-a detailed description of each model name can be found in
Tables A8–A19 in the Appendix A.
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Table A8. Shows the log D RMSE and r2 results for the D-GIN model type used during this survey.
The last column consist of the unique identify. Training strategy 0 represents a training strategy
combining logD, logS, and logP, 1 represents a strategy combining logD and logP, 2 stands for a
combination of logD and logS, 3 represents a strategy using logS and logP, 4 represents a strategy
using logD, 5 represents a strategy using logS, and 6 represents a strategy using logP.

Model Training Featurization logD r2 Unique
Type Strategy Strategy RMSE ID

D-GIN 2 5 0.679 ± 0.034 0.652 ± 0.035 dg522
D-GIN 2 8 0.596 ± 0.026 0.728 ± 0.021 dg822
D-GIN 2 4 0.587 ± 0.029 0.736 ± 0.020 dg422
D-GIN 2 3 0.582 ± 0.035 0.746 ± 0.027 dg322
D-GIN 0 3 0.582 ± 0.038 0.744 ± 0.031 dg302
D-GIN 0 6 0.581 ± 0.028 0.755 ± 0.021 dg602
D-GIN 0 4 0.598 ± 0.029 0.728 ± 0.027 dg402
D-GIN 4 3 0.601 ± 0.057 0.731 ± 0.052 dg341
D-GIN 0 8 0.579 ± 0.043 0.745 ± 0.033 dg801
D-GIN 1 3 0.575 ± 0.044 0.749 ± 0.035 dg312
D-GIN 1 8 0.605 ± 0.053 0.722 ± 0.046 dg811
D-GIN 4 6 0.596 ± 0.058 0.729 ± 0.062 dg642
D-GIN 1 4 0.606 ± 0.052 0.725 ± 0.053 dg411
D-GIN 1 7 0.615 ± 0.051 0.713 ± 0.045 dg712
D-GIN 4 4 0.622 ± 0.065 0.707 ± 0.065 dg442
D-GIN 2 7 0.626 ± 0.023 0.704 ± 0.022 dg721
D-GIN 4 8 0.629 ± 0.068 0.700 ± 0.068 dg841
D-GIN 4 7 0.645 ± 0.043 0.685 ± 0.048 dg741
D-GIN 4 5 0.660 ± 0.067 0.669 ± 0.071 dg542
D-GIN 0 7 0.661 ± 0.039 0.666 ± 0.034 dg701
D-GIN 1 5 0.685 ± 0.052 0.643 ± 0.074 dg512
D-GIN 1 6 0.553 ± 0.049 0.767 ± 0.053 dg612
D-GIN 0 5 0.704 ± 0.027 0.632 ± 0.024 dg502
D-GIN 2 6 0.592 ± 0.030 0.734 ± 0.024 dg622
D-GIN cons. 2 5 0.605 ± 0.032 0.719 ± 0.031 dg522_cons
D-GIN cons. 0 5 0.622 ± 0.030 0.704 ± 0.027 dg502_cons
D-GIN cons. 0 7 0.603 ± 0.030 0.722 ± 0.025 dg701_cons
D-GIN cons. 1 5 0.609 ± 0.056 0.714 ± 0.062 dg512_cons
D-GIN cons. 1 6 0.548 ± 0.051 0.769 ± 0.049 dg612_cons
D-GIN cons. 4 7 0.589 ± 0.045 0.734 ± 0.043 dg741_cons
D-GIN cons. 1 3 0.561 ± 0.047 0.758 ± 0.039 dg312_cons
D-GIN cons. 2 4 0.557 ±0.029 0.762 ± 0.023 dg422_cons
D-GIN cons. 4 3 0.557 ± 0.052 0.762 ± 0.044 dg341_cons
D-GIN cons. 2 3 0.549 ± 0.034 0.769 ± 0.026 dg322_cons
D-GIN cons. 4 5 0.590 ± 0.059 0.733 ± 0.055 dg542_cons
D-GIN cons. 0 8 0.562 ± 0.032 0.758 ± 0.025 dg801_cons
D-GIN cons. 0 4 0.563 ± 0.031 0.757 ± 0.027 dg402_cons
D-GIN cons. 1 7 0.566 ± 0.055 0.754 ± 0.044 dg712_cons
D-GIN cons. 1 4 0.567 ± 0.051 0.754 ± 0.041 dg411_cons
D-GIN cons. 0 3 0.562 ± 0.033 0.758 ± 0.024 dg302_cons
D-GIN cons. 4 8 0.575 ± 0.052 0.746 ± 0.053 dg841_cons
D-GIN cons. 2 8 0.568 ± 0.030 0.753 ± 0.026 dg821_cons
D-GIN cons. 2 7 0.580 ± 0.027 0.742 ± 0.023 dg721_cons
D-GIN cons. 1 8 0.580 ± 0.053 0.742 ± 0.047 dg811_cons
D-GIN cons. 4 4 0.577 ± 0.052 0.744 ± 0.041 dg442_cons
D-GIN cons. 4 6 0.568 ± 0.054 0.751 ± 0.051 dg642_cons
D-GIN cons. 0 6 0.569 ± 0.029 0.751 ± 0.024 dg602_cons
D-GIN cons. 2 6 0.571 ± 0.031 0.750 ± 0.024 dg622_cons
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Table A9. Shows the logD RMSE and r2 results for the D-MPNN model type used during this survey. The last column
consists of the unique identifier. Training strategy 0 represents a training strategy combining logD, logS, and logP, 1
represents a strategy combining logD and logP, 2 stands for a combination of logD and logS, 3 represents a strategy using
logS and logP, 4 represents a strategy using logD, 5 represents a strategy using logS, and 6 represents a strategy using logP.

Model Training Featurization logD r2 Unique
Type Strategy Strategy RMSE ID

D-MPNN 1 7 0.7836 ± 0.065 0.532 ± 0.087 dmp711
D-MPNN 1 6 0.686 ± 0.054 0.645 ± 0.071 dmp612
D-MPNN 1 5 0.857 ± 0.060 0.442 ± 0.089 dmp511
D-MPNN 2 3 0.759 ± 0.037 0.563 ± 0.039 dmp322
D-MPNN 1 4 0.692 ± 0.069 0.634 ± 0.080 dmp411
D-MPNN 2 5 0.911 ± 0.029 0.371 ± 0.035 dmp521
D-MPNN 2 6 0.721 ± 0.029 0.606 ± 0.037 dmp621
D-MPNN 0 4 0.721 ± 0.036 0.608 ± 0.034 dmp401
D-MPNN 0 8 0.712 ± 0.039 0.613 ± 0.037 dmp802
D-MPNN 4 8 0.713 ± 0.043 0.614 ± 0.057 dmp842
D-MPNN 1 8 0.724 ± 0.044 0.607 ± 0.062 dmp811
D-MPNN 4 4 0.719 ± 0.057 0.614 ± 0.067 dmp441
D-MPNN 4 6 0.719 ± 0.056 0.610 ± 0.076 dmp642
D-MPNN 4 3 0.731 ± 0.044 0.594 ± 0.062 dmp342
D-MPNN 0 6 0.724 ± 0.030 0.601 ± 0.040 dmp602
D-MPNN 1 3 0.703 ± 0.084 0.625 ± 0.069 dmp311
D-MPNN 0 3 0.719 ± 0.040 0.618 ± 0.034 dmp302
D-MPNN 2 8 0.788 ± 0.027 0.532 ± 0.033 dmp822
D-MPNN 2 4 0.728 ± 0.041 0.600 ± 0.039 dmp422
D-MPNN 2 7 0.823 ± 0.027 0.493 ± 0.039 dmp721
D-MPNN 4 7 0.804 ± 0.058 0.517 ± 0.089 dmp742
D-MPNN 4 5 0.881 ± 0.051 0.417 ± 0.077 dmp542
D-MPNN 0 7 0.812 ± 0.035 0.512 ± 0.037 dmp702
D-MPNN 0 5 0.864 ± 0.026 0.432 ± 0.035 dmp502
D-MPNN cons. 0 4 0.633 ± 0.031 0.693 ± 0.025 dmp402_cons
D-MPNN cons. 4 5 0.699 ± 0.047 0.625 ± 0.056 dmp542_cons
D-MPNN cons. 2 4 0.632 ± 0.031 0.694 ± 0.028 dmp422_cons
D-MPNN cons. 2 6 0.632 ± 0.029 0.694 ± 0.028 dmp621_cons
D-MPNN cons. 2 5 0.710 ± 0.027 0.614 ± 0.024 dmp521_cons
D-MPNN cons. 1 8 0.632 ± 0.050 0.693 ± 0.058 dmp811_cons
D-MPNN cons. 0 3 0.625 ± 0.030 0.701 ± 0.026 dmp302_cons
D-MPNN cons. 4 4 0.625 ± 0.054 0.700 ± 0.052 dmp441_cons
D-MPNN cons. 1 3 0.625 ± 0.057 0.700 ± 0.050 dmp311_cons
D-MPNN cons. 0 8 0.624 ± 0.029 0.701 ± 0.023 dmp802_cons
D-MPNN cons. 4 8 0.622 ± 0.045 0.703 ± 0.050 dmp842_cons
D-MPNN cons. 1 6 0.618 ± 0.045 0.706 ± 0.051 dmp612_cons
D-MPNN cons. 1 4 0.613 ± 0.055 0.711 ± 0.057 dmp411_cons
D-MPNN cons. 4 6 0.634 ± 0.055 0.691 ± 0.066 dmp642_cons
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Table A9. Cont.

Model Training Featurization logD r2 Unique
Type Strategy Strategy RMSE ID

D-MPNN cons. 0 6 0.636 ± 0.030 0.690 ± 0.029 dmp602_cons
D-MPNN cons. 2 3 0.646 ± 0.032 0.680 ± 0.028 dmp322_cons
D-MPNN cons. 1 5 0.688 ± 0.059 0.637 ± 0.057 dmp512_cons
D-MPNN cons. 2 8 0.652 ± 0.030 0.674 ± 0.025 dmp822_cons
D-MPNN cons. 1 7 0.654 ± 0.060 0.671 ± 0.069 dmp711_cons
D-MPNN cons. 4 7 0.663 ± 0.045 0.662 ± 0.058 dmp742_cons
D-MPNN cons. 0 7 0.670 ± 0.028 0.656 ± 0.026 dmp701_cons
D-MPNN cons. 2 7 0.674 ± 0.026 0.652 ± 0.029 dmp721_cons
D-MPNN cons. 0 5 0.697 ± 0.026 0.628 ± 0.024 dmp502_cons
D-MPNN cons. 4 3 0.636 ± 0.042 0.689 ± 0.055 dmp342_cons

Table A10. Shows the logD RMSE and r2 results for the GIN model type used during this survey.
The last column consist of the unique identify. Training strategy 0 represents a training strategy
combining logD, logS, and logP, 1 represents a strategy combining logD and logP, 2 stands for a
combination of logD and logS, 3 represents a strategy using logS and logP, 4 represents a strategy
using logD, 5 represents a strategy using logS, and 6 represents a strategy using logP.

Model Training Featurization logD r2 Unique
Type Strategy Strategy RMSE ID

GIN 2 5 0.860 ± 0.035 0.440 ± 0.047 g522
GIN 2 6 0.896 ± 0.031 0.387 ± 0.039 g621
GIN 0 4 0.791 ± 0.051 0.539 ± 0.050 g401
GIN 0 8 0.789 ± 0.031 0.526 ± 0.036 g802
GIN 2 8 0.814 ± 0.036 0.496 ± 0.040 g822
GIN 1 8 0.786 ± 0.068 0.538 ± 0.081 g812
GIN 1 6 0.899 ± 0.061 0.384 ± 0.104 g612
GIN 4 8 0.734 ± 0.058 0.589 ± 0.079 g842
GIN 4 5 0.856 ± 0.073 0.442 ± 0.112 g542
GIN 0 5 0.892 ± 0.035 0.400 ± 0.047 g502
GIN 4 3 0.741 ± 0.063 0.584 ± 0.080 g342
GIN 1 7 0.756 ± 0.060 0.567 ± 0.057 g711
GIN 1 4 0.761 ± 0.076 0.561 ± 0.071 g412
GIN 4 4 0.743 ± 0.066 0.581 ± 0.061 g441
GIN 4 7 0.747 ± 0.082 0.576 ± 0.087 g742
GIN 2 7 0.751 ± 0.041 0.581 ± 0.040 g722
GIN 2 3 0.781 ± 0.035 0.557 ± 0.041 g321
GIN 2 4 0.766 ± 0.042 0.557 ± 0.044 g421
GIN 0 7 0.765 ± 0.040 0.558 ± 0.041 g702
GIN 0 3 0.756 ± 0.030 0.570 ± 0.033 g302
GIN 1 3 0.742 ± 0.065 0.580 ± 0.062 g311
GIN 4 6 0.860 ± 0.063 0.437 ± 0.085 g642
GIN 0 6 0.900 ± 0.033 0.381 ± 0.041 g601
GIN 1 5 0.911 ± 0.056 0.371 ± 0.062 g512
GINcons. 0 6 0.715 ± 0.020 0.609 ± 0.025 g602_cons
GINcons. 4 3 0.627 ± 0.054 0.698 ± 0.059 g342_cons
GINcons. 4 8 0.632 ± 0.050 0.693 ± 0.057 g842_cons
GINcons. 4 7 0.633 ± 0.061 0.692 ± 0.056 g742_cons
GINcons. 4 4 0.637 ± 0.058 0.688 ± 0.060 g441_cons
GINcons. 1 3 0.640 ± 0.056 0.685 ± 0.051 g311_cons
GINcons. 2 7 0.642 ± 0.033 0.685 ± 0.028 g722_cons
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Table A10. Cont.

Model Training Featurization logD r2 Unique
Type Strategy Strategy RMSE ID

GINcons. 1 7 0.644 ± 0.047 0.682 ± 0.053 g711_cons
GINcons. 2 4 0.645 ± 0.034 0.681 ± 0.031 g421_cons
GINcons. 0 3 0.647 ± 0.029 0.679 ± 0.025 g302_cons
GINcons. 1 4 0.648 ± 0.059 0.678 ± 0.056 g412_cons
GINcons. 0 4 0.652 ± 0.033 0.674 ± 0.030 g401_cons
GINcons. 0 7 0.654 ± 0.029 0.673 ± 0.024 g701_cons
GINcons. 2 3 0.656 ± 0.028 0.670 ± 0.030 g321_cons
GINcons. 1 8 0.657 ± 0.055 0.669 ± 0.068 g812_cons
GINcons. 0 8 0.661 ± 0.034 0.665 ± 0.031 g801_cons
GINcons. 2 8 0.673 ± 0.032 0.653 ± 0.029 g822_cons
GINcons. 4 5 0.689 ± 0.056 0.636 ± 0.064 g542_cons
GINcons. 4 6 0.692 ± 0.052 0.633 ± 0.057 g642_cons
GINcons. 1 6 0.707 ± 0.057 0.616 ± 0.061 g612_cons
GINcons. 2 6 0.707 ± 0.025 0.617 ± 0.025 g622_cons
GINcons. 0 5 0.712 ± 0.033 0.612 ± 0.030 g502_cons
GINcons. 1 5 0.719 ± 0.046 0.603 ± 0.052 g512_cons
GINcons. 2 5 0.692 ± 0.026 0.634 ± 0.022 g522_cons

Table A11. Shows the logD RMSE and r2 results for the non-GNN model types used during this
survey. The last column consists of the unique identifier. Training strategy 0 represents a training
strategy combining logD, logS, and logP, 1 represents a strategy combining logD and logP, 2 stands
for a combination of logD and logS, 3 represents a strategy using logS and logP, 4 represents a strategy
using logD, 5 represents a strategy using logS, and 6 represents a strategy using logP.

Model Training Featurization logD r2 Unique
Type Strategy Strategy RMSE ID

KNN logD 10 0.979 ± 0.072 0.261 ± 0.094 KNN10
KNN logD 16 0.970 ± 0.056 0.275 ± 0.097 KNN16
KNN logD 12 0.959 ± 0.066 0.293 ± 0.080 KNN12
KNN logD 11 0.993 ± 0.072 0.240 ± 0.096 KNN11
KNN logD 13 0.909 ± 0.067 0.363 ± 0.069 KNN13
KNN logD 15 1.003 ± 0.057 0.226 ± 0.096 KNN15
KNN logD 14 0.996 ± 0.065 0.236 ± 0.110 KNN14
KNN logD 17 0.801 ± 0.060 0.506 ± 0.058 KNN17
RF logD 17 0.708 ± 0.060 0.614 ± 0.055 rf17
RF logD 15 0.699 ± 0.062 0.623 ± 0.059 rf15
RF logD 16 0.703 ± 0.061 0.620 ± 0.057 rf16
RF logD 11 0.859 ± 0.062 0.433 ± 0.062 rf11
RF logD 14 0.706 ± 0.062 0.616 ± 0.058 rf14
RF logD 10 0.890 ± 0.060 0.390 ± 0.062 rf10
RF logD 13 0.813 ± 0.060 0.491 ± 0.059 rf13
RF logD 12 0.863 ± 0.068 0.427 ± 0.068 rf12
SVM logD 12 0.782 ± 0.061 0.529 ± 0.055 svm12
SVM logD 16 0.707 ± 0.056 0.615 ± 0.047 svm16
SVM logD 10 0.810 ± 0.062 0.495 ± 0.057 svm10
SVM logD 15 0.698 ± 0.055 0.625 ± 0.045 svm15
SVM logD 14 0.674 ± 0.054 0.650 ± 0.043 svm14
SVM logD 17 0.639 ± 0.051 0.686 ± 0.046 svm17
SVM logD 11 0.793 ± 0.060 0.516 ± 0.060 svm11
SVM logD 13 0.814 ± 0.059 0.490 ± 0.055 svm13
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Table A12. Shows the logS RMSE and r2 results for the D-GIN model type used during this survey.
The last column consists of the unique identifier. Training strategy 0 represents a training strategy
combining logD, logS, and logP, 1 represents a strategy combining logD and logP, 2 stands for a
combination of logD and logS, 3 represents a strategy using logS and logP, 4 represents a strategy
using logD, 5 represents a strategy using logS, and 6 represents a strategy using logP.

Model Training Featurization logD r2 Unique
Type Strategy Strategy RMSE ID

D-GIN 5 7 0.897 ± 0.041 0.757 ± 0.025 dg752
D-GIN 0 7 0.866 ± 0.034 0.771 ± 0.016 dg701
D-GIN 5 5 0.969 ± 0.048 0.717 ± 0.030 dg552
D-GIN 0 5 0.988 ± 0.042 0.705 ± 0.021 dg502
D-GIN 2 5 1.010 ± 0.040 0.694 ± 0.020 dg522
D-GIN 0 8 0.795 ± 0.038 0.807 ± 0.019 dg801
D-GIN 0 4 0.807 ± 0.032 0.803 ± 0.016 dg401
D-GIN 3 8 0.813 ± 0.044 0.813 ± 0.021 dg832
D-GIN 5 6 0.818 ± 0.044 0.798 ± 0.025 dg651
D-GIN 5 3 0.848 ± 0.047 0.783 ± 0.023 dg352
D-GIN 0 6 0.821 ± 0.042 0.796 ± 0.020 dg601
D-GIN 2 7 0.906 ± 0.045 0.755 ± 0.017 dg721
D-GIN 2 4 0.822 ± 0.028 0.794 ± 0.014 dg422
D-GIN 3 6 0.827 ± 0.063 0.794 ± 0.036 dg632
D-GIN 5 8 0.854 ± 0.056 0.781 ± 0.027 dg852
D-GIN 3 4 0.829 ± 0.044 0.791 ± 0.025 dg432
D-GIN 3 3 0.831 ± 0.050 0.790 ± 0.026 dg332
D-GIN 0 3 0.832 ± 0.039 0.798 ± 0.016 dg302
D-GIN 2 3 0.833 ± 0.037 0.789 ± 0.016 dg321
D-GIN 5 4 0.852 ± 0.050 0.789 ± 0.026 dg451
D-GIN 3 7 0.851 ± 0.049 0.782 ± 0.027 dg732
D-GIN 2 6 0.837 ± 0.042 0.788 ± 0.020 dg622
D-GIN 3 5 1.061 ± 0.061 0.662 ± 0.034 dg532
D-GIN cons. 2 5 0.794 ± 0.039 0.807 ± 0.014 dg522_cons
D-GIN cons. 0 5 0.779 ± 0.040 0.814 ± 0.014 dg502_cons
D-GIN cons. 5 5 0.778 ± 0.049 0.816 ± 0.020 dg552_cons
D-GIN cons. 3 5 0.820 ± 0.054 0.795 ± 0.024 dg532_cons
D-GIN cons. 0 8 0.705 ± 0.039 0.848 ± 0.014 dg801_cons
D-GIN cons. 2 7 0.757 ± 0.044 0.825 ± 0.015 dg721_cons
D-GIN cons. 2 8 0.734 ± 0.033 0.835 ± 0.012 dg822_cons
D-GIN cons. 3 7 0.733 ± 0.046 0.836 ± 0.021 dg732_cons
D-GIN cons. 0 3 0.733 ± 0.040 0.836 ± 0.015 dg301_cons
D-GIN cons. 0 7 0.731 ± 0.035 0.836 ± 0.010 dg701_cons
D-GIN cons. 5 3 0.730 ± 0.047 0.838 ± 0.019 dg352_cons
D-GIN cons. 3 3 0.727 ± 0.048 0.839 ± 0.021 dg332_cons
D-GIN cons. 5 4 0.739 ± 0.052 0.834 ± 0.023 dg451_cons
D-GIN cons. 5 7 0.748 ± 0.045 0.830 ± 0.018 dg752_cons
D-GIN cons. 2 3 0.725 ± 0.041 0.839 ± 0.014 dg321_cons
D-GIN cons. 3 8 0.724 ± 0.046 0.840 ± 0.018 dg832_cons
D-GIN cons. 3 4 0.722 ± 0.047 0.841 ± 0.020 dg432_cons
D-GIN cons. 2 4 0.718 ± 0.031 0.842 ± 0.011 dg422_cons
D-GIN cons. 3 6 0.718 ± 0.047 0.843 ± 0.021 dg631_cons
D-GIN cons. 2 6 0.716 ± 0.038 0.843 ± 0.014 dg622_cons
D-GIN cons. 0 4 0.715 ± 0.035 0.843 ± 0.011 dg401_cons
D-GIN cons. 5 6 0.711 ± 0.046 0.846 ± 0.021 dg651_cons
D-GIN cons. 0 6 0.724 ± 0.038 0.839 ± 0.016 dg601_cons
D-GIN cons. 5 8 0.735 ± 0.053 0.835 ± 0.021 dg852_cons
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Table A13. Shows the logS RMSE and r2 results for the D-MPNN model type used during this survey.
The last column consist of the unique identify. Training strategy 0 represents a training strategy
combining logD, logS, and logP, 1 represents a strategy combining logD and logP, 2 stands for a
combination of logD and logS, 3 represents a strategy using logS and logP, 4 represents a strategy
using logD, 5 represents a strategy using logS, and 6 represents a strategy using logP.

Model Training Featurization logD r2 Unique
Type Strategy Strategy RMSE ID

D-MPNN 3 8 0.913 ± 0.052 0.756 ± 0.026 dmp832
D-MPNN 2 6 0.857 ± 0.035 0.782 ± 0.015 dmp621
D-MPNN 2 3 0.865 ± 0.038 0.784 ± 0.016 dmp322
D-MPNN 0 5 0.962 ± 0.038 0.718 ± 0.018 dmp501
D-MPNN 0 8 0.907 ± 0.049 0.757 ± 0.021 dmp802
D-MPNN 5 8 0.921 ± 0.046 0.751 ± 0.025 dmp851
D-MPNN 2 8 0.906 ± 0.041 0.763 ± 0.020 dmp821
D-MPNN 0 7 0.906 ± 0.049 0.764 ± 0.027 dmp701
D-MPNN 2 7 0.902 ± 0.040 0.772 ± 0.021 dmp722
D-MPNN 3 5 0.938 ± 0.044 0.733 ± 0.029 dmp532
D-MPNN 5 5 0.945 ± 0.041 0.734 ± 0.030 dmp552
D-MPNN 3 4 0.896 ± 0.062 0.782 ± 0.028 dmp432
D-MPNN 0 4 0.893 ± 0.040 0.762 ± 0.022 dmp401
D-MPNN 3 3 0.893 ± 0.054 0.775 ± 0.026 dmp332
D-MPNN 5 6 0.879 ± 0.046 0.777 ± 0.021 dmp651
D-MPNN 5 3 0.878 ± 0.053 0.772 ± 0.027 dmp351
D-MPNN 0 6 0.877 ± 0.039 0.780 ± 0.021 dmp601
D-MPNN 0 3 0.874 ± 0.046 0.779 ± 0.024 dmp302
D-MPNN 2 5 0.961 ± 0.036 0.721 ± 0.021 dmp521
D-MPNN 5 4 0.866 ± 0.054 0.778 ± 0.022 dmp452
D-MPNN 3 7 0.865 ± 0.049 0.773 ± 0.027 dmp731
D-MPNN 2 4 0.863 ± 0.046 0.800 ± 0.020 dmp422
D-MPNN 5 7 0.897 ± 0.050 0.763 ± 0.024 dmp751
D-MPNN 3 6 0.861 ± 0.047 0.780 ± 0.024 dmp632
D-MPNN
cons. 5 4 0.748 ± 0.055 0.830 ± 0.020 dmp452_cons

D-MPNN
cons. 0 4 0.768 ± 0.040 0.819 ± 0.015 dmp401_cons

D-MPNN
cons. 2 8 0.769 ± 0.039 0.819 ± 0.014 dmp821_cons

D-MPNN
cons. 3 8 0.762 ± 0.052 0.823 ± 0.022 dmp832_cons

D-MPNN
cons. 5 6 0.749 ± 0.053 0.829 ± 0.021 dmp652_cons

D-MPNN
cons. 0 8 0.770 ± 0.044 0.818 ± 0.016 dmp802_cons

D-MPNN
cons. 3 3 0.762 ± 0.052 0.823 ± 0.021 dmp332_cons

D-MPNN
cons. 0 7 0.771 ± 0.044 0.818 ± 0.016 dmp701_cons

D-MPNN
cons. 2 7 0.771 ± 0.040 0.818 ± 0.016 dmp722_cons

D-MPNN
cons. 5 7 0.761 ± 0.051 0.824 ± 0.021 dmp751_cons

D-MPNN
cons. 5 8 0.774 ± 0.048 0.817 ± 0.022 dmp851_cons

D-MPNN
cons. 3 5 0.777 ± 0.048 0.816 ± 0.021 dmp532_cons

D-MPNN
cons. 5 5 0.779 ± 0.045 0.815 ± 0.021 dmp552_cons

D-MPNN
cons. 3 4 0.765 ± 0.056 0.822 ± 0.021 dmp431_cons
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Table A13. Cont.

Model Training Featurization logD r2 Unique
Type Strategy Strategy RMSE ID

D-MPNN
cons. 2 5 0.784 ± 0.038 0.811 ± 0.016 dmp521_cons

D-MPNN
cons. 0 3 0.760 ± 0.042 0.823 ± 0.016 dmp302_cons

D-MPNN
cons. 0 6 0.759 ± 0.039 0.823 ± 0.014 dmp601_cons

D-MPNN
cons. 2 3 0.756 ± 0.039 0.825 ± 0.014 dmp322_cons

D-MPNN
cons. 2 6 0.744 ± 0.038 0.831 ± 0.013 dmp621_cons

D-MPNN
cons. 5 3 0.752 ± 0.055 0.828 ± 0.021 dmp351_cons

D-MPNN
cons. 3 7 0.744 ± 0.053 0.831 ± 0.021 dmp731_cons

D-MPNN
cons. 2 4 0.750 ± 0.044 0.828 ± 0.016 dmp422_cons

D-MPNN
cons. 3 6 0.748 ± 0.055 0.830 ± 0.021 dmp632_cons

D-MPNN
cons. 0 5 0.785 ± 0.040 0.811 ± 0.015 dmp501_cons

Table A14. Shows the logS RMSE and r2 results for the GIN model type used during this survey.
The last column consists of the unique identifier. Training strategy 0 represents a training strategy
combining logD, logS, and logP, 1 represents a strategy combining logD and logP, 2 stands for a
combination of logD and logS, 3 represents a strategy using logS and logP, 4 represents a strategy
using logD, 5 represents a strategy using logS, and 6 represents a strategy using logP.

Model Training Featurization logD r2 Unique
Type Strategy Strategy RMSE ID

GIN 2 4 1.126 ± 0.047 0.612 ± 0.029 g421
GIN 0 3 1.122 ± 0.049 0.615 ± 0.028 g301
GIN 0 4 1.116 ± 0.053 0.624 ± 0.037 g402
GIN 0 7 1.089 ± 0.044 0.650 ± 0.031 g701
GIN 3 7 1.088 ± 0.066 0.643 ± 0.036 g731
GIN 2 7 1.127 ± 0.049 0.613 ± 0.028 g721
GIN 3 4 1.147 ± 0.084 0.602 ± 0.052 g431
GIN 5 7 1.145 ± 0.060 0.602 ± 0.038 g752
GIN 5 6 1.400 ± 0.064 0.407 ± 0.045 g652
GIN 5 5 1.362 ± 0.061 0.437 ± 0.043 g552
GIN 2 6 1.359 ± 0.045 0.441 ± 0.036 g621
GIN 2 5 1.345 ± 0.044 0.447 ± 0.030 g522
GIN 3 6 1.334 ± 0.058 0.463 ± 0.047 g631
GIN 0 5 1.326 ± 0.049 0.474 ± 0.031 g502
GIN 0 8 1.136 ± 0.058 0.605 ± 0.034 g801
GIN 3 5 1.326 ± 0.066 0.472 ± 0.049 g532
GIN 5 8 1.217 ± 0.062 0.554 ± 0.040 g851
GIN 5 3 1.178 ± 0.070 0.579 ± 0.042 g352
GIN 2 8 1.173 ± 0.050 0.580 ± 0.027 g821
GIN 3 8 1.166 ± 0.059 0.603 ± 0.036 g832
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Table A14. Cont.

Model Training Featurization logD r2 Unique
Type Strategy Strategy RMSE ID

GIN 5 4 1.161 ± 0.089 0.598 ± 0.057 g452
GIN 2 3 1.151 ± 0.047 0.595 ± 0.025 g321
GIN 3 3 1.148 ± 0.064 0.610 ± 0.036 g331
GIN 0 6 1.314 ± 0.053 0.474 ± 0.034 g602
GINcons. 5 6 0.969 ± 0.057 0.714 ± 0.029 g652_cons
GINcons. 2 7 0.840 ± 0.036 0.784 ± 0.014 g721_cons
GINcons. 5 5 0.945 ± 0.045 0.728 ± 0.023 g552_cons
GINcons. 0 3 0.842 ± 0.041 0.783 ± 0.016 g301_cons
GINcons. 5 4 0.861 ± 0.065 0.774 ± 0.031 g452_cons
GINcons. 2 8 0.867 ± 0.043 0.770 ± 0.017 g821_cons
GINcons. 5 3 0.872 ± 0.056 0.769 ± 0.026 g352_cons
GINcons. 3 3 0.857 ± 0.054 0.776 ± 0.024 g331_cons
GINcons. 0 7 0.825 ± 0.038 0.791 ± 0.016 g701_cons
GINcons. 5 8 0.887 ± 0.056 0.760 ± 0.026 g851_cons
GINcons. 2 3 0.855 ± 0.043 0.776 ± 0.015 g321_cons
GINcons. 5 7 0.854 ± 0.055 0.778 ± 0.026 g752_cons
GINcons. 3 7 0.828 ± 0.052 0.791 ± 0.023 g731_cons
GINcons. 0 4 0.835 ± 0.040 0.786 ± 0.016 g402_cons
GINcons. 3 4 0.860 ± 0.061 0.775 ± 0.029 g431_cons
GINcons. 2 4 0.835 ± 0.041 0.786 ± 0.014 g421_cons
GINcons. 0 6 0.926 ± 0.045 0.737 ± 0.017 g602_cons
GINcons. 0 5 0.933 ± 0.038 0.733 ± 0.015 g502_cons
GINcons. 3 5 0.934 ± 0.053 0.734 ± 0.025 g532_cons
GINcons. 2 5 0.938 ± 0.040 0.730 ± 0.015 g522_cons
GINcons. 3 6 0.940 ± 0.048 0.731 ± 0.025 g631_cons
GINcons. 2 6 0.945 ± 0.041 0.726 ± 0.017 g621_cons
GINcons. 0 8 0.850 ± 0.042 0.779 ± 0.014 g802_cons
GINcons. 3 8 0.861 ± 0.053 0.774 ± 0.018 g832_cons
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Table A15. Shows the logS RMSE and r2 results for the non-GNN model types used during this
survey. The last column consists of the unique identifier. Training strategy 0 represents a training
strategy combining logD, logS, and logP, 1 represents a strategy combining logD and logP, 2 stands
for a combination of logD and logS, 3 represents a strategy using logS and logP, 4 represents a strategy
using logD, 5 represents a strategy using logS, and 6 represents a strategy using logP.

Model Training Featurization logD r2 Unique
Type Strategy Strategy RMSE ID

KNN logS 14 1.547 ± 0.063 0.268 ± 0.054 KNN14
KNN logS 11 1.587 ± 0.063 0.230 ± 0.054 KNN11
KNN logS 10 1.587 ± 0.064 0.229 ± 0.056 KNN10
KNN logS 12 1.600 ± 0.066 0.217 ± 0.055 KNN12
KNN logS 13 1.280 ± 0.066 0.499 ± 0.036 KNN13
KNN logS 15 1.676 ± 0.066 0.140 ± 0.068 KNN15
KNN logS 17 1.058 ± 0.055 0.658 ± 0.032 KNN17
KNN logS 16 1.670 ± 0.065 0.147 ± 0.061 KNN16
RF logS 12 1.239 ± 0.056 0.530 ± 0.032 rf12
RF logS 14 0.760 ± 0.043 0.823 ± 0.020 rf14
RF logS 15 0.764 ± 0.044 0.821 ± 0.022 rf15
RF logS 13 1.128 ± 0.061 0.611 ± 0.039 rf13
RF logS 16 0.765 ± 0.045 0.821 ± 0.024 rf16
RF logS 17 0.770 ± 0.049 0.818 ± 0.025 rf17
RF logS 10 1.284 ± 0.055 0.495 ± 0.033 rf10
RF logS 11 1.271 ± 0.057 0.506 ± 0.035 rf11
SVM logS 12 1.142 ± 0.055 0.601 ± 0.035 svm12
SVM logS 11 1.149 ± 0.057 0.596 ± 0.035 svm11
SVM logS 16 0.966 ± 0.049 0.715 ± 0.024 svm16
SVM logS 15 0.930 ± 0.046 0.735 ± 0.023 svm15
SVM logS 13 1.086 ± 0.060 0.639 ± 0.034 svm13
SVM logS 17 0.730 ± 0.041 0.837 ± 0.020 svm17
SVM logS 14 0.891 ± 0.046 0.757 ± 0.023 svm14
SVM logS 10 1.162 ± 0.056 0.587 ± 0.036 svm10
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Table A16. Shows the logP RMSE and r2 results for the D-GIN model type used during this survey.
The last column consists of the unique identifier. Training strategy 0 represents a training strategy
combining logD, logS, and logP, 1 represents a strategy combining logD and logP, 2 stands for a
combination of logD and logS, 3 represents a strategy using logS and logP, 4 represents a strategy
using logD, 5 represents a strategy using logS, and 6 represents a strategy using logP.

Model Training Featurization logD r2 Unique
Type Strategy Strategy RMSE ID

D-GIN 0 8 0.510 ± 0.026 0.878 ± 0.012 dg801
D-GIN 0 3 0.496 ± 0.025 0.885 ± 0.012 dg302
D-GIN 0 6 0.493 ± 0.024 0.889 ± 0.010 dg601
D-GIN 6 4 0.493 ± 0.021 0.886 ± 0.011 dg461
D-GIN 6 7 0.541 ± 0.028 0.862 ± 0.014 dg761
D-GIN 0 4 0.487 ± 0.023 0.891 ± 0.012 dg401
D-GIN 6 8 0.477 ± 0.025 0.893 ± 0.011 dg862
D-GIN 0 7 0.560 ± 0.029 0.852 ± 0.015 dg701
D-GIN 0 5 0.663 ± 0.034 0.793 ± 0.021 dg501
D-GIN 6 5 0.653 ± 0.029 0.802 ± 0.018 dg561
D-GIN 6 3 0.472 ± 0.020 0.896 ± 0.009 dg362
D-GIN 6 6 0.511 ± 0.027 0.878 ± 0.013 dg662
D-GIN cons. 6 3 0.428 ± 0.026 0.914 ± 0.010 dg362 cons.
D-GIN cons. 6 5 0.502 ± 0.027 0.881 ± 0.013 dg561 cons.
D-GIN cons. 0 7 0.473 ± 0.032 0.894 ± 0.013 dg701 cons.
D-GIN cons. 0 5 0.515 ± 0.033 0.875 ± 0.014 dg501 cons.
D-GIN cons. 0 3 0.447 ± 0.030 0.906 ± 0.012 dg302 cons.
D-GIN cons. 6 8 0.433 ± 0.030 0.912 ± 0.012 dg862 cons.
D-GIN cons. 0 6 0.434 ± 0.029 0.911 ± 0.011 dg601 cons.
D-GIN cons. 0 4 0.439 ± 0.026 0.909 ± 0.011 dg401 cons.
D-GIN cons. 6 7 0.461 ± 0.027 0.900 ± 0.012 dg761 cons.
D-GIN cons. 0 8 0.452 ± 0.030 0.904 ± 0.014 dg801 cons.
D-GIN cons. 6 4 0.440 ± 0.030 0.909 ± 0.012 dg461 cons.
D-GIN cons. 6 6 0.442 ± 0.026 0.908 ± 0.011 dg661 cons.
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Table A17. Shows the logP RMSE and r2 results for the D-MPNN model type used during this survey.
The last column consists of the unique identifier. Training strategy 0 represents a training strategy
combining logD, logS, and logP, 1 represents a strategy combining logD and logP, 2 stands for a
combination of logD and logS, 3 represents a strategy using logS and logP, 4 represents a strategy
using logD, 5 represents a strategy using logS, and 6 represents a strategy using logP.

Model Training Featurization logD r2 Unique
Type Strategy Strategy RMSE ID

D-MPNN 6 6 0.540 ± 0.019 0.863 ± 0.012 dmp661
D-MPNN 6 5 0.735 ± 0.026 0.746 ± 0.019 dmp561
D-MPNN 0 8 0.583 ± 0.020 0.845 ± 0.012 dmp802
D-MPNN 0 6 0.551 ± 0.022 0.861 ± 0.012 dmp601
D-MPNN 6 4 0.556 ± 0.019 0.856 ± 0.011 dmp461
D-MPNN 0 5 0.717 ± 0.027 0.758 ± 0.021 dmp501
D-MPNN 6 3 0.570 ± 0.019 0.847 ± 0.012 dmp362
D-MPNN 6 7 0.629 ± 0.023 0.815 ± 0.014 dmp762
D-MPNN 0 7 0.605 ± 0.020 0.828 ± 0.012 dmp702
D-MPNN 6 8 0.593 ± 0.021 0.834 ± 0.014 dmp862
D-MPNN 0 4 0.571 ± 0.022 0.851 ± 0.012 dmp401
D-MPNN 0 3 0.552 ± 0.018 0.857 ± 0.011 dmp301
D-MPNN
cons. 6 5 0.533 ± 0.031 0.866 ± 0.015 dmp562 cons.

D-MPNN
cons. 0 6 0.444 ± 0.024 0.907 ± 0.010 dmp601 cons.

D-MPNN
cons. 6 6 0.452 ± 0.026 0.904 ± 0.011 dmp661 cons.

D-MPNN
cons. 0 5 0.524 ± 0.031 0.870 ± 0.015 dmp501 cons.

D-MPNN
cons. 0 3 0.461 ± 0.027 0.900 ± 0.011 dmp301 cons.

D-MPNN
cons. 0 4 0.463 ± 0.027 0.899 ± 0.011 dmp401 cons.

D-MPNN
cons. 6 3 0.464 ± 0.026 0.899 ± 0.012 dmp362 cons.

D-MPNN
cons. 6 8 0.471 ± 0.028 0.895 ± 0.012 dmp862 cons.

D-MPNN
cons. 0 8 0.475 ± 0.027 0.894 ± 0.011 dmp802 cons.

D-MPNN
cons. 0 7 0.484 ± 0.028 0.890 ± 0.012 dmp701 cons.

D-MPNN
cons. 6 4 0.454 ± 0.026 0.903 ± 0.012 dmp462 cons.

D-MPNN
cons. 6 7 0.488 ± 0.027 0.888 ± 0.012 dmp761 cons.
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Table A18. Shows the logP RMSE and r2 results for the GIN model type used during this survey.
The last column consists of the unique identifier. Training strategy 0 represents a training strategy
combining logD, logS, and logP, 1 represents a strategy combining logD and logP, 2 stands for a
combination of logD and logS, 3 represents a strategy using logS and logP, 4 represents a strategy
using logD, 5 represents a strategy using logS, and 6 represents a strategy using logP.

Model Training Featurization logD r2 Unique
Type Strategy Strategy RMSE ID

GIN 0 3 0.752 ± 0.040 0.742 ± 0.025 g302
GIN 0 8 0.750 ± 0.029 0.738 ± 0.018 g802
GIN 0 4 0.716 ± 0.032 0.758 ± 0.019 g402
GIN 0 5 0.902 ± 0.033 0.624 ± 0.026 g502
GIN 6 5 0.894 ± 0.036 0.626 ± 0.026 g561
GIN 0 7 0.717 ± 0.033 0.758 ± 0.019 g701
GIN 6 7 0.727 ± 0.032 0.753 ± 0.022 g761
GIN 6 3 0.739 ± 0.030 0.744 ± 0.019 g361
GIN 6 8 0.741 ± 0.027 0.743 ± 0.018 g862
GIN 6 6 0.871 ± 0.033 0.643 ± 0.024 g662
GIN 6 4 0.725 ± 0.037 0.753 ± 0.025 g462
GIN 0 6 0.883 ± 0.036 0.640 ± 0.026 g601
GINcons. 6 7 0.537 ± 0.035 0.864 ± 0.016 g761 cons.
GINcons. 6 8 0.548 ± 0.034 0.858 ± 0.016 g861 cons.
GINcons. 0 4 0.539 ± 0.035 0.863 ± 0.015 g402 cons.
GINcons. 0 7 0.539 ± 0.034 0.863 ± 0.015 g701 cons.
GINcons. 6 4 0.534 ± 0.039 0.865 ± 0.018 g462 cons.
GINcons. 0 6 0.612 ± 0.038 0.823 ± 0.019 g601 cons.
GINcons. 6 6 0.606 ± 0.037 0.827 ± 0.019 g662 cons.
GINcons. 6 3 0.544 ± 0.035 0.860 ± 0.015 g362 cons.
GINcons. 0 3 0.547 ± 0.036 0.859 ± 0.015 g302 cons.
GINcons. 0 8 0.555 ± 0.033 0.855 ± 0.014 g802 cons.
GINcons. 6 5 0.614 ± 0.038 0.822 ± 0.019 g561 cons.
GINcons. 0 5 0.618 ± 0.037 0.820 ± 0.018 g502 cons.
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Table A19. Shows the logP RMSE and r2 results for the non-GNN model types used during this
survey. The last column consists of the unique identifier. Training strategy 0 represents a training
strategy combining logD, logS, and logP, 1 represents a strategy combining logD and logP, 2 stands
for a combination of logD and logS, 3 represents a strategy using logS and logP, 4 represents a strategy
using logD, 5 represents a strategy using logS, and 6 represents a strategy using logP.

Model Training Featurization logD r2 Unique
Type Strategy Strategy RMSE ID

KNN logP 13 0.939 ± 0.029 0.586 ± 0.024 KNN13
KNN logP 14 0.995 ± 0.029 0.534 ± 0.025 KNN14
KNN logP 15 1.065 ± 0.032 0.467 ± 0.027 KNN15
KNN logP 10 1.082 ± 0.035 0.450 ± 0.023 KNN10
KNN logP 12 1.087 ± 0.033 0.445 ± 0.023 KNN12
KNN logP 16 1.100 ± 0.034 0.431 ± 0.026 KNN16
KNN logP 11 1.103 ± 0.035 0.428 ± 0.026 KNN11
KNN logP 17 0.744 ± 0.019 0.740 ± 0.014 KNN17
RF logP 13 0.814 ± 0.029 0.688 ± 0.023 RF13
RF logP 15 0.479 ± 0.022 0.892 ± 0.010 RF15
RF logP 17 0.472 ± 0.023 0.895 ± 0.010 RF17
RF logP 14 0.472 ± 0.024 0.895 ± 0.011 RF14
RF logP 12 0.893 ± 0.030 0.625 ± 0.021 RF12
RF logP 16 0.470 ± 0.024 0.896 ± 0.011 RF16
RF logP 10 0.921 ± 0.031 0.601 ± 0.022 RF10
RF logP 11 0.928 ± 0.029 0.595 ± 0.022 RF11
SVM logP 14 0.572 ± 0.021 0.846 ± 0.012 SVM14
SVM logP 12 0.809 ± 0.027 0.692 ± 0.018 SVM12
SVM logP 16 0.628 ± 0.020 0.815 ± 0.012 SVM16
SVM logP 17 0.493 ± 0.030 0.886 ± 0.013 SVM17
SVM logP 10 0.833 ± 0.029 0.673 ± 0.020 SVM10
SVM logP 11 0.827 ± 0.028 0.678 ± 0.020 SVM11
SVM logP 13 0.782 ± 0.029 0.713 ± 0.020 SVM13
SVM logP 15 0.602 ± 0.021 0.830 ± 0.013 SVM15
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