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Abstract: Current cell-based bone tissue regeneration strategies cannot cover large bone defects.
K-carrageenan is a highly hydrophilic and biocompatible seaweed-derived sulfated polysaccharide,
that has been proposed as a promising candidate for tissue engineering applications. Whether
κ-carrageenan can be used to enhance bone regeneration is still unclear. In this study, we aimed to
investigate whether κ-carrageenan has osteogenic potential by testing its effect on pre-osteoblast pro-
liferation and osteogenic differentiation in vitro. Treatment with κ-carrageenan (0.5 and 2 mg/mL) in-
creased both MC3T3-E1 pre-osteoblast adhesion and spreading at 1 h. K-carrageenan (0.125–2 mg/mL)
dose-dependently increased pre-osteoblast proliferation and metabolic activity, with a maximum ef-
fect at 2 mg/mL at day three. K-carrageenan (0.5 and 2 mg/mL) increased osteogenic differentiation,
as shown by enhanced alkaline phosphatase activity (1.8-fold increase at 2 mg/mL) at day four, and
matrix mineralization (6.2-fold increase at 2 mg/mL) at day 21. K-carrageenan enhanced osteogenic
gene expression (Opn, Dmp1, and Mepe) at day 14 and 21. In conclusion, κ-carrageenan promoted
MC3T3-E1 pre-osteoblast adhesion and spreading, metabolic activity, proliferation, and osteogenic
differentiation, suggesting that κ-carrageenan is a potential osteogenic inductive factor for clinical
application to enhance bone regeneration.

Keywords: cell-based bone tissue engineering; bone defect; bone regeneration; κ-carrageenan;
MC3T3-E1 pre-osteoblast; cell proliferation; osteogenic differentiation
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1. Introduction

The current clinical challenges of cell-based bone tissue regeneration are related to the
limited healing capacity of bone tissue, since current bone tissue regeneration cannot cover
all types of bone defect, especially when the bone defect is large and complex [1]. Common
bone defects can have a systemic or local cause such as congenital abnormalities, general
diseases, inflammation, or traumatic injuries such as accidents or surgical treatments [2].
Although autologous bone graft is still the “gold standard”, it has some disadvantages,
such as donor site morbidity and limited volume of bone graft [3]. To resolve these
clinical challenges, cell-based bone tissue engineering techniques utilize both osteogenic
cells and biomaterials [4]. Currently available synthetic bone grafts are biocompatible and
osteoconductive, but the majority of these biomaterials lack osteoinductivity. Ideal synthetic
bone grafts should be designed to promote the adhesion, proliferation, and osteogenic
differentiation of loaded precursor cells or migrated endogenous stem cells [5]. Biomaterials
coated with various growth factors, proteins, and/or drugs promote the expansion and
osteogenic differentiation of precursor cells [3]. However, these growth factors or drugs
might cause local and systemic adverse effects that hinder the clinical application for bone
regeneration [5]. Therefore, the search for safe and effective biomaterials to promote bone
regeneration is still ongoing.

Carrageenan is a natural polysaccharide extracted from diverse red seaweeds with
abundant sulfate groups [6]. The location of the sulfate groups and the proportion of
3,6-anhydrogalactose differ between carrageenan types such as kappa (κ)-carrageenan,
iota (ι)-carrageenan, and lambda (λ)-carrageenan [7]. K-carrageenan and ι-carrageenan
are commonly used for tissue engineering-related applications. K-carrageenan forms ther-
mally reversible brittle and stiff gels, while ι-carrageenan forms elastic and soft gels [8].
λ-carrageenan does not form hydrogels and is even more fluidic compared to the other
carrageenan isoforms. Engineered bone tissue requires certain mechanical and structural
properties for proper functioning. Based on its properties, κ-carrageenan is the most
appropriate carrageenan for bone tissue engineering applications. K-carrageenan also
interacts synergistically with some polymannans, e.g., locust bean gum and konjac, to
form strong cohesive gels [9]. Carrageenan is a common food additive providing some
functional characteristics that can be used to gel, thicken, and stabilize food products [10].
Gelation properties, mechanical strength, and structural similarity with glycosaminoglycan
(GAG) components chondroitin-4-sulphate and dermatan sulphate ensure the application
of κ-carrageenan in tissue engineering [11]. The extracellular matrix components, GAGs,
are naturally found in human bone and cartilage. The structural similarity between car-
rageenan and GAGs could be responsible for improved cell adhesion and proliferation [12].
Carrageenan has both chondrogenic and osteogenic potential [13]. Gelatin κ-carrageenan
sericin hydrogel composites improve cell viability of cryopreserved SaOS-2 cells [14]. Ow-
ing to its attractive physicochemical properties, κ-carrageenan has been developed into a
versatile biomaterial vehicle for drug delivery [15]. It has been used as a biomaterial, and its
biocompatibility has been widely proven [7]. Aside from common applications such as food
additives, carrageenans also exhibit beneficial biological properties, e.g., anticoagulant, an-
tiviral, antioxidative, anticancer, anti-inflammation, and antihyperlipidemic properties. To
develop the ideal interface for biomimetic mineralization, an effective strategy is to explore
organic/inorganic composite that can mimic the nature of bone. Carrageenan is a naturally
linear polysaccharide of about 25,000 galactose derivatives, consisting of highly sulfated
alternating 3-linked-β-D-galactopyranose and 4-linked-R-D-galactopyranose units [16]. It
exhibits very good biocompatibility and has been widely used in the food, pharmaceutical,
and cosmetic industries. Since it has abundant sulfate groups, carrageenan has the poten-
tial to mimic the charged proteins present in the extracellular matrix [17]. However, the
effect of κ-carrageenan on osteoblast precursor cell adhesion, proliferation, and osteogenic
differentiation still needs to be investigated.

This study aimed to investigate the effect of κ-carrageenan on adhesion, metabolic
activity, proliferation, and osteogenic differentiation of MC3T3-E1 pre-osteoblasts. The
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results of this study elucidate the possible application of κ-carrageenan in the development
of bone regenerative biomaterials.

2. Results
2.1. Effect of K-Carrageenan on Cell Adhesion

The number of MC3T3-E1 pre-osteoblasts adhered per well increased with increasing
concentrations of κ-carrageenan after 1 and 2 h (Figure 1A). At 1 h, κ-carrageenan at
2 mg/mL significantly stimulated cell adhesion by 2.53-fold compared to untreated cells
(Figure 1B). At 2 h, κ-carrageenan at 1 and 2 mg/mL enhanced cell adhesion by 5.42 and
6.61-fold, respectively (Figure 1C).

Figure 1. K-carrageenan-enhanced MC3T3-E1 pre-osteoblast adhesion at 1 and 2 h. (A) DAPI-stained
nuclei of adhered cells. (B) Quantification of the number of adhered cells at 1 h. (C) Quantification
of the number of adhered cells at 2 h. Values are mean ± SD from 3 independent experiments.
Significant effect of κ-carrageenan, ** p < 0.01, **** p < 0.0001. Bar: 200 µm.

2.2. Effect of K-Carrageenan on Cell Area and Morphology

K-carrageenan enhanced MC3T3-E1 pre-osteoblast adhesion and spreading in a dose-
dependent manner at 1 and 2 h (Figure 2A,B). At 1 h, κ-carrageenan at 0.5 and 2 mg/mL
significantly enhanced the cell surface area by 1.52 and 1.55-fold, respectively (Figure 2C).
At 2 h, κ-carrageenan at 0.5 and 2 mg/mL significantly enhanced the cell surface area by
1.45-fold and 1.91-fold, respectively (Figure 2D). K-carrageenan treatment did not affect
the cell length/width ratio (Figure 2E,F).
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Figure 2. K-carrageenan enhanced the spreading of adhered MC3T3-E1 pre-osteoblasts at 1 and
2 h. (A) DAPI-stained nuclei and phalloidin-stained F-actin in MC3T3-E1 pre-osteoblasts at 1 h, and
(B) at 2 h. (C) Cell surface area at 1 h, and (D) at 2 h. (E) Cell length/width ratio at 1 h, and (F) at
2 h. Values are mean ± SD from 3 independent experiments. Significant effect of κ-carrageenan,
** p < 0.05, **** p < 0.0001. Bar: 200 µm. Magnification: 2×.
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2.3. Effect of K-Carrageenan on Paxillin Protein Expression

Immunofluorescence staining of paxillin revealed clear clusters at the cell boundary
of untreated control MC3T3-E1 pre-osteoblasts (Figure 3A). Treatment with κ-carrageenan
resulted in more paxillin dots, resembling short rods (Figure 3B). This was confirmed by a
significant 1.39-fold increase in fluorescent paxillin area per cell after 2 h treatment with
κ-carrageenan at 2 mg/mL.

Figure 3. Effect of κ-carrageenan on paxillin expression and distribution in MC3T3-E1 pre-osteoblasts at 2 h. (A) Cells
stained for DAPI/phalloidin (blue/red) and paxillin (green). Bar: 50 µm. (B) Quantification of paxillin area in untreated
control and κ-carrageenan-treated cells. Significant effect of κ-carrageenan, ** p < 0.01.
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2.4. Effect of K-Carrageenan on Cell Migration

At 12 h, the wound area was significantly reduced after treatment with 2 mg/mL κ-
carrageenan (Figure 4A). K-carrageenan at 2 mg/mL significantly stimulated cell migration
by 3.19-fold compared to untreated controls. At 2 and 12 h, κ-carrageenan at 0.5 and
2 mg/mL did promote cell migration compared to untreated controls (Figure 4B).

Figure 4. Effect of κ-carrageenan on migration in MC3T3-E1 pre-osteoblasts at 2 and 12 h. (A) Images
of wound area with and without κ-carrageenan. (B) Quantification of wound area. Values are
mean ± SD from three independent experiments. Significant effect of κ-carrageenan, **** p < 0.0001.
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2.5. Effect of K-Carrageenan on Cell Metabolic Activity and Proliferation

The effect of κ-carrageenan on MC3T3-E1 pre-osteoblast metabolic activity and prolif-
eration was dose-dependent. MC3T3-E1 pre-osteoblast metabolic activity was most signifi-
cantly enhanced after treatment with 2 mg/mL κ-carrageenan from day 1 to 3 (maximum
3.6-fold increase, day 3) (Figure 5A). Cell proliferation was assessed by measuring cellular
DNA content, which was most significantly enhanced by treatment with κ-carrageenan at
2 mg/mL from day 1 to 3 (maximum increase 50.92-fold, day 1) (Figure 5B).

2.6. Effect of K-Carrageenan on Osteogenic Gene Expression

K-carrageenan treatment significantly upregulated mRNA expression of osteogenic
differentiation markers (Opn, Dmp1) compared to untreated controls (Figure 6). In addition,
Mepe expression was significantly upregulated by treatment with κ-carrageenan at day 14
and 21 compared to untreated controls (* p < 0.05).

2.7. Effect of K-Carrageenan on ALP Activity

ALP activity in MC3T3-E1 pre-osteoblasts was measured at day 4 and 7 (Figure 7A,B).
K-carrageenan at 1 and 2 mg/mL increased ALP activity at day 4. K-carrageenan at 0.25,
0.5, 1, and 2 mg/mL enhanced ALP activity at day 7 compared with untreated controls,
with 2 mg/mL showing the strongest effect.
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Figure 6. K-Carrageenan enhanced expression of osteogenic markers in MC3T3-E1 pre-osteoblasts at
day 1, 14, and 21. Expression pattern of (A) Runx2, (B) Opn, (C) Fgf2, (D) Ocn, (E) Mepe, and (F) Dmp1.
Values are mean ± SD from three independent experiments. Significant effect of κ-carrageenan,
* p < 0.05, ** p < 0.01.
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2.8. Effect of K-Carrageenan on Mineralized Extracellular Matrix Production

K-carrageenan at 0.5 and 2 mg/mL increased matrix mineralization in MC3T3-E1
pre-osteoblasts at day 21 and 28 (Figure 8). K-carrageenan treatment resulted in more min-
eralized matrix at day 21 (1.8-fold increase, at 0.5 mg/mL; 4.5-fold increase, at 2 mg/mL)
and at day 28 (1.6-fold increase, at 0.5 mg/mL; 2.2-fold increase, at 2 mg/mL) compared to
untreated controls.

Figure 8. K-carrageenan promoted matrix mineralization in MC3T3-E1 pre-osteoblasts at day 21
and 28. (A,B) Alizarin red-stained mineralized matrix. (C,D). Quantification of alizarin red-stained
mineralized matrix. Values are mean ± SD from four independent experiments. Significant effect of
κ-carrageenan, * p < 0.05, *** p < 0.001, **** p < 0.0001. Bar: 1 cm.

3. Discussion

Biomaterials used for bone tissue engineering should be highly biocompatible, me-
chanically rigid, and biodegradable as well. Surface topography and surface charge also
determine the efficacy of biomaterials for bone regeneration. These basic properties can
facilitate cellular activities, such as adhesion, migration, proliferation, and osteogenic
differentiation [5]. Recently, κ-carrageenan, a natural polymer extracted from red seaweed,
has been shown to exhibit tissue regenerative potential [6]. The three isoforms of car-
rageenan, i.e., λ-, κ-, and ι-carrageenan, possess varying water solubilities. λ-carrageenan
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is the most soluble and does not form hydrogels, while ι- and κ-carrageenan will. The
ι-isoform, however, creates much softer hydrogels compared to the κ-variant. So in fact,
the κ-carrageenan is sufficiently strong to be used in bone tissue engineering. We found
that κ-carrageenan significantly increased migration, early cell adhesion, spreading, and
proliferation of MC3T3-E1 pre-osteoblasts. In addition, κ-carrageenan promoted ALP
activity, matrix mineralization, and osteogenic gene expression, e.g., Runx-2, Ocn, Opn,
Fgf2, Dmp1, and Mepe. These results suggest that κ-carrageenan could be applicable in
bone tissue engineering.

Natural polymers such as silk fiber, chitosan, hyaluronic acid, fibrin, and alginate, have
tissue regenerative potential in vitro and in vivo [16,17]. However, their clinical application
is still a challenge due to associated adverse effects and limited resources. Adverse effects
such as chronic inflammation and foreign body reactions can result from by-products of
polymers used for clinical application. K-carrageenan is a natural polymer extracted from
red seaweed, which is abundantly present in the south Asian seas [18]. Easy extraction
and high natural abundance guarantee its availability for cost-effective clinical application.
Both the osteogenic and the soft tissue regenerative potential of κ-carrageenan have been
reported [7]. An essential feature of live cells is motility. Cell migration is involved in
the conception of life, embryonic development, immune response, and many pathological
processes such as cancer metastasis and inflammation [19,20]. Precursor cell chemotaxis
in a defect site is essential for endogenous bone regeneration [21]. Therefore, the design
of biomaterials with chemotactic potential to induce endogenous precursor cell homing
in the defect site is at the center of attention in the field of bone tissue engineering [21].
In this study, κ-carrageenan at 0.5 and 2 mg/mL robustly promoted the migration of
pre-osteoblasts at 24 h after seeding. Our results indicate the possible application of
κ-carrageenan in biomaterials designed for endogenous bone regeneration.

Surface adhesion, spreading, proliferation, and differentiation of osteogenic cells are
critical steps for successful cell-based bone tissue engineering techniques [5]. Consequently,
much effort has been put into the development of a wide variety of techniques, such as cal-
cium phosphate deposition [22] and RGD peptide adhesion on titanium surface to modify
or functionalize surface properties in order to improve cell–substrate interactions [23]. In
this study, κ-carrageenan promoted pre-osteoblast adhesion and spreading. K-carrageenan-
functionalized graphene oxide composite enhances mineralization by hydroxyapatite
deposition [24]. This composite enhances the adhesion of MC3T3-E1 pre-osteoblasts [25].
Various bone grafts and implants with similar mechanical and physicochemical properties
as bone fail osseointegration due to a lack of cell adhesion properties [4]. Our data, as well
as data from others [26,27], have shown that κ-carrageenan could be used as a coating to
enhance precursor cell adhesion on bone grafts and implants.

K-carrageenan (<2 mg/mL), did not show any cytotoxic effect on pre-osteoblasts,
indicating its biocompatibility. Biomaterials should be biocompatible and non-cytotoxic for
proper adhesion and spreading of migrated precursor cells [5]. K-carrageenan (<2 mg/mL)
induced pre-osteoblast metabolic activity in a dose-dependent manner. Since precursor
cell metabolic activity plays a key role in osteogenic differentiation [6], these results further
support possible application of κ-carrageenan in bone tissue engineering. Lack of precursor
cell growth causes failure of bone regeneration in large-sized bones [16,17]. An ideal
biomaterial should not only be biocompatible, but also induce precursor cell growth. K-
carrageenan (<2 mg/mL) induced MC3T3-E1 pre-osteoblast growth in a dose-dependent
manner. An injectable hydrogel of κ-carrageenan-functionalized graphene oxide enhances
fibroblast proliferation and spreading [11]. Carrageenan hydrogel serves as a scaffold
for human skin-derived multipotent stromal cells and promotes skin wound healing [28].
We speculate that the positive impact of κ-carrageenan in our study on most cellular
activities of pre-osteoblasts may be due to the abundant sulfate groups in κ-carrageenan,
which mimic the charged proteins present in the extracellular matrix and ensure the
practicality of κ-carrageenan for bone tissue engineering. However, studying the exact
molecular mechanisms for the positive effects is beyond the scope of the current study, and
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is therefore not addressed in this study. Since κ-carrageenan is biocompatible, and induces
osteoblast precursor cell metabolic activity, it could be beneficial for bone regenerative
applications.

Once migrated precursor cells are attached and proliferate on the surface of a bone
graft, osteogenic differentiation becomes crucial. The majority of bone grafts and implants
lack osteogenic differentiation-inducing potential. Various growth factors, such as bone
morphogenetic protein-2 (BMP2) and vascular endothelial growth factor (VEGF) have been
used to enhance the osteogenic potential of bone grafts [29]. However, the high cost and
local/systemic adverse effects of these growth factors limit their clinical application. In this
study, κ-carrageenan promoted the osteogenic differentiation of pre-osteoblasts as indicated
by enhanced ALP activity, matrix mineralization, and osteogenic gene expression. As can
be deduced from Figure 6, κ-carrageenan induces maturity of osteoblasts as shown by up-
regulation of Opn, Mepe, and Dmp1. In particular, the latter are osteocytic markers showing
the acquirement of an osteocyte-like phenotype. It is worth noting that Opn is an osteoblast-
produced adhesive molecule which appears markedly upregulated due to the interaction
with κ-carrageenan. Carrageenan nanocomposite hydrogel incorporated with whitlockite
nanoparticles and dimethyloxallylglycine enhances osteoblast gene expression, e.g., Runx2,
COLIα1, and Opn [30]. K-carrageenan-doped collagen-hydroxyapatite composite shows
similar structural characteristics with natural bone [31]. K-carrageenan/silk fibroin bioac-
tive composite scaffolds have been developed for bone regeneration applications [32]. Our
data support the possible application of κ-carrageenan in the development of biomaterials
for bone tissue engineering applications. Although the safety of carrageenan is widely
recognized, some in vitro studies [18,33] reported that carrageenan may play a role in
the toll-like receptor (TLR) pathway by binding to TLR-4, and that carrageenan causes
inflammation and induces expression of proinflammatory chemokines and cytokines, e.g.,
IL-8, CCL2, IL6, and TNF-α in human intestinal cell lines [34]. Therefore, the possible
application of carrageenan in tissue engineering, and the related regulatory pathways
involved still need further investigation.

We conclude that our results indicate a possible role of κ-carrageenan in pre-osteoblast
adhesion, spreading, migration, metabolic activity, proliferation, and osteogenic differ-
entiation. This study fully explored the influence of κ-carrageenan on cell function from
different aspects that are needed for bone regeneration. The current results suggest that
κ-carrageenan might be a promising factor to functionalize bone graft and for enhanced
osseointegration of implants. However, these findings should be further verified using
in vivo bone regeneration models.

4. Materials and Methods
4.1. Preparation of K-Carrageenan

K-carrageenan (See Supplementary Materials) was kindly supplied by Tokyo Chemical
Industry Co., Ltd. (Tokyo, Japan), and was prepared as described earlier [7]. Samples were
dialyzed first against NaCl solution, and second against deionized water, to obtain Na+

type κ-carrageenan, which was freeze-dried. Na+ and K+ concentrations of the dialyzed
carrageenan were 0.4% and 0.11%, respectively, as determined by inductively coupled
plasma atomic emission. No Mg+ or Ca2+ was detected in the sample following dialysis.
The freeze-dried pure κ-carrageenan (100%, wt/vol) was dissolved in deionized water
at 28 mg/mL (stock solution) under stirring overnight at room temperature, sterilized
by heating for 2 min to 90 ◦C, and stored at 4 ◦C. Dialysed κ-carrageenan was frozen at
~60 ◦C overnight and freeze-dried at ~70 ◦C using a vacuum freeze-dryer (Neocool, Yamato
Scientific, Tokyo, Japan). K-carrageenan was added to MC3T3-E1 pre-osteoblast cultures
(see below) at 0.125, 0.25, 0.5, 1, and 2 mg/mL α-Minimal Essential Medium (α-MEM;
Gibco, Paisly, UK) supplemented with 10% fetal bovine serum (FBS; Gibco), 100 U/mL
penicillin (Sigma-Aldrich, St. Louis, MO, USA), 100 µg/mL streptomycin (Sigma-Aldrich),
and 1.25 µg/mL fungizone (Gibco).
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4.2. MC3T3-E1 Pre-Osteoblast Culture and Osteogenic Differentiation

MC3T3-E1 pre-osteoblasts were obtained from the American Type Culture Collection
(ATCC, Manassas, VA, USA). For experiments, cells of passage 12–25 were used. Cells
were grown and maintained in 75 cm2 culture flasks (Greiner, Bio-one, Alphen a/d Rijn,
The Netherlands) containing α-MEM supplemented with 10% FBS and antibiotics in a
humidified atmosphere with 5% CO2 in air at 37 ◦C. The medium was changed every
3 days. After reaching ~80% confluency, cells were detached using 0.25% trypsin (Gibco,
Invitrogen, Waltham, MA, USA) and 0.1% ethylenediaminetetraacetic acid (EDTA; Merck,
Darmstadt, Germany) in phosphate-buffered saline (PBS; Gibco) at 37 ◦C. Cells were then
resuspended in α-MEM with 10% FBS and antibiotics, seeded in 96, 48, or 24-well culture
plates (Greiner), and cultured for different periods, from 1 h up to 28 days, dependent on
the outcome parameter measured (see below). For determination of alkaline phosphatase
(ALP) activity and matrix mineralization, 0.1 mg/mL ascorbic acid (Sigma-Aldrich) and
10 mM β-glycerophosphate (phosphate donor; Sigma-Aldrich) were added to the culture
medium.

4.3. Cell Adhesion

MC3T3-E1 pre-osteoblasts were seeded at 2 × 104 cells/well in 24-well plates (Greiner)
and incubated for 1 or 2 h without or with κ-carrageenan (0.125, 0.25, 0.5, 1, or 2 mg/mL).
After incubation, the medium was removed and the cells were washed twice with PBS
and fixed in 4% paraformaldehyde for 15 min at room temperature. After washing twice
with deionized water, 200 µL 4,6-diamidino-2-phenylindole (DAPI; Sigma, Los Angeles,
CA, USA) solution (0.1 µg/mL) was added to the wells for 10 min to stain the cell nuclei
(blue). Fluorescence microscopy (Leica, Wetzlar, Germany) was used to visualize the cells
at 496/516 nm wavelength, and Image J software (National Institutes of Health, Bethesda,
MD, USA) was used for cell counting. In each well, three areas of interest, measuring
1920 × 1440 pixels (872 × 654 µm) were defined, i.e., one area in the center of the well, and
two areas evenly spaced from the center of the well in opposite directions. The number of
cells in every area of interest was counted using a cell counter plugin for Image J. The cell
number per area was calculated from the number of cell nuclei acquired in the selected
area.

4.4. Cell Area and Morphology

After cell culture and fixation in 4% paraformaldehyde, as described above under
“cell adhesion”, the fixated cells were washed twice with deionized water, and 200 µL
FITC-phalloidin (100 nM; Sigma, Los Angeles, CA, USA) solution was added during 1 h
for cytoskeletal staining. After washing twice with deionized water, 200 µL DAPI solution
(0.1 µg/mL) was added for 10 min to the wells to stain the nuclei (blue). Fluorescence
microscopy (Leica, Wetzlar, Germany) was used to visualize the cell nuclei at 496/516 nm
wavelength, and Image J software was used for cell counting. Fluorescence microscopy
was also employed to visualize the actin cytoskeleton at 500/550 nm wavelength, and
Image J software was used for cell area determination [4]. In each well, three areas of
interest, measuring 1920 × 1440 pixels (872 × 654 µm) were defined, i.e., one area in the
center of the well, and two areas evenly spaced from the center of the well in opposite
directions. The number of cells in every area of interest was counted using a cell counter
plugin for Image J. The cell number per area was calculated from the cell nuclei number
acquired in the selected area. The cell surface area of all cells (total cell surface area) in the
selected area was calculated using a cell surface plugin for Image J. The cell surface area
per cell was calculated using an Analyze Particles cell plugin in Image J. To investigate cell
morphology, the center of each area chosen above was magnified, and Image J software
was used to analyze cell area, length, and width.
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4.5. Paxillin Immunofluorescence Staining

After treatment without or with κ-carrageenan (0.5 and 2 mg/mL) for 2 h, MC3T3-E1
pre-osteoblasts were fixed with 4% paraformaldehyde solution at 37 ◦C for 15 min, treated
with 0.2% TritonX-100 (Sigma) for 15 min, and non-essentially bound substances blocked
in 5% bovine serum albumin (BSA) for 30 min. Expression of phospho-paxillin (p-paxillin)
was analyzed by immunofluorescence staining using rhodamine-phalloidin cytoskeleton
dye (Invitrogen, Fisher Scientific, Carlsbad, CA, USA) and p-paxillin pTy31 polyclonal
rabbit IgG (ab32084, Abcam, Cambridgeshire, UK). The secondary antibody used was
Alexa Fluor-488 goat anti-rat IgG (Abcam). Nuclei were stained with 1 µg/mL DAPI
(Sigma). After glycerol mounting, cell imaging was performed by laser scanning confocal
microscopy (LSCM; Nikon, A1R/A1, Tokyo, Japan). Fluorescence microscopy was also
used to visualize paxillin at 488 nm wavelength, and Image J software was used for paxillin
quantification.

4.6. Wound Healing Scratch Assay for Cell Migration

MC3T3-E1 pre-osteoblasts were cultured at 5 × 104 cells/well in 24-well plates
(Greiner) 12 h prior to scratching. A 200 µL pipette tip was firmly pressed against the top of
the tissue culture plate to swiftly create a vertical wound through the cell monolayer. After
treatment without or with κ-carrageenan (0.5 and 2 mg/mL) for 2 and 12 h, the wound
area was captured using microscopy (Leica, Wetzlar, Germany) and Image J software to
quantify the wound area.

4.7. Cell Metabolic Activity

To assess cell metabolic activity, MC3T3-E1 pre-osteoblasts were seeded at
1 × 105 cells/well in 48-well plates (Greiner) and cultured up to 3 days without or with
κ-carrageenan (0, 0.125, 0.25, 0.5, 1, or 2 mg/mL). The medium was removed, cells were
washed with PBS, and α-MEM with 10% FBS and antibiotics was added. The PrestoBlueTM

Assay (Invitrogen Corporation, Carlsbad, CA, USA) was used to evaluate cell metabolic
activity according to the manufacturer’s instructions. In short, PrestoBlueTM reagent was
added to the cell culture (10%, vol/vol), followed by 30 min incubation in a 5% CO2
in an air incubator with a humidified atmosphere at 37 ◦C. The medium was harvested
(100 µL/well) and transferred into a 96-well black microplate (Greiner, Bio-one, Alphen a/d
Rijn, The Netherlands). Fluorescence intensity was determined at a wavelength of 560 nm
(excitation) and 590 nm (emission), and quantified using a MultiskanTM FC Microplate
Photometer (Thermo Fisher Scientific, Waltham, MA, USA). PrestoblueTM fluorescence was
linearly associated to DNA content (data not shown).

4.8. DNA Content

MC3T3-E1 pre-osteoblast proliferation was assessed by DNA content quantification.
Cells were seeded at 1 × 103 cells/well in 96-wells plates (Greiner), and cultured up to
three days without or with κ-carrageenan (0, 0.125, 0.25, 0.5, 1, or 2 mg/mL). The cell lysate
was collected using a lysis buffer, and DNA content per well was determined with the
Cyquant Cell Proliferation Assay (Molecular Probes, Eugene, OR, USA) according to the
manufacturer’s protocol. Absorption was read at 480 nm (excitation) and 520 nm (emission)
in a microplate reader (Synergy, BioTekTM, Winooski, VT, USA).

4.9. Osteogenic Gene Expression

Total RNA was isolated from the MC3T3-E1 pre-osteoblasts using an Invitrogen
RNA isolation kit (Invitrogen, Carlsbad, CA, USA). cDNA synthesis was performed us-
ing 0.5–1 µg total RNA in 20 µL reaction mix consisting of 5 units Transcriptor Reverse
Transcriptases (Roche Diagnostics, Basel, Switzerland), 0.08 A260 units of random primers
(Roche Diagnostics), 1 mM of each dNTP (Invitrogen), and 1× concentrated Transcriptor
RT reaction buffer (Roche Diagnostics). Real-time PCR (RT-PCR) reactions were performed
using the LightCycler® 480 SYBR green I Master reaction mix according to the manufac-
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turer’s instructions (Roche Diagnostics) in a Light Cycler 480 (Roche Diagnostics), and
relative housekeeping gene expression (PBGD) and relative target gene expression, such
as runt-related transcription factor 2 (Runx2), osteocalcin (Ocn), fibroblast growth factor
2 (Fgf2), dentin matrix protein 1 (Dmp1), and osteopontin (Opn) were determined. The
primers (Invitrogen) used for RT-PCR are listed in Table 1. The values of target gene
expression were normalized for PBGD gene expression.

Table 1. Primer sequences used for real-time PCR.

Target Gene Primer Sequence

Runx2 Forward
Reverse

ATGCTTCATTCGCCTCAC
ACTGCTTGCAGCCTTAAAT

Ocn Forward
Reverse

CAGACACCATGAGGACCATCTT
GGTCTGATAGCTCGTCACAA

Fgf2 Forward
Reverse

GGCTTCTTCCTGCGCATCCA
TCCGTGACCGGTAAGTATTG

Dmp1 Forward
Reverse

CGGCTGGTGGACTCTCTAAG
CGGGGTCGTCGCTCTGCATC

Opn
Mepe

Forward
Reverse
Forward
Reverse

AGTGATGAAAGATGGGCAACT
TCTGGACCATCTTCTTGCTGA
GGAGCACTCACTACCTGAC
TAGGCACTGCCACCATGT

Runx2, Runt-related transcription factor-2; Ocn, osteocalcin; Fgf2, fibroblast growth factor-2; Dmp1, dentin matrix
protein-1; Opn, osteopontin; Mepe, matrix extracellular phosphoprotein.

4.10. Alkaline Phosphatase (ALP) Activity

To assess the osteogenic phenotype of MC3T3-E1 pre-osteoblasts after 4 and 7 days
of culture without or with κ-carrageenan, ALP activity was measured. Cells were seeded
at 1 × 105 cells/well in 48-well plates, and cultured for 4 or 7 days to determine ALP
activity and protein content in the cell lysate. P-nitrophenyl phosphate (Merck, Darmstadt,
Germany) at pH 10.3 was used as a substrate to determine ALP activity. The absorbance
was read at 405 nm in a microplate reader (Synergy). The amount of protein was determined
using a BCA Protein Assay Reagent kit (Thermo Fisher Scientific, Rockford, IL, USA), and
the absorbance was read at 540 nm with a microplate reader (Synergy). The ALP activity
was expressed as nmol/µg protein.

4.11. Alizarin Red Staining and Mineralized Nodule Quantification

Matrix mineralization was analyzed by alizarin red staining of MC3T3-E1 pre-osteoblasts.
Cells were seeded at 1 × 105 cells/well in 48-well plates, and incubated without or with
κ-carrageenan (0.5 or 2 mg/mL). Cells were fixed with 4% paraformaldehyde for 15 min,
followed by rinsing with deionized water. Two-hundred µL of 2% alizarin red solution
in water, pH 4.3 (Alizarin Red S, Sigma-Aldrich, Los Angeles, CA, USA), was added per
well for 30 min at room temperature. Then cells were washed with deionized water, and
mineralization was quantified by dissolving the (red) mineralized matrix in 10% (vol/vol)
cetylpyridinium chloride (Sigma, Los Angeles, CA, USA) in 10 mM sodium phosphate
solution (Sigma). Wells were de-stained for 1 h in 200 µL cetylpyridinium chloride solution
on a rocking table, and the absorbance was read at 620 nm with a Multiskan FC (Thermo
Fisher Scientific).

4.12. Statistical Analysis

Data are presented as mean ± standard deviation (SD). Data were analyzed using
Graphpad Prism® 7.0 (GraphPad Software Inc., La Jolla, CA, USA). One-way analysis of
variance (ANOVA) with Bonferroni’s post hoc test was used to test differences between
groups. A p-value < 0.05 was considered statistically significant.



Molecules 2021, 26, 6131 15 of 16

Supplementary Materials: The following are available online, Figure S1: The chemical structure of
κ-carrageenan.

Author Contributions: Conceptualization: W.C., J.J., G.W., N.B., M.N.H., J.L.P., S.M., R.G.B., E.A.J.M.S.
and J.K.-N.; data curation: W.C.; formal analysis: W.C., J.J. and B.Z.-D.; funding acquisition: W.C., J.J.
and J.K.-N.; investigation: W.C., J.M.A.H. and L.C.G.; methodology: W.C.; project administration:
J.K.-N.; resources: S.M. and L.C.G.; supervision: G.W., N.B., M.N.H., J.L.P., E.A.J.M.S. and J.K.-N.;
writing—original draft: W.C. and J.J.; writing—review and editing: W.C., J.J., G.W., N.B., M.N.H.,
J.L.P., B.Z.-D., J.M.A.H., S.M., L.C.G., R.G.B., E.A.J.M.S. and J.K.-N. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was granted by the China Scholarship Council (CSC, no. 201808440487 (W.
Cao) and no. 201608530156 (J. Jin)). This work was also granted by Health-Holland (project no.
LSHM19016, “BB”). L.C. Geonzon received financial support of JSPS KAKENHI grant no.20F20388.
R.G. Bacabac was funded by DOST-PCIEERD project no. 09438, and received logistic support from
the USC Research Office and Department of Physics.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in Figshare at
10.6084/m9. figshare. 15156741.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are not available from the authors.

References
1. Van Esterik, F.A.; Zandieh-Doulabi, B.; Kleverlaan, C.J.; Klein-Nulend, J. Enhanced osteogenic and vasculogenic differentiation

potential of human adipose stem cells on biphasic calcium phosphate scaffolds in fibrin gels. Stem Cells Int. 2016, 2016, 1934270.
[CrossRef]

2. Wu, V.; Helder, M.N.; Bravenboer, N.; Ten Bruggenkate, C.M.; Jin, J.; Klein-Nulend, J.; Schulten, E. Bone tissue regeneration in the
oral and maxillofacial region: A review on the application of stem cells and new strategies to improve vascularization. Stem Cells
Int. 2019, 2019, 6279721. [CrossRef]

3. Ho-Shui-Ling, A.; Bolander, J.; Rustom, L.E.; Johnson, A.W.; Luyten, F.P.; Picart, C. Bone regeneration strategies: Engineered
scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 2018, 180, 143–162. [CrossRef]

4. Sun, W.; Shi, A.; Ma, D.; Bolscher, J.G.M.; Nazmi, K.; Veerman, E.C.I.; Bikker, F.J.; Lin, H.; Wu, G. All-trans retinoic acid and
human salivary histatin-1 promote the spreading and osteogenic activities of pre-osteoblasts in vitro. FEBS Open Bio 2020, 10,
396–406. [CrossRef]

5. Ansari, M. Bone tissue regeneration: Biology, strategies and interface studies. Prog. Biomater. 2019, 8, 223–237. [CrossRef]
6. McKim, J.M., Jr.; Baas, H.; Rice, G.P.; Willoughby, J.A., Sr.; Weiner, M.L.; Blakemore, W. Effects of carrageenan on cell permeability,

cytotoxicity, and cytokine gene expression in human intestinal and hepatic cell lines. Food Chem. Toxicol. 2016, 96, 1–10. [CrossRef]
7. Du, L.; Brenner, T.; Xie, J.L.; Matsukawa, S. A study on phase separation behavior in kappa/iota carrageenan mixtures by micro

DSC, rheological measurements and simulating water and cations migration between phases. Food Hydrocoll. 2016, 55, 81–88.
[CrossRef]

8. Liu, F.; Hou, P.; Zhang, H.; Tang, Q.; Xue, C.; Li, R.W. Food-grade carrageenans and their implications in health and disease.
Compr. Rev. Food Sci. Food Saf. 2021, 20, 3918–3936. [CrossRef]

9. Yegappan, R.; Selvaprithiviraj, V.; Amirthalingam, S.; Jayakumar, R. Carrageenan based hydrogels for drug delivery, tissue
engineering and wound healing. Carbohydr. Polym. 2018, 198, 385–400. [CrossRef]

10. Hu, B.; Du, L.; Matsukawa, S. NMR study on the network structure of a mixed gel of kappa and iota carrageenans. Carbohydr.
Polym. 2016, 150, 57–64. [CrossRef]

11. Mokhtari, H.; Kharaziha, M.; Karimzadeh, F.; Tavakoli, S. An injectable mechanically robust hydrogel of kappa-carrageenan-
dopamine functionalized graphene oxide for promoting cell growth. Carbohydr. Polym. 2019, 214, 234–249. [CrossRef]

12. Gonzalez Ocampo, J.I.; Machado de Paula, M.M.; Bassous, N.J.; Lobo, A.O.; Ossa Orozco, C.P.; Webster, T.J. Osteoblast responses
to injectable bone substitutes of kappa-carrageenan and nano hydroxyapatite. Acta Biomater. 2019, 83, 425–434. [CrossRef]
[PubMed]

13. Graceffa, V.; Zeugolis, D.I. Carrageenan enhances chondrogenesis and osteogenesis in human bone marrow stem cell culture. Eur.
Cell Mater. 2019, 37, 310–332. [CrossRef] [PubMed]

14. Ashe, S.; Behera, S.; Dash, P.; Nayak, D.; Nayak, B. Gelatin carrageenan sericin hydrogel composites improves cell viability of
cryopreserved SaOS-2 cells. Int. J. Biol. Macromol. 2020, 154, 606–620. [CrossRef] [PubMed]

http://doi.org/10.1155/2016/1934270
http://doi.org/10.1155/2019/6279721
http://doi.org/10.1016/j.biomaterials.2018.07.017
http://doi.org/10.1002/2211-5463.12792
http://doi.org/10.1007/s40204-019-00125-z
http://doi.org/10.1016/j.fct.2016.07.006
http://doi.org/10.1016/j.foodhyd.2015.11.004
http://doi.org/10.1111/1541-4337.12790
http://doi.org/10.1016/j.carbpol.2018.06.086
http://doi.org/10.1016/j.carbpol.2016.04.112
http://doi.org/10.1016/j.carbpol.2019.03.030
http://doi.org/10.1016/j.actbio.2018.10.023
http://www.ncbi.nlm.nih.gov/pubmed/30342285
http://doi.org/10.22203/eCM.v037a19
http://www.ncbi.nlm.nih.gov/pubmed/31038192
http://doi.org/10.1016/j.ijbiomac.2020.03.039
http://www.ncbi.nlm.nih.gov/pubmed/32156543


Molecules 2021, 26, 6131 16 of 16

15. Liu, J.; Zhan, X.; Wan, J.; Wang, Y.; Wang, C. Review for carrageenan-based pharmaceutical biomaterials: Favourable physical
features versus adverse biological effects. Carbohydr. Polym. 2015, 121, 27–36. [CrossRef]

16. Taghipour, Y.D.; Hokmabad, V.R.; Del Bakhshayesh, A.R.; Asadi, N.; Salehi, R.; Nasrabadi, H.T. The application of hydrogels
based on natural polymers for tissue engineering. Curr. Med. Chem. 2020, 27, 2658–2680. [CrossRef] [PubMed]

17. Coenen, A.M.J.; Bernaerts, K.V.; Harings, J.A.W.; Jockenhoevel, S.; Ghazanfari, S. Elastic materials for tissue engineering
applications: Natural, synthetic, and hybrid polymers. Acta Biomater. 2018, 79, 60–82. [CrossRef]

18. Weiner, M.L.; Ferguson, H.E.; Thorsrud, B.A.; Nelson, K.G.; Blakemore, W.R.; Zeigler, B.; Cameron, M.J.; Brant, A.; Cochrane, L.;
Pellerin, M.; et al. An infant formula toxicity and toxicokinetic feeding study on carrageenan in preweaning piglets with special
attention to the immune system and gastrointestinal tract. Food Chem. Toxicol. 2015, 77, 120–131. [CrossRef]

19. Yoshida, M.; Yoshida, K. Sperm chemotaxis and regulation of flagellar movement by Ca2+. Mol. Hum. Reprod. 2011, 17, 457–465.
[CrossRef]

20. Castellone, R.D.; Leffler, N.R.; Dong, L.; Yang, L.V. Inhibition of tumor cell migration and metastasis by the proton-sensing GPR4
receptor. Cancer Lett. 2011, 312, 197–208. [CrossRef]

21. Mishra, A.K.; Campanale, J.P.; Mondo, J.A.; Montell, D.J. Cell interactions in collective cell migration. Development 2019, 146,
dev172056. [CrossRef] [PubMed]

22. Liang, C.; Wang, H.; Yang, J.; Cai, Y.; Hu, X.; Yang, Y.; Li, B.; Li, H.; Li, H.; Li, C.; et al. Femtosecond laser-induced micropattern
and Ca/P deposition on Ti implant surface and its acceleration on early osseointegration. ACS Appl. Mater. Interfaces 2013, 5,
8179–8186. [CrossRef] [PubMed]

23. Heller, M.; Kumar, V.V.; Pabst, A.; Brieger, J.; Al-Nawas, B.; Kammerer, P.W. Osseous response on linear and cyclic RGD-peptides
immobilized on titanium surfaces in vitro and in vivo. J. Biomed. Mater. Res. A 2018, 106, 419–427. [CrossRef] [PubMed]

24. Murphy, C.M.; O’Brien, F.J.; Little, D.G.; Schindeler, A. Cell-scaffold interactions in the bone tissue engineering triad. Eur. Cell
Mater. 2013, 26, 120–132. [CrossRef]

25. Liu, H.; Cheng, J.; Chen, F.; Hou, F.; Bai, D.; Xi, P.; Zeng, Z. Biomimetic and cell-mediated mineralization of hydroxyapatite by
carrageenan functionalized graphene oxide. ACS Appl. Mater. Interfaces 2014, 6, 3132–3140. [CrossRef]

26. Goonoo, N.; Khanbabaee, B.; Steuber, M.; Bhaw-Luximon, A.; Jonas, U.; Pietsch, U.; Jhurry, D.; Schonherr, H. Kappa-carrageenan
enhances the biomineralization and osteogenic differentiation of electrospun polyhydroxybutyrate and polyhydroxybutyrate
valerate fibers. Biomacromolecules 2017, 18, 1563–1573. [CrossRef]

27. Jiang, H.Y.; Wang, F.; Chen, H.M.; Yan, X.J. Kappa-carrageenan induces the disruption of intestinal epithelial Caco-2 monolayers
by promoting the interaction between intestinal epithelial cells and immune cells. Mol. Med. Rep. 2013, 8, 1635–1642. [CrossRef]

28. Rode, M.P.; Batti Angulski, A.B.; Gomes, F.A.; da Silva, M.M.; Jeremias, T.D.S.; de Carvalho, R.G.; Iucif Vieira, D.G.; Oliveira,
L.F.C.; Fernandes Maia, L.; Trentin, A.G.; et al. Carrageenan hydrogel as a scaffold for skin-derived multipotent stromal cells
delivery. J. Biomater. Appl. 2018, 33, 422–434. [CrossRef]

29. Overman, J.R.; Helder, M.N.; ten Bruggenkate, C.M.; Schulten, E.A.; Klein-Nulend, J.; Bakker, A.D. Growth factor gene expression
profiles of bone morphogenetic protein-2-treated human adipose stem cells seeded on calcium phosphate scaffolds in vitro.
Biochimie 2013, 95, 2304–2313. [CrossRef]

30. Yegappan, R.; Selvaprithiviraj, V.; Amirthalingam, S.; Mohandas, A.; Hwang, N.S.; Jayakumar, R. Injectable angiogenic and
osteogenic carrageenan nanocomposite hydrogel for bone tissue engineering. Int. J. Biol. Macromol. 2019, 122, 320–328. [CrossRef]

31. Feng, W.P.; Feng, S.Y.; Tang, K.Y.; He, X.C.; Jing, A.H.; Liang, G.F. A novel composite of collagen-hydroxyapatite/kappa-
carrageenan. J. Alloys Comp. 2017, 693, 482–489. [CrossRef]

32. Nourmohammadi, J.; Roshanfar, F.; Farokhi, M.; Haghbin Nazarpak, M. Silk fibroin/kappa-carrageenan composite scaffolds with
enhanced biomimetic mineralization for bone regeneration applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 951–958.
[CrossRef] [PubMed]

33. Weiner, M.L.; Nuber, D.; Blakemore, W.R.; Harriman, J.F.; Cohen, S.M. A 90-day dietary study on kappa carrageenan with
emphasis on the gastrointestinal tract. Food Chem. Toxicol. 2007, 45, 98–106. [CrossRef] [PubMed]

34. Bhattacharyya, S.; O-Sullivan, I.; Katyal, S.; Unterman, T.; Tobacman, J.K. Exposure to the common food additive carrageenan
leads to glucose intolerance, insulin resistance and inhibition of insulin signalling in HepG2 cells and C57BL/6J mice. Diabetologia
2012, 55, 194–203. [CrossRef] [PubMed]

http://doi.org/10.1016/j.carbpol.2014.11.063
http://doi.org/10.2174/0929867326666190711103956
http://www.ncbi.nlm.nih.gov/pubmed/31296151
http://doi.org/10.1016/j.actbio.2018.08.027
http://doi.org/10.1016/j.fct.2014.12.022
http://doi.org/10.1093/molehr/gar041
http://doi.org/10.1016/j.canlet.2011.08.013
http://doi.org/10.1242/dev.172056
http://www.ncbi.nlm.nih.gov/pubmed/31806626
http://doi.org/10.1021/am402290e
http://www.ncbi.nlm.nih.gov/pubmed/23927373
http://doi.org/10.1002/jbm.a.36255
http://www.ncbi.nlm.nih.gov/pubmed/28971567
http://doi.org/10.22203/eCM.v026a09
http://doi.org/10.1021/am4057826
http://doi.org/10.1021/acs.biomac.7b00150
http://doi.org/10.3892/mmr.2013.1726
http://doi.org/10.1177/0885328218795569
http://doi.org/10.1016/j.biochi.2013.08.034
http://doi.org/10.1016/j.ijbiomac.2018.10.182
http://doi.org/10.1016/j.jallcom.2016.09.234
http://doi.org/10.1016/j.msec.2017.03.166
http://www.ncbi.nlm.nih.gov/pubmed/28482612
http://doi.org/10.1016/j.fct.2006.07.033
http://www.ncbi.nlm.nih.gov/pubmed/17034924
http://doi.org/10.1007/s00125-011-2333-z
http://www.ncbi.nlm.nih.gov/pubmed/22011715

	Introduction 
	Results 
	Effect of K-Carrageenan on Cell Adhesion 
	Effect of K-Carrageenan on Cell Area and Morphology 
	Effect of K-Carrageenan on Paxillin Protein Expression 
	Effect of K-Carrageenan on Cell Migration 
	Effect of K-Carrageenan on Cell Metabolic Activity and Proliferation 
	Effect of K-Carrageenan on Osteogenic Gene Expression 
	Effect of K-Carrageenan on ALP Activity 
	Effect of K-Carrageenan on Mineralized Extracellular Matrix Production 

	Discussion 
	Materials and Methods 
	Preparation of K-Carrageenan 
	MC3T3-E1 Pre-Osteoblast Culture and Osteogenic Differentiation 
	Cell Adhesion 
	Cell Area and Morphology 
	Paxillin Immunofluorescence Staining 
	Wound Healing Scratch Assay for Cell Migration 
	Cell Metabolic Activity 
	DNA Content 
	Osteogenic Gene Expression 
	Alkaline Phosphatase (ALP) Activity 
	Alizarin Red Staining and Mineralized Nodule Quantification 
	Statistical Analysis 

	References

