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Abstract: A large amount of coal gasification slag is produced every year in China. However, most of
the current disposal is into landfills, which causes serious harm to the environment. In this research,
coal gasification fine slag residual carbon porous material (GFSA) was prepared using gasification
fine slag foam flotation obtained carbon residue (GFSF) as raw material and an adsorbent to carry
out an adsorption test on waste liquid containing methylene blue (MB). The effects of activation
parameters (GFSF/KOH ratio mass ratio, activation temperature, and activation time) on the cation
exchange capacity (CEC) of GFSA were investigated. The total specific surface area and pore volume
of GSFA with the highest CEC were 574.02 m2/g and 0.467 cm3/g, respectively. The degree of pore
formation had an important effect on CEC. The maximum adsorption capacity of GFSA on MB was
19.18 mg/g in the MB adsorption test. The effects of pH, adsorption time, amount of adsorbent,
and initial MB concentration on adsorption efficiency were studied. Langmuir isotherm and quasi
second-order kinetic model have a good fitting effect on the adsorption isotherm and kinetic model
of MB.

Keywords: coal gasification slag; residual carbon activation; methylene blue adsorption; kinet-
ics; isotherms

1. Introduction

Coal is one of the most economical and safe primary energies that can be used cleanly
and efficiently. It is widely used in many industries such as electric power, iron and steel,
metallurgy, chemical, and building materials. Coal accounts for more than 50% of China′s
primary energy production and consumption structure, and China is the largest consumer
of coal [1,2]. With the change in the world′s climate and environment, the clean and
efficient use of coal is particularly important.

Coal gasification technology is an important part of the clean and efficient utilization
of coal resources. The residue produced in the process of coal gasification includes fine
slag (GFS) and coarse slag (GCS). GCS is produced in the slag discharge mouth of the
gasifier; GFS is mainly produced in the dust removal device of syngas [3,4]. Until now, the
main treatment methods for gasification slag are storage and disposal in a landfill, which
cause serious environmental pollution and waste of land resources. Therefore, it is urgent
to develop economic, environmental, and efficient treatment methods for gasification
slag [5–8].
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Researchers have studied the physical and chemical properties of GFS [4,9–12]. GFS
is composed of mineral-rich particles and residual carbon [13]. The content of residual
carbon in GFS can reach more than 30%. The mineral-rich particles in GFS mainly consist of
crystalline minerals (silicates, aluminosilicates, and Ca–Fe oxides) and vitreous components
(Ca–Fe–aluminosilicate glass) [9]. At present, most GFS is used by blending. The utilization
of building materials and the mixing of circulating fluidized bed boilers are the main ways
coal gasification slag is used [14]. The residual carbon in the GFS has been carbonized to
a certain extent in the high-temperature gasifier. Wagner, et al. [15] discovered that the
residual carbon in gasification slag has a high specific surface area and micropore area,
which could potentially be used as activated carbon or precursors for premium carbon
products. The use of residual carbon in coal gasification slag to prepare porous materials
not only provides a new possibility for the recycling of GFS but also eliminates a certain
environmental pressure. There has been some research on the preparation of activated
carbon from gasification slag [16–19]. Miao, et al. [17] used GFS as a raw material to prepare
activated carbon through acid treatment and KOH activation, which was used for CO2
capture. Xu and Chai [18] prepared coal gasification slag-based activated carbon loaded
with Fe3+ by an impregnation method, and achieved good results in the degradation of
methyl orange in dye wastewater. However, although the materials obtained by these
processes can obtain better properties, they cannot meet the requirements of large-scale
industrialization due to their complicated operation and high cost.

With the rapid development of the printing and dyeing industry, a large amount
of dye wastewater has seriously endangered human health and the environment [20].
Methylene blue (MB) is a cationic dye used for dyeing cotton, hemp, silk, paper, and so
on. MB has some harmful effects on the body, including burning of the eyes, which can
cause permanent damage, increased heart rate, nausea, vomiting, and shock [21–23]. At
present, the treatment technology for dye wastewater includes physical (adsorption and
membrane filtration), chemical (coagulation/flocculation and chemical oxidation), and
biological methods [24,25]. Among them, adsorption is considered to be one of the simplest,
most effective, and least costly technologies [26]. The adsorption process is simple, the
equipment requirements are low, and solid waste can be used as raw material synthesis
adsorbent, such as fly ash to synthesize zeolite, and activated carbon from coal gasification
slag [17,27]. The cation exchange capacity (CEC) can be determined for the evaluation
of the performance of the adsorbent. CEC depends on the number of adsorption sites of
the material, which can be used as one of the indicators to evaluate the performance of
adsorption materials [28–30].

In this study, using gasification fine slag foam flotation obtained carbon residue (GFSF)
as raw material, the coal gasification fine slag residual carbon porous materials (GFSA) were
prepared by alkali fusion–hydrothermal reaction, and the influence of some parameters
(GFSF/KOH ratio, activation temperature and activation time) of the alkali fusion process
was investigated. SEM and BET characterized the porosity of the material. The optimal
product was used to remove MB from simulated wastewater. The effects of pH, adsorption
time, amount of adsorbent, and initial MB concentration on adsorption efficiency were
studied and the adsorption behavior is discussed.

2. Experiment
2.1. Raw Material

The GFS sample was obtained from an entrained flow bed gasifier in Shenhua Ningxia
Coal Industry Group Co., Ltd., Yinchuan, China. The raw material was dried at 105 ◦C for
6 h to remove moisture and stored in a sealed bag at room temperature.

The foam flotation test was used to pretreat GFS. The froth floatation test was carried
out by an XFD-type floatation machine (Ganzhou, China) having a capacity of 1 L and the
slurry concentration was maintained at 100 g/L. The dried GFS was mixed with distilled
water and poured into the flotation tank. The grout was first stirred at a speed of 1800 r/min
for 2 min, and then a certain amount of collector (7 kg/t) and frother (14 kg/t) were added
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successively. After stirring evenly, the air valve was opened to keep the gas flow rate at
0.2 m3/h, and the bubbles were scraped. After repeating three times, the residual carbon
and tail ash were obtained [31]. The loss on ignition of the residual carbon was 69.54%. The
gasification fine slag foam flotation obtained carbon residue (GFSF) was used in subsequent
experiments. The separated tail ash had a higher ash purity and could be used to prepare
zeolite, as detailed in our previous study [30]. The loss on ignition of GFS and GFSF was
26.12% and 69.54%.

Potassium hydroxide (KOH), sodium hydroxide (NaOH), and hydrochloric acid (HCl)
were AR-grade, purchased from Aladdin Co., Ltd. (Shanghai, China). Methylene blue
trihydrate (MB) was AR-grade from Tianjin Kemiou Chemical Reagent Co., Ltd. (Tianjin,
China). Collector (W501) and frother (W502) was purchased from Hunan Xinghui Washing
Chemical Technology Development Co., Ltd. (Zhuzhou, China).

2.2. Preparation of Coal Gasification Fine Slag Residual Carbon Porous Material (GFSA)

KOH and GFSF samples were ground and mixed in a mortar at a predetermined
ratio, which varied from 1 to 4 g/g, put into a porcelain boat, and heated in a tubular
furnace for the activation test. The test was carried out under a continuous nitrogen flow
of 200 mL/min and the heating rate was 10 ◦C/min. We heated the mixture to 750–900 ◦C
and kept it at the final temperature for 30–120 min. After the activated sample was cooled
to room temperature, it was rinsed to neutrality with distilled water, dried at 105 ◦C for
6 h, and sealed for storage.

2.3. Characterization Methods

N2 adsorption–desorption isotherms were obtained at −196 ◦C after degassing at
150 ◦C for 6 h using a volumetric sorption analyzer (IQ2MP-XR (Florida, USA)). The
Brunauer–Emmett–Teller (BET) model was adopted for specific surface area analysis. The
pore volume, pore size distribution, and average pore diameter were measured using the
Barrett–Joyner–Halenda (BJH) and Horvath–Kawazoe (HK) models [31–33]. The morpholo-
gies of the samples were characterized using a field-emission scanning electron microscope
(SEM, ZEISS Gemini 500 (Heidenheim, Germany)) with LnLen mode.

The cation exchange capacity (CEC) of the samples was determined according to a
modified ammonium acetate method used in the literature [34]. The tests for each sample
were implemented 3 times. The errors were less than ±5 mmol/100 g.

2.4. Adsorption Experiments

The adsorption experiment was conducted in a temperature-controlled water-bath
shaker, with the GFSA sample obtained under the optimum condition. A stock MB solution
(100 mg/L) was prepared by diluting MB with deionized water and experimental solutions
were prepared from its dilution. The desired amount of the adsorbents was added to an
MB solution (50 mL) with varying concentrations in a shake flask (100 mL). The pH of the
solution was controlled by adding HCl (0.1 mol/L) and NaOH (0.1 mol/L). The shake
flasks were shaken at 27 ± 0.5 ◦C with a stirring speed of 120 rpm for a certain time to
achieve adsorption equilibrium. Then, the suspensions were filtered using membrane
filters of 0.45 µm pore size. MB concentration in the solution was measured at 665 nm
using a UV-2500 spectrophotometer (Shimadzu (Shanghai, China)). During this process,
the effects of contact time, initial adsorbate concentration, adsorbent dosage, and pH on
the adsorption process were investigated. The adsorption capacity was calculated by using
Equation (1):

qe = qt = (C0 − Ce,t)V/m, (1)

where qe is the adsorption capacity at equilibrium (mg/g), qt is the adsorption capacity at
time t (mg/g), C0 is the initial concentration of MB (mg/L), Ct is the MB concentration at
time t (mg/L), Ce is the MB equilibrium concentration (mg/L), m is the actual amount of
GFAS (g), and V is the solution volume (L).
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The removal efficiency (η) of the dye was determined using Equation (2):

η(%) = 100(C0 − Ce)/C0 (2)

3. Results and Discussion
3.1. Effect of Activation Parameters on Preparation of GFSA

Cation exchange capacity (CEC) is an important index for rating adsorption materials,
which reflects the cation exchange capacity of porous materials. The higher CEC of the
adsorbent material means that there are a large number of adsorption sites inside the
material, and its saturated adsorption capacity is also larger. The CEC of GFSF was
27.17 mmol/100 g. The influence of different operating conditions on the CEC value of
GFSA is shown in Figure 2. In the experiment (Figure 2a), the activation temperature
(800 ◦C) and the activation time (90 min) remained unchanged, GFSF/KOH mass ratios
ranged from 1 to 4 g/g. The CEC of GFSA obtained by activation with different mass ratios
firstly increased and then decreased. When the GFSF/KOH mass ratio was 2 g/g, the CEC
of GFSA reached the maximum. The concise diagram of the reaction mechanism of KOH
and C is shown in Figure 1. KOH reacted with C in GFSF (Equations (3)–(5)) to generate
K2CO3, K2O, H2, and CO in the activation process [35].

4KOH + C = K2CO3 + K2O + 2H2 ↑ (3)

K2CO3 + 2C = 2K + 3CO ↑ (4)

K2O + C = 2K + CO ↑ (5)
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Figure 1. The concise diagram of the reaction mechanism of KOH and carbon in GFSF.

After the reaction rose to a certain temperature, the potassium ions (K) dispersed
in GFSF reacted with carbon atoms (C) which led to the pores, wherein K2CO3 and K2O
obtained by the reaction continued to react with C in GFSF to further form pores [16]. When
the content of activator KOH was relatively low, KOH could only activate with a small
amount of C in GFSF, and could not form enough pores. With the increase in KOH, more
C in GFSF participated in the activation reaction, which gradually increased the number
of micropores and mesopores. Therefore, the CEC of GFSA was increased. The selective
activation of KOH consumed mainly the carbon atoms located at the active site and left a
large number of pores in the carbon matrix so that the specific surface area and pore volume
of the activated carbon increased [35]. However, as the mass ratio of GFSF/KOH increased,
after the C in the active site of GFSF was completely reacted, the C on the pore framework
participated in the reaction leading to the collapse of micropores or mesopores to form
macropores, so the CEC value of GFSA decreased. Activation temperature also influenced
the CEC of the activated sample, due to various reactions that occurred in the activation
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process. The CEC of GFSA was enhanced by the increase in activation temperature up
to 800 ◦C, then decreased (Figure 2b) GFSF/KOH mass ratio (2 g/g) and activation time
(90 min) remained unchanged). As the temperature of the reaction increased, the number of
pores generated increased due to the acceleration of the activation reaction rate. Moreover,
the boiling point of metallic potassium is 762 ◦C. When the temperature exceeded its boiling
point, potassium vapor flooded into the generated pores and the interlayer of graphite
microcrystals, which promoted the activation reaction and generated more pores [10,36].
Therefore, when the activation temperature was 750 ◦C to 800 ◦C, the adsorption sites
increased because the material had more pores, and the CEC of GFSA increased significantly.
At 850 ◦C and 900 ◦C, the activation reaction further intensified, and the surface area and
pore volume declined dramatically, due to the merging and collapse of pores caused by the
overreaction of carbon and intense release of gas [37]. Hence, the activation temperature
of 800 ◦C was the best choice for subsequent experiments. The effect of activation time
on the CEC of GFSA was studied at an activation temperature of 800 ◦C and KOH/CGS
mass ratio of 2.0 g/g (Figure 2c). Activation times of 30 min and 60 min were not sufficient
to generate a well-developed porosity, leading to a lower CEC of the activated samples.
In the activation reaction process, there were a pore opening effect and a pore expanding
effect [38]. In the early stage of the reaction process, a large number of micropores were
generated, which was mainly the opening process of pores, so the CEC of activated samples
in this process also increased. With the increase in reaction time, the effect of pore expansion
was predominant, and the micropores and mesopores in the activated samples collapsed
and merged to form macropores or the pores disappeared. Thus, when the activation time
was extended by 120 min, the CEC of the activated samples was reduced again. According
to the above, the optimal activation conditions for GFSA were as follows: the mass ratio
of GFSF/KOH was 2 g/g, the activation temperature was 800 ◦C, and the activation time
was 90 min. The CEC of GFSA was 110.68 mmol/100 g under the optimum conditions.
Compared with the process conditions of biomass-based activated carbon studied by some
researchers [39–41], the activation temperature of GFSF was higher and the time was longer.
The reason may be that the production of GFS undergoes a high-temperature gasification
and chilling process, in which the carbon that has not participated in the gasification
reaction is carbonized at an excessively high temperature, so that the graphite crystallites
in the carbonized product are changed in an orderly manner, and the gap between the
crystallites is reduced. Therefore, the requirements for subsequent activation conditions
are increased [42].
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3.2. Characterization of Materials

The mineralogy and morphology of GFSA prepared under the optimal process condi-
tions and GFSF were analyzed. Figure 3 shows the SEM images of samples with different
CEC. GFSF is composed of irregular residual carbon particles and spherical mineral par-
ticles, and some spherical mineral particles have almost adhered to the surface of the
residual carbon [31]. The sample with a CEC value of 27.17 mmol/100 g was GFSF, and its
morphology is shown in Figure 3a. There were almost no pores on the surface of carbon
particles and a small number of molten mineral particles on the surface. Due to the release
of gases and volatile compounds, there were obvious pores on the external surface of the
carbon matrix, as shown in Figure 3b (GFSF/KOH mass ratio: 1:2, activation temperature:
800 ◦C, activation time: 30 min) and 3c (GFSF/KOH mass ratio: 1:2, activation temperature:
750 ◦C, activation time: 90 min). However, due to the shorter activation time and lower acti-
vation temperature, the sample had fewer pores and was microporous [43,44]. The pore of
Figure 3c was larger than that of Figure 3b, so the CEC of the sample in Figure 3c is slightly
higher. In Figure 3d (GFSF/KOH mass ratio: 1:4, activation temperature: 800 ◦C, activation
time: 90 min), more pore structures were observed, with slit pores appearing. Some block
pores appeared on the surface of the carbon matrix shown in Figure 3f (GFSF/KOH mass
ratio: 1:2, activation temperature: 800 ◦C, activation time: 120 min). This may be because
of excessive activation time and too high mass ratio of GFSF/KOH, which caused the
activation strength to be too high, which caused the pore size to become larger or collapse
and reduce the CEC [35,37]. The CEC of the sample in Figure 3e (GFSF/KOH mass ratio:
1:2, activation temperature: 800 ◦C, activation time: 90 min) was the largest, with abundant
and relatively uniform circular pores distributed on its surface.
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Figure 3. The SEM images of samples with different cation exchange capacity (CEC). (a) CEC = 27.17 mmol/100 g,
(b) CEC = 48.57 mmol/100 g, (c) CEC = 62.85 mmol/100 g, (d) CEC = 92.51 mmol/100 g, (e) CEC = 110.68 mmol/100 g,
and (f) CEC = 85.03 mmol/100 g.

N2 adsorption–desorption isotherms of GFSF and GFSA are shown in Figure 4, where
GFSA was the sample prepared under the best process conditions. The GFSF and GFSA
had a certain volume increment in all relative pressure ranges, which conformed to class
IV adsorption isotherms and formed an obvious H4 hysteresis loop with the desorption
curve (relative pressure range 0.4–0.99), indicating that they had a typical mesoporous
structure [6,45]. As can be seen from Figure 4, the adsorption capacity of GFSA was
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significantly higher than that of GFSF. This is consistent with the SEM diagram in Figure 3.
The GFSA shown in Figure 3e had complex pores, while the surface of the GFSF sample
shown in Figure 3a had no obvious pores. The pore size distribution and pore properties
of GFSF and GFSA are shown in Figure 5 and Table 1. The pores of GFSF mainly existed
in the form of mesopores with fewer micropores, so its average pore size was larger than
that of GFSA. The number of GFSA micropores obtained after GFSF activation was greatly
increased (Figure 5), and the micropore volume (Vmicro) and micropore rate (Vmicro/Vtotal)
grew (Table 1), which was conducive to the application of adsorption. The total specific
surface area (SBET) and total pore volume (Vtotal) of GFSA were greater than those of the
raw material GFSF.
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Molecules 2021, 26, 6116 9 of 16

Table 1. Pore properties of gasification fine slag foam flotation obtained carbon residue (GFSF) and coal gasification fine
slag residual carbon porous material (GFSA).

Samples SBET (m2/g) Vtotal (cm3/g)
Vmicro
(cm3/g)

Vmeso
(cm3/g)

Vmicro/Vtotal
(%)

Vmeso/Vtotal
(%) Dave (nm)

GFSF 298.06 0.345 0.061 0.284 17.68 82.32 6.82
GFSA 574.02 0.467 0.166 0301 35.55 64.45 4.17

3.3. Methylene Blue (MB) Adsorption Test
3.3.1. Influence of Initial Solution pH

The adsorption performance of adsorbents under different initial solution pH was
investigated (Figure 6). As the pH changed from 2 to 10, the removal efficiency of MB by
GFSA increased from 87% to 98%. The main reason for this phenomenon is that MB is a
cationic dye, most of which exists in the form of cations in aqueous solution, while a large
number of H+ ions in low pH solution compete and occupy the adsorption sites of MB+,
so the removal efficiency is low. With the increase in solution pH value, the adsorption
potential energy of functional groups on the surface of GFSA was dehydrogenated, and the
negative charge increased, and the competition of H+ ions in the solution was weakened,
leading to the increase in adsorption capacity [46]. When the pH was greater than 8, the
removal efficiency of MB by the adsorbent GFSA was above 97%, which achieved a good
adsorption effect. Therefore, the pH of the initial solution in the following adsorption test
is 8.
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3.3.2. Effect of Adsorbent Dosage

The adsorption performance of adsorbents under different dosages was investigated,
and the results are shown in Figure 7. The removal efficiency of MB increased gradually
and then tended to be stable with the increase in GFSA dosage. When the dosage of GFSA
exceeded 3 g/L, the removal efficiency increased slowly and remained unchanged with
the increase in adsorbent, indicating that the adsorption basically reached equilibrium
when the dosage was 3 g/L. In addition, the equilibrium adsorption capacity (qe) of the
adsorbent decreased with the increase in adsorbent dosage. When the dosage was less than
3 g/L, the descending speed was relatively slow, and the descending rate was significantly
enhanced when the dosage was greater than 3 g/L. This may be because increasing the
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amount of adsorbent can provide more adsorption sites when the concentration of MB
solution is fixed. Although more MB was adsorbed on the adsorbent, the utilization rate of
adsorbent per unit mass decreased. Therefore, 3 g/L was chosen as the appropriate dosage.
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the MB adsorption capacity of the GFSA. (initial MB concentration: 50 mg/L, initial solution pH:8,
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3.3.3. Adsorption Kinetics

The adsorption behavior of the activated sample GFSA at different contact times was
investigated (Figure 8a). In the range of 0–270 min, the adsorption capacity of MB on GFSA
increased rapidly with time, while the adsorption capacity of GFSA changed slowly and
gradually stabilized with time from 270 to 360 min.

To better understand the adsorption kinetics of MB by GFSA, a pseudo-first-order
kinetic model (PFO), pseudo-second-order kinetic model (PSO), and intraparticle diffusion
model (IPD) were used to model the adsorption process [30,47], as shown in Figure 8b–d.
The model parameters from the fitting calculation are shown in Tables 2 and 3. The models
are represented by

1
qt

=
1

qek1t
+

1
qe

(PFO) (6)

t
qt

=
1

k2q2
e
+

t
qe

(PSO) (7)

qt = kd × t0.5 + C (IPD) (8)

where qt (mg/g) and qe (mg/g) are the MB adsorption capacities at various and equilibrium
times t (min), respectively; k1 (min−1), k2 (g·mg−1 min−1), and kd (g·mg−1 min−0.5) are
the PFO, PSO, and IPD rate constants, respectively; and C is a constant that involves the
thickness and the boundary layer.



Molecules 2021, 26, 6116 11 of 16

Molecules 2021, 26, x FOR PEER REVIEW 11 of 16 
 

 

the GFSA and were adsorbed on the microporous surface, but the adsorption rate slowed 
down due to adsorption saturation. 

0 60 120 180 240 300 360

10

12

14

16

18

20

q t
 (m

g/
g)

t (min)

(a)

 

0.00 0.02 0.04 0.06
0.05

0.06

0.07

0.08

0.09

0.10

1/
q t

1/t

(b)

 

0 60 120 180 240 300 360
0

4

8

12

16

20

t /
q t

t (min)

(c)

 

3 6 9 12 15 18 21
10

12

14

16

18

20
q t

t^0.5

(d)

 

Figure 8. (a) Influence of time on the methylene blue (MB) adsorption capacity of the GFSA, (b) plots of 1/qt vs. 1/t, (c) 
plots of t/qt vs. t, and (d) plots of qt vs. t0.5. (initial MB concentration:50 mg/L; adsorbent dosage: 3 g/L, initial solution pH:8, 
and T = 27 ± 0.5 °C). 

Table 2. Parameters of the pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models. 

Samples qe,exp 
PFO  PSO 

k1 qe,cal R2  k2 qe,cal R2 
GFSA 19.1803 0.0707 20.0545 0.9728  0.0037 20.0438 0.9992 

Table 3. Parameters of the intraparticle diffusion (IPD) kinetic model. 

Samples 
Line 1: t = 0–90 min  Line 2: t > 120 min 

k1d C1 R12  k2d C2 R22 
GFSA 1.2848 5.6636 0.9724  0.1001 17.3940 0.9363 

3.3.4. Adsorption Isotherms 
Figure 9a shows the influence of different initial concentrations of MB on the adsorp-

tion process. The adsorption of MB onto the GFSA gradually increased as the MB concen-
tration increased until a maximum value was achieved. Since the dosage and solution 
volume of GFSA was constant, the adsorption capacity increased with the increase in ini-
tial concentration, but the residual amount of adsorbate also increased, hence, the MB re-
moval efficiency will decrease. When the initial concentration reached a certain value, the 
adsorption reached equilibrium, and the adsorption value did not continue to improve. 
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(c) plots of t/qt vs. t, and (d) plots of qt vs. t0.5. (initial MB concentration:50 mg/L; adsorbent dosage: 3 g/L, initial solution
pH: 8, and T = 27 ± 0.5 ◦C).

Table 2. Parameters of the pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models.

Samples qe,exp
PFO PSO

k1 qe,cal R2 k2 qe,cal R2

GFSA 19.1803 0.0707 20.0545 0.9728 0.0037 20.0438 0.9992

Table 3. Parameters of the intraparticle diffusion (IPD) kinetic model.

Samples
Line 1: t = 0–90 min Line 2: t > 120 min

k1d C1 R1
2 k2d C2 R2

2

GFSA 1.2848 5.6636 0.9724 0.1001 17.3940 0.9363

As can be seen from the results in Table 2, since the correlation coefficient R2 of the PSO
kinetic model is higher, the PSO kinetic model can more accurately describe the adsorption
data than the PFO kinetic model. It indicates that there is an electron exchange between the
adsorbent surface and adsorbate molecules [19]. In order to further clarify the control steps
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of the adsorption process rate, the mechanism of the adsorption process was described
by the IPD model. As shown in Figure 8d, the plots of qt against tˆ0.5 for MB adsorption
by GFSA consisted of two linear parts, but the two straight lines did not pass through the
origin of the coordinate. Therefore, it is inferred that intraparticle diffusion is not the only
step of rate control, and many other adsorption mechanisms affect the rate at the same
time. The correlation coefficient of the IPD model parameters (Table 3) R1

2 (0.9724) was
larger than R2

2 (0.9363), and the adsorption rate constant K1d (1.2848) was larger than K2d
(0.1001). These results indicate that the adsorption was mainly divided into two stages,
and the outer surface of the adsorbent plays a major role. The first stage was the membrane
diffusion process, MB molecules diffused from the solution to the outer surface of GFSA,
and the adsorption rate of GFSA to MB was faster in the initial stage. In the second stage,
MB molecules continued to diffuse into the microporous channels inside the GFSA and
were adsorbed on the microporous surface, but the adsorption rate slowed down due to
adsorption saturation.

3.3.4. Adsorption Isotherms

Figure 9a shows the influence of different initial concentrations of MB on the ad-
sorption process. The adsorption of MB onto the GFSA gradually increased as the MB
concentration increased until a maximum value was achieved. Since the dosage and solu-
tion volume of GFSA was constant, the adsorption capacity increased with the increase in
initial concentration, but the residual amount of adsorbate also increased, hence, the MB
removal efficiency will decrease. When the initial concentration reached a certain value,
the adsorption reached equilibrium, and the adsorption value did not continue to improve.
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Figure 9. (a) Adsorption isotherm data for methylene blue (MB) adsorption onto the GFSA and (b) plots of Ce/qe vs. Ce,
(c) plots of qe vs. Ce. (adsorbent dosage: 3 g/L, contact time: 360 min, initial solution pH:8, and T = 27 ± 0.5 ◦C).
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In this section, two nonlinear isotherm models of Langmuir isotherm and Freundlich
isotherm are used to explain the distribution of adsorbate molecules in equilibrium [48].
These isotherms are represented by

Ce

qe
=

1
KLqm

+
Ce

qm
(9)

qe = KFC1/n
e (10)

where Ce (mg/L) is the MB concentration at equilibrium, qe (mg/g) is the equilibrium
adsorption capacity of MB, qm (mg/g) is the maximum adsorption capacity of MB, and
KL (L/mg) and KF ((mg/g) (L/mg)1/n) are the constants of the Langmuir and Freundlich
models, respectively.

The regression parameters of the Langmuir and Freundlich isotherms are shown in
Table 4. The fitting determination coefficient R2 of the Langmuir isotherm was 0.9995, and
the fitting determination coefficient R2 of the Freundlich isotherm was 0.7077. Therefore, in
this concentration range, the Langmuir adsorption isotherm model was more suitable for
the MB adsorption test. According to the Langmuir isotherm calculation, the maximum
adsorption capacity of GFSA to MB was 18.78 mg/g, which was close to the experimental
test value of 19.18 mg/g. It showed that the adsorption sites on the surface of GFSA were
evenly distributed, and MB formed monolayer adsorption on the surface of GFSA, and
after reaching equilibrium, no migration of adsorbate molecules through the surface of
the adsorbent was observed [49]. The value of 1/n calculated by the Freundlich isotherm
model was 0.16 in the range of 0–1, indicating that the adsorption of MB on GFSA was
feasible. Under this condition, the adsorption process can proceed [50]. Compared with
the adsorption performance of adsorbents prepared with different wastes as raw mate-
rials studied by other researchers (Table 5), the adsorption capacity of porous materials
prepared with gasification fine slag as raw materials in this paper can also be accepted. The
preparation of adsorption materials from gasification fine slag can be further studied.

Table 4. Parameters of the Langmuir and Freundlich adsorption isotherms.

Samples
Langmuir Model Freundlich Model

KL qm R2 KF n R2

GFSA 4.3449 18.7759 0.9995 11.6796 6.1828 0.7077

Table 5. Adsorption capacity of MB by adsorbents prepared from different waste materials.

The Raw Material of Adsorbent Adsorption Capacity (mg/g) Ref.

Date pits 17.3 [51]
Hazelnut shell 8.82 [52]

Kaolin 16.34 [53]
Coal fly ash 16.6 [54]

Cu2O-geopolymer 14.8 [55]
Wheat shells 16.56 [56]

GFSF 19.18 This research

4. Conclusions

In the present study, coal gasification fine slag residual carbon porous materials (GSFA)
were synthesized by chemical activation with KOH from GFSF. The porous composite
had the highest CEC (110.68 mmol/100 g) under the optimal operation condition of a
GFSF/KOH mass ratio of 2 g/g, an activation temperature of 800 ◦C, and activation treat-
ment time of 90 min. The GFSA with a total surface area of 574.02 m2/g was synthesized
using GFSF. After activation, abundant pore structures were observed on the exterior sur-
face of GFSA. The porosity of the porous material was the most important factor affecting
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its CEC. Furthermore, MB was selected as the target pollutant to evaluate the adsorption
properties of the porous composite. The results show that the adsorption effect of GFSA
on MB increased with the increase in the initial solution pH. The pseudo-second-order
kinetic model was more suitable for the fitting of equilibrium data, indicating that chemical
adsorption mainly controls adsorption. Using the intraparticle diffusion model to fit the
adsorption process was mainly in the stages of fast membrane diffusion and slow pore
diffusion. The adsorption isotherm used the Langmuir isotherm model, which showed
that the maximum single-layer adsorption capacity was 18.78 mg/g. The results of this
study demonstrated that solid waste GFS could be a reasonable raw material to produce
low-cost porous adsorbent materials for the removal of MB.
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