Supplementary Info File

Unravelling the allosteric targeting of PHGDH at the ACT-binding domain with a photoactivatable

dizarine probe and mass spectrometry experiments Quentin Spillier^{1,2}, Séverine Ravez³, Simon Dochain¹, Didier Vertommen⁴, Léopold Thabault^{1,2}, Julien R.C. Prévost¹, Olivier Feron², Raphaël Frédérick^{1*}

CONTENT

Synthetic procedure of compounds 1-3	S2
Synthetic procedure of diazirine derivative 11	S4
Identified peptide residues of PHGDH (Table S1)	S6
Peptide residues of PHGDH after titration with 2 (Table S2)	S7
NMR and HPLC spectra data	S8
References	S14

Chemicals

All reagents were purchased from chemical suppliers and used without purification.

Synthetic procedure of compounds 1-3

Compounds 1-3 were synthesized according the general procedure I.

General procedure I

To a stirred solution of ethanone derivative (1 equiv) in chloroform was added dropwise a solution of dibromine (1.2 equiv) in chloroform. After 2 h, the solvent was evaporated in vacuo to give a crude oil consisting mainly of 2-bromo-1-(substituted)-ethanone compound along with trace amounts of 2,2-dibromo-1-(substituted)-ethanone compound. The mixture was used without purification in the next step. To the synthesized or commercial 2-bromo-1-(substituted)-ethanone derivative were added in sequence DMF, cyclooctasulfur (1.5 equiv), and morpholine (3 equiv). The mixture was then stirred at room temperature. After completion, the reaction mixture was quenched with distilled water to give a precipitate, which was further washed with distilled water. The residue was recrystallized or purified by silica gel chromatography if necessary.

2-Morpholino-1-phenyl-2-thioxoethan-1-one (1). Acetophenone (2.00 g, 16.60 mmol) and dibromine (1.01 mL, 19.90 mmol) were mixed in chloroform (15 mL) to obtain the 2-bromo-1-phenyl-ethanone, and this intermediate was reacted in a second time with morpholine (4.34 mL, 49.80 mmol) and sulfur (0.79 g, 24.90 mmol) in DMF (10 mL). Methanol was used for recrystallization to afford the title compound (2.85 g, 73%). R_{*f*} 0.2 (cyclohexane/EtOAc: 8/2). Mp: 110–112 °C. ¹H NMR (400 MHz, CDCl₃): δ H (ppm) 3.59–3.62 (t, 2H, *J* = 4.8 Hz), 3.69–3.71 (t, 2H, *J* = 4.8 Hz), 3.90–3.92 (t, 2H, *J* = 4.8 Hz), 4.33–4.35 (t, 2H, *J* = 4.8 Hz), 7.48–7.52 (m, 2 ArH), 7.59–7.65 (m, 1 ArH), 7.99–8.01 (D, 2 ArH, *J* = 8.2 Hz). ¹³C NMR (100 MHz, CDCl₃): δ C (ppm) 47.13, 51.95, 66.40, 66.52, 128.99 (2C), 129.86 (2C), 133.26, 134.48, 187.90 (C=O), 195.70 (C=S). HRMS (ESI⁺): *m/z* calcd for C₁₂H₁₃NO₂S (M + H)⁺ 236.0739, found 236.0737. Data are in agreement with the literature.¹

1-(4-Chlorophenyl)-2-morpholino-2-thioxoethan-1-one (2). This compound was synthesized according to the general procedure I using 2-bromo-1-(2-chlorophenyl)ethanone (0.50 g, 2.14 mmol), morpholine (0.56 mL, 6.42 mmol) and sulfur (0.10 g, 3.21 mmol) in DMF (10 mL). Acetonitrile was used for recrystallization to afford the title compound as a yellow solid (0.22 g, 38%). R_f 0.2 (cyclohexane/EtOAc: 8/2). Mp: 135-137°C. ¹H NMR (400 MHz, CDCl₃): δH (ppm) 3.58-3.71 (m, 4H), 3.89-3.92 (t, 2H, J = 4.8 Hz), 4.31-4.33 (t, 2H, J = 4.8 Hz), 7.46-7.48 (d, 2 ArH, J = 8.8 Hz), 7.93-7.95 (d, 2 ArH, J = 8.6 Hz). ¹³C NMR (100 MHz, CDCl₃): δC (ppm) 47.18, 51.97, 66.39, 66.53, 129.36 (2C), 131.22 (2C), 131.74, 141.06, 186.45 (C=O), 194.94 (C=S). HRMS (ESI⁺): m/z calcd for C₁₂H₁₃ClNO₂S (M + H)⁺ 270.0350, found 270.0350. Data are in agreement with the literature.¹

1-(3-Chlorophenyl)-2-morpholino-2-thioxoethan-1-one (3). This compound was synthesized according to the general procedure I. 1-(3-Chlorophenyl)ethanone (2.00 g, 12.90 mmol) and dibromine (0.78 mL, 15.50 mmol) were mixed in chloroform (15 mL) to obtain the 2-bromo-1-(3-chlorophenyl)-ethanone and this intermediate was reacted in a second time with morpholine (3.38 mL, 38.80 mmol) and sulfur (0.62 g, 19.40 mmol) in DMF (10 mL). The residue was purified by silica gel chromatography

(cyclohexane/EtOAc: 8/2) and the obtained residue was collected by filtration with diethyl ether to give the title compound as a yellow solid (1.50 g, 43%). $R_f 0.2$ (cyclohexane/EtOAc: 8/2). Mp: 92-94°C. ¹H NMR (400 MHz, CDCl₃): δ H (ppm) 3.59-3.61 (t, 2H, J = 4.8 Hz), 3.70-3.72 (t, 2H, J = 4.8 Hz), 3.90-3.92 (t, 2H, J = 4.8 Hz), 4.31-4.33 (t, 2H, J = 4.8 Hz), 7.42-7.46 (dd, 1 ArH, J = 7.8 Hz), 7.57-7.59 (ddd, 1 ArH, J = 8.0 and 1.0 Hz), 7.85-7.87 (ddd, 1 ArH, J = 7.8 and 1.4 Hz), 7.96-7.97 (dd, 1 ArH, J = 1.8 Hz).¹³C NMR (100 MHz, CDCl₃): δ C (ppm) 47.21, 52.00, 66.39, 66.52, 127.98, 129.61, 130.28, 134.33, 135.05, 135.30, 186.07 (C=O), 194.60 (C=S). HRMS (ESI⁺): m/z calcd for C₁₂H₁₂ClNO₂S (M + H)⁺ 270.0277, found 270.0278. Data are in agreement with the literature.¹

2-(4-Bromophenyl)-2-methyl-1,3-dioxolane (5). To a stirring solution of 1-(4-bromophenyl)ethan-1-one (10.0 g, 50.24 mmol, 1.0 equiv.) **4** and ethylene glycol (8.4 ml, 150.72 mmol, 3.0 equiv.) in toluene (140 ml) at room temperature was added PTSA.H₂O (950 mg, 5.0 mmol, 0.1 equiv.). The reaction mixture was stirred at 110°C for 24 h over a Dean-Stark apparatus, allowed to cool down at room temperature, washed with brine (2 x 100 ml), dried over MgSO₄, filtered and concentrated on a rotavapor to yield **5** (50.24 mmol, 12.2 g, quant.) as a white crystal and was directly used in the next step. ¹H NMR (400 MHz, CDCl₃): δ H (ppm) 1.63 (s, 3H), 3.75 (td, 2H, *J* = 6.1, 4.2 Hz), 4.03 (td, 2H, *J* = 6.2, 4.2 Hz), 7.30-7.42 (m, 2H), 7.42-7.52 (m, 2H).

2,2,2-Trifluoro-1-(4-(2-methyl-1,3-dioxolan-2-yl)phenyl)ethan-1-one (6). To a stirring solution of bromide **5** (8.13 g, 33.45 mmol, 1.0 equiv.) in THF (330 ml) at -78 °C was added dropwise a solution of n-BuLi (2.26 M in hexane, 31.1 ml, 70.26 mmol, 2.1 equiv.). The reaction mixture was kept at -78 °C for 2 hours and ethyl trifluoroacetate (8.36 ml, 70.26 mmol, 2.1 equiv) in THF (15 ml) was added dropwise to the reaction flask. The temperature was kept between -60°C and -78°C for 3 hours and the reaction quenched with ethanol (10 ml) and water (10 ml) before the temperature was allowed to reach room temperature. Diethyl ether (300 ml) was added and the organic phase was washed twice with brine (2 x 200 ml), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude was purified with flash column chromatography (petroleum ether/Et₂O: 6/1) to yield the title compound **6** as a colourless oil (10.37 mmol, 2.74 g, 31%). ¹H NMR (400 MHz, CDCl₃): δ H (ppm) 1.66 (s, 3H), 3.77 (td, 2H, *J* = 6.2, 4.2 Hz), 4.08 (td, 2H, *J* = 6.2, 4.2 Hz), 7.59-7.73 (m, 2H), 8.06 (d, 2H, *J* = 7.8 Hz).

2,2,2-Trifluoro-1-(4-(2-methyl-1,3-dioxolan-2-yl)phenyl)ethan-1-one oxime (7). Hydroxylamine hydrochloride (1.95 g, 28.04 mmol, 3 equiv.) in ethanol (100 ml) at room temperature was neutralized with an equimolar amount of sodium ethanolate in ethanol (21% w/w, 10.48 ml, 28.04 mmol, 3.0 equiv.). Product **6** was then added to the reaction mixture and the temperature was set to 78°C for 18h, cooled to room temperature, Et₂O was added. The mixture was washed successively with 0.01 M HCl (3 x 50 ml) and water (2 x 40 ml), dried over MgSO₄, filtered and concentrated under reduced pressure to afford the oxime **7** (2.48 g, 96%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ H (ppm) 1.67 (d, 3H, *J* = 3.5 Hz), 3.68-3.85 (m, 2H), 3.96-4.14 (m, 2H), 7.37-7.73 (m, 4H), 8.94 (bs, 0.5H), 9.17 (bs, 0.5H).

2,2,2-Trifluoro-1-(4-(2-methyl-1,3-dioxolan-2-yl)phenyl)ethan-1-one *O***-tosyl oxime (8).** To a solution of oxime **7** (2.48 g, 9.0 mmol, 1.0 equiv.) in DCM (50 ml) at room temperature was added successively triethylamine (2.5 ml, 18.0 mmol, 2.0 equiv.), DMAP (1.21 g, 9.9 mmol, 1.1 equiv.) and pTsCl (1.87 g, 9.9 mmol, 1.1 equiv.). The reaction mixture was stirred at this temperature for 18 hrs, quenched with a saturated aqueous solution of NH₄Cl, the phases were separated and the organic phase was washed with H₂O (1 x 30 ml), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude mixture was taken in 40 ml of DCM and filtered over silica, concentrated under reduced pressure to afford the desired tosyl-oxime **8** (9.0 mmol, 3.85 g, quant.) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ H (ppm) 1.65 (s, 3H), 2.49 (s, 3H), 3.67-3.96 (m, 2H), 3.97-4.22 (m, 2H), 7.38 (t, 4H, *J* = 8.3 Hz), 7.59 (d, 2H, *J* = 8.4 Hz), 7.89 (d, 2H, *J* = 8.3 Hz).

1-(4-(3-(Trifluoromethyl)-3*H***-diazirin-3-yl)phenyl)ethan-1-one (9).** In a solution of tosyl-oxime **8** (3.6 g, 8.0 mmol, 1.0 equiv.) in THF (10 ml) was added ammonia (7 M in MeOH, 11.5 ml, 80.0 mmol, 10.0 equiv.) at room temperature. The reaction mixture was stirred 18 hours at RT, filtered and concentrated under

reduced pressure to give a pale yellow paste. To this paste was added methanol (16 ml), triethylamine (1.66 ml, 12 mmol, 1.5 equiv.) and then small portions of iodine until the purple color remained. The reaction mixture was stirred at RT for 1 hour, Et₂O (25 ml) was added and this organic phase was washed successively with saturated solutions of sodium thiosulfate (20 ml) and ammonium chloride (20 ml), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude mixture was diluted in acetone (30 ml) and water (2 ml) and PTSA.H₂O (3g, 16 mmol, 2.0 equiv.) were successively added. The reaction mixture was stirred at RT for 18 hours, diluted with Et₂O (30 ml), washed with a saturated aqueous solution of NaHCO₃ (2 x 30 ml), dried over Na₂SO₄, filtered and concentrategraphy on silica gel (PE/Et₂O 15:1), the diazirine **9** (4.0 mmol, 1.08 g, 50%) was obtained as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ H (ppm) 2.61 (s, 3H), 7.28 (d, 2H, *J* = 9.1 Hz), 7.98 (d, 2H, *J* = 8.6 Hz). ¹³C NMR (100 MHz, CDCl₃): δ C (ppm) 26.65, 120.49, 123.22, 126.55, 126.57, 128.60, 133.84, 137.66, 196.96 (C=O).

2,2-Dibromo-1-(4-(3-(trifluoromethyl)-3*H***-diazirin-3-yl)phenyl)ethan-1-one (10). To a solution of the ketone 9** (456 mg, 2.0 mmol, 1.0 equiv.) in chloroform (20 ml) at RT was added TBAB (322mg, 1 mmol, 0.5 equiv.) and Br₂ (0.22 ml, 4.2 mmol, 2.1 equiv.). The reaction mixture was stirred at this temperature for 18 hrs, diluted with CH₂Cl₂ (30 ml) and washed with a saturated aqueous solution of sodium thiosulfate (20 ml) then water (20 ml), dried over MgSO₄, filtered and concentrated under reduced pressure. The product was purified over flash column chromatography on silica gel (PE/Et₂O 15:1) to afford the desired product **10** (1.78 mmol, 690 mg, 89%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ H (ppm) 6.59 (s, 1H), 7.31 (d, 2H, *J* = 8.3 Hz), 8.15 (d, 2H, *J* = 8.7 Hz).

2-Morpholino-2-thioxo-1-(4-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenyl)ethan-1-one To (11). a solution of dibromide 10 (690 mg, 1.79 mmol, 1.0 equiv.) in DMF (18 ml) was added morpholine (0.47 ml, 5.36 mmol, 3.0 equiv.) and sulfur (86 mg, 2.68 mmol, 1.5 equiv.). The reaction mixture was stirred 48 hours at this temperature, quenched with a saturated aqueous solution of sodium thiosulfate (20 ml) and extracted with CH₂Cl₂ (2 x 50 ml). The combined organic layers were washed with water, dried over MgSO₄, filtrated and concentrated under reduced pressure. The product was purified over flash column chromatography on silica gel (CH₂Cl₂/cyclohexane: 1/1 then CH₂Cl₂ 100%) to afford the desired product 11 (1.47 mmol, 505 mg, 82%) as a yellow solid. Rf 0.5 (Cyclohexane/EtOAc: 3/2). Mp: 121-123°C. ¹H NMR (400 MHz, CDCl₃): δ H (ppm) 3.58-3.60 (m, 2H), 3.69-3.72 (m, 2H), 3.90-3.92 (m, 2H), 4.31-4.34 (m, 2H), 7.29 (d, 2H, J = 8.3 Hz), 8.02 (d, 2 H, J = 8.6 Hz). ¹³C NMR (100 MHz, CDCl₃): δ C (ppm) 27.85-29.07 (CF₃), 47.20, 51.97, 66.38, 66.53, 120.38, 123.12, 126.82, 130.08 (2C), 134.15, 135.18, 186.10 (C=O), 194.60 (C=S). HRMS calcd for $C_{14}H_{13}F_3N_3O_2S$ (M + H)⁺ 344.06806, found (ESI^+) : m/z344.06691.

Peptide sequence ^a	m/z observed MH+ (Da)	m/z calculated MH+ (Da)	л (ppm)	Chemical modification
⁵⁹ VTADVINAAEK ⁶⁹	1130.60723	1130.60518	1.81	/
⁵⁹ VTADVINAAEK ⁶⁹	1445.66509	1445.67318	-5.6	Diazirine
⁷⁶ AGTGVDNVDLEAATR ⁹⁰	1488.73076	1488.72888	1.27	/
⁷⁶ AGTGVDNVDLEAATR ⁹⁰	1803.79106	1803.79688	-3.22	Diazirine
¹²⁰ QIPQATASMK ¹²⁹	1074.56621	1074.56121	4.66	/
¹²⁰ QIPQATASMK ¹²⁹	1389.62029	1389.62921	-6.42	Diazirine
³⁵² GTIQVITQGTSLK ³⁶⁴	1345.77104	1345.76856	1.85	/
³⁵² GTIQVITQGTSLK ³⁶⁴	1660.84599	1660.83656	5.68	Diazirine
⁴⁷⁰ TQTSDPAMLPTMIGLL AEAGVR ⁴⁹¹	2272.06311	2272.16756	3.17	/
⁴⁷⁰ TQTSDPAMLPTMIGLL AEAGVR ⁴⁹¹	2587.23172	2587.23556	-1.48	Diazirine
⁵²³ QHVTEAFQFHF ⁵³³	1390.65752	1390.65386	2.63	/
⁵²³ OHVTEAFOFHF ⁵³³	1705.71256	1705.72186	-5.45	Diazirine

Table S1. PHGDH peptides (after trypsination) showing a diazirine modification after treatment at 1 mM of **11**.

^aSuperscripted numbers indicate the amino acid numbering of human PHGDH.

Table S2. PHGDH peptides (after trypsination) showing a diazirine modification after treatment at 1 mM of **11** and **A.** 0μ M **B.** 2μ M and **C.** 20μ M **D.** 200μ M of **2**. Percentage of modified peptides was obtained based on the PSMs ratio between modified and unmodified peptides. ^aSuperscripted numbers indicate the amino acid numbering of human PHGDH.

Peptide sequence ^a	m/z observed MH+ (Da)	m/z calculated MH+ (Da)	л (ppm)	Percentage of modified peptides
⁵²³ QHVTEAFQFHF ⁵³³	1705.71256	1705.72186	-5.45	43.2 %

A. Compound 2 concentration 0 μM

Peptide sequence ^a	m/z observed MH+ (Da)	m/z calculated MH+ (Da)	л (ppm)	Percentage of modified peptides
⁵²³ QHVTEAFQFHF ⁵³³	1705.71292	1705.72186	-5.24	37.5 %

B. Compound **2** concentration $2 \,\mu M$

Peptide sequence ^a	m/z observed MH+ (Da)	m/z calculated MH+ (Da)	л (ppm)	Percentage of modified peptides	
⁵²³ QHVTEAFQFHF ⁵³³	1705.71282	1705.72186	-5.30	14.3 %	

C. Compound 2 concentration 20 μM

Peptide sequence ^a	m/z observed MH+ (Da)	m/z calculated MH+ (Da)	л (ppm)	Percentage of modified peptides
⁵²³ QHVTEAFQFHF ⁵³³	1705.71274	1705.72186	-5.35	6.53 %

D. Compound **2** concentration 200 μM

¹H NMR

¹³C NMR

	RT	Area	% Area	Height	
1	19.782	7180516	100.00	1142487	

210 nm

<u>`</u>0

S10

¹³C NMR

S12

	RT	Area	% Area	Height
1	17.737	59627	1.83	10565
2	22.515	35171	1.08	6466
 3	23.640	3155351	97.08	538891

References

1. Ravez, S. *et al.* α-Ketothioamide Derivatives: A Promising Tool to Interrogate Phosphoglycerate Dehydrogenase (PHGDH). *J. Med. Chem.* **60**, 1591–1597 (2017).