Supporting Information of

A Molecular Probe with Both Chromogenic and Fluorescent Units for Detecting Serine Proteases

Kirara Ishida, Yushi Nakamura, Tetsuo Ohta, and Yohei Oe*

Department of Biomedical Sciences and Informatics, Faculty of Life and Medical Sciences, Doshisha University; yoe@mail.doshisha.ac.jp

1. Calibration Curves
2. NMR Spectra
3. UV-vis spectra of Proteases

1. Calibration curves

1.1. Preparation of calibration curve of AMC in Tris buffer solutions

AMC ($0.012 \mathrm{~g}, 0.08 \mathrm{mmol}$) was dissolved in DMSO (1.6 mL) and methanol (4 mL), and the volume of the solution was brought to 20 mL with distilled water. Obtained 4 mM AMC solution was then diluted to $0.024,0.124$, and 0.223 mM with distilled water. The prepared AMC solution (0.13 mL) was mixed with pH 8.0 Tris- HCl buffer solution $\left(3 \mathrm{~mL}\right.$), CaCl_{2} aq. $(0.04 \mathrm{~mL}), 1 \mathrm{mM} \mathrm{HCl}$ aq. (0.05 mL), and the fluorescent-emission spectra of each solution was recorded. Fluorescent intensity was plotted against concentration to give a calibration curve, which was found to be linear in according with the equation $y=3.00 \times 10^{-5} x-0.00001$ with $\mathrm{R}^{2}=1.0000$.

Figure S1 Calibration curve of AMC in Tris buffer solutions

1.2. Preparation of calibration curve of AMC in PBS buffer solutions

AMC ($0.012 \mathrm{~g}, 0.08 \mathrm{mmol}$) was dissolved in DMF $(4.0 \mathrm{~mL})$, and the volume of the solution was brought to 20 mL with pH 7.4 PBS buffer solution. The obtained 5.0 mM AMC solution was then diluted to $1.5, ~, 7.5$, and $13.5 \mu \mathrm{M}$. The prepared AMC solution (2.0 mL) was then mixed with pH 7.4 PBS buffer solution (1.0 mL), and the fluorescent-emission spectra of each solution was recorded. Plotting fluorescent intensity versus concentration gave a calibration curve, which was found to be linear in according with the equation $y=3.00 \times 10^{-5} x-0.00008$ with $\mathrm{R}^{2}=0.9996$.

Figure S2 Calibration curve of AMC in PBS buffer solutions

1.3. Preparation of calibration curve of \boldsymbol{p}-nitroaniline for the reaction with chymotrypsin

 p-nitroaniline ($0.011 \mathrm{~g}, 0.08 \mathrm{mmol}$) was dissolved in methanol $(4 \mathrm{~mL})$ and DMSO $(1.6 \mathrm{~mL})$, and the volume of the solution was brought to 20 mL with distilled water. The obtained $4-\mathrm{mM} p$-nitroaniline solution was diluted to $0.1,0.2,0.4$, and 0.6 mM with distilled water. These solutions were independently mixed with pH 8.0 Tris- HCl buffer solution (3 mL), CaCl_{2} aq. $(0.04 \mathrm{~mL}$), and $1-\mathrm{mM}$ $\mathrm{HCl} a q .(0.05 \mathrm{~mL})$, and they were then injected into the HPLC machine. Plotting the obtained peak areas of p-nitroaniline ($\mathrm{R}_{t}=3.8 \mathrm{~min}$) versus concentrations gave the calibration curve, which was found to be linear in according with the equation $y=1.00 \times 10^{6} x-187.98$ with $\mathrm{R}^{2}=0.9948$.

Figure S3 Calibration curve of p-nitroaniline for the reaction with chymotrypsin

1.4. Preparation of calibration curve of \boldsymbol{p}-nitroaniline for the reaction with trypsin

p-nitroaniline $(0.014 \mathrm{~g}, 0.1 \mathrm{mmol})$ was dissolved in DMF $(4.0 \mathrm{~mL})$, and volume of the solution was brought to 20 mL with pH 7.4 PBS buffer solution. The obtained $5.0-\mathrm{mM} p$-nitroaniline solution was then diluted to $0,2040,60$, and 80 mM with the buffer solution. The prepared p-nitroaniline solutions $(2.0 \mathrm{~mL})$ were independently mixed with pH 7.4 PBS buffer solution (1.0 mL), which was injected into the HPLC machine. Plotting the obtained peak areas of p-nitroaniline ($\mathrm{R}_{t}=3.8 \mathrm{~min}$) versus concentrations gave the calibration curve, which was found to be linear in according with the equation $y=1.00 \times 10^{6} x+849$ with $\mathrm{R}^{2}=0.9986$.

Figure 4 Calibration curve of p-nitroaniline for the reaction with trypsin

2. NMR and MS spectra

Figure S5 ${ }^{1} \mathrm{H}$ NMR spectra of N -(Boc)-L-phenylalanine p-nitroanilide (3).

Figure $\mathbf{S 6}{ }^{1} \mathrm{H}$ NMR spectra of L-phenylalanine p-nitroanilide (4).

Figure $\mathbf{S} 7{ }^{1} \mathrm{H}$ NMR spectra of ε-Boc-L-lysin 4-methylcoumaryl-7-amide (6).

Figure S8 ${ }^{1} \mathrm{H}$ NMR spectra of α-Fmoc- ε-Boc-L-lysin 4-methylcoumaryl-7-amide.

Figure $\mathbf{S} 9{ }^{1} \mathrm{H}$ NMR spectra of N-succinyl-L-phenylalanine p-nitroanilide.

Figure S10 ${ }^{1} \mathrm{H}$ NMR and FAB-MS spectra of Boc-P1.

Figure S11 ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, FAB-MS spectra of $\mathbf{P} 1$.

Figure S12 ${ }^{1} \mathrm{H}$ NMR spectra of lys-AMC 7.

Figure S13 ${ }^{1} \mathrm{H}$ NMR spectra of AMC-lys(Boc)-suc .

Figure S14 ${ }^{1} \mathrm{H}$ NMR spectra of AMC-lys-suc 8.
3. UV-vis spectra of proteases.

Figure S15 UV-vis spectra of proteases.

