Studies on the Enantioselective Synthesis of *E*-Ethylidene-Bearing Spiro[indolizidine-1,3'-oxindole] Alkaloids

Nihan Yayik, Maria Pérez, Elies Molins, Joan Bosch, and Mercedes Amat*

Supporting Information Available

I)	Copies of ¹ H and ¹³ C NMR spectra	pages: S2-S17
II)	X- ray crystallographic data for compounds 4	pages S18-S23

(400 MHz, CDCl₃)

(100.6 MHz, CDCl₃)

(400 MHz, CDCl₃)

(100.6 MHz, CDCl₃)

S4

(400 MHz, CDCl3)

(100.6 MHz, CDCl₃)

n 'n MeO₂C⁻⁻⁻8 (400 MHz, CDCl₃) -----<u>н н</u> ÷ -

0 Ή ď MeO₂C⁻⁻8

(100.6 MHz, CDCl₃)

(400 MHz, CDCl₃)

(400 MHz, CDCl₃)

S10

(400 MHz, CDCI₃)

(100.6 MHz, CDCl₃)

	0
Table 1. Crystal data and structure refinement for 4	
Identification code	Jb153
Empirical formula	C19 H22 N2 O5
Formula weight	358.38
Temperature	294(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P 21 21 21
Unit cell dimensions	$a = 6.6025(3) \text{ Å}$ $\alpha = 90^{\circ}.$
	$b = 15.2412(6) \text{ Å} \qquad \beta = 90^{\circ}.$
	$c = 17.8186(7) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	1793.09(13) Å ³
Z	4
Density (calculated)	1.328 Mg/m ³
Absorption coefficient	0.097 mm ⁻¹
F(000)	760
Crystal size	0.280 x 0.180 x 0.150 mm ³
Theta range for data collection	1.758 to 28.390°.
Index ranges	-8<=h<=8, -20<=k<=20, -23<=l<=23
Reflections collected	52832
Independent reflections	4481 [R(int) = 0.0708]
Completeness to theta = 25.242°	100.0 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4481 / 0 / 237
Goodness-of-fit on F ²	1.013
Final R indices [I>2sigma(I)]	R1 = 0.0525, wR2 = 0.1286
R indices (all data)	R1 = 0.0823, $wR2 = 0.1482$
Absolute structure parameter	-0.2(6)
Largest diff. peak and hole	0.535 and -0.141 e.Å ⁻³

	Х	У	Z	U(eq)
O(2)	3488(5)	4488(2)	7505(2)	82(1)
O(8)	9293(4)	3079(2)	4872(1)	76(1)
O(12)	5846(5)	2119(2)	6502(1)	71(1)
O(20)	826(5)	5303(3)	4440(2)	113(1)
O(21)	2376(5)	6549(2)	4207(2)	102(1)
N(1)	5352(6)	5768(2)	7481(2)	70(1)
N(9)	7348(4)	3712(2)	5747(1)	44(1)
C(2)	4936(7)	4923(3)	7303(2)	59(1)
C(3)	6638(5)	4602(2)	6782(2)	46(1)
C(4)	5776(5)	4308(2)	6013(2)	42(1)
C(5)	5299(6)	5015(2)	5441(2)	49(1)
C(6)	4924(5)	4596(2)	4679(2)	50(1)
C(7)	6822(5)	4112(2)	4436(2)	55(1)
C(8)	7895(5)	3592(2)	5030(2)	51(1)
C(10)	8383(5)	3268(2)	6368(2)	48(1)
C(11)	7613(6)	3759(2)	7065(2)	53(1)
C(12)	7919(6)	2294(2)	6383(2)	59(1)
C(13)	8001(5)	5389(2)	6737(2)	50(1)
C(14)	9801(6)	5530(2)	6368(2)	64(1)
C(15)	10702(7)	6359(3)	6398(3)	77(1)
C(16)	9780(9)	7023(3)	6795(3)	88(2)
C(17)	8001(9)	6895(3)	7184(3)	80(1)
C(18)	7136(7)	6063(2)	7155(2)	61(1)
C(19)	4297(6)	5283(3)	4092(2)	65(1)
C(20)	2316(7)	5699(3)	4261(2)	71(1)
C(21)	459(11)	7021(5)	4313(4)	149(3)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for **4**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

1.218(5) 1.242(4) 1.411(5)
1.242(4) 1.411(5)
1.411(5)
1 198(5)
1.170(3)
1.299(6)
1.468(7)
1.355(5)
1.388(6)
1.340(4)
1.459(4)
1.467(4)
1.537(5)
1.501(5)
1.523(4)
1.551(4)
1.516(4)
1.522(4)
1.516(5)
1.536(5)
1.500(5)
1.515(5)
1.535(4)
1.375(5)
1.391(5)
1.398(5)
1.375(7)
1.378(7)
1.392(6)
1.485(6)
116.9(4)
112.4(3)
125.9(3)
122.1(3)
111.9(2)
127.4(4)

Table 3. Bond lengths $[{\rm \AA}]$ and angles $[^\circ]$ for 4.

N(1)-C(2)-C(3)	107.2(3)
C(13)-C(3)-C(11)	116.0(3)
C(13)-C(3)-C(2)	102.5(3)
C(11)-C(3)-C(2)	112.2(3)
C(13)-C(3)-C(4)	113.8(2)
C(11)-C(3)-C(4)	101.7(2)
C(2)-C(3)-C(4)	110.9(3)
N(9)-C(4)-C(5)	111.8(2)
N(9)-C(4)-C(3)	101.9(2)
C(5)-C(4)-C(3)	117.7(2)
C(4)-C(5)-C(6)	109.6(3)
C(7)-C(6)-C(5)	108.9(3)
C(7)-C(6)-C(19)	111.1(3)
C(5)-C(6)-C(19)	111.4(3)
C(8)-C(7)-C(6)	116.5(3)
O(8)-C(8)-N(9)	120.2(3)
O(8)-C(8)-C(7)	121.6(3)
N(9)-C(8)-C(7)	118.2(3)
N(9)-C(10)-C(12)	111.8(3)
N(9)-C(10)-C(11)	103.4(2)
C(12)-C(10)-C(11)	113.4(3)
C(3)-C(11)-C(10)	106.5(2)
O(12)-C(12)-C(10)	112.6(3)
C(14)-C(13)-C(18)	119.7(3)
C(14)-C(13)-C(3)	132.0(3)
C(18)-C(13)-C(3)	108.4(3)
C(13)-C(14)-C(15)	119.4(4)
C(16)-C(15)-C(14)	119.7(5)
C(15)-C(16)-C(17)	122.1(4)
C(16)-C(17)-C(18)	117.4(4)
N(1)-C(18)-C(13)	109.5(3)
N(1)-C(18)-C(17)	128.8(4)
C(13)-C(18)-C(17)	121.6(4)
C(20)-C(19)-C(6)	113.0(3)
O(20)-C(20)-O(21)	123.2(5)
O(20)-C(20)-C(19)	124.2(4)
O(21)-C(20)-C(19)	112.6(4)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(2)	88(2)	98(2)	60(2)	-3(2)	26(2)	7(2)
O(8)	80(2)	89(2)	59(2)	-8(1)	23(1)	25(2)
O(12)	104(2)	62(2)	48(1)	13(1)	-15(1)	-31(2)
O(20)	63(2)	127(3)	148(3)	35(3)	-2(2)	-19(2)
O(21)	89(2)	87(2)	129(3)	37(2)	18(2)	6(2)
N(1)	91(3)	69(2)	49(2)	-23(2)	-3(2)	27(2)
N(9)	56(2)	39(1)	37(1)	-4(1)	4(1)	-1(1)
C(2)	75(2)	65(2)	36(2)	-5(1)	3(2)	15(2)
C(3)	59(2)	43(2)	36(2)	-7(1)	-1(1)	4(2)
C(4)	49(2)	40(1)	37(1)	-5(1)	2(1)	-1(1)
C(5)	61(2)	44(2)	43(2)	0(1)	-7(1)	-3(2)
C(6)	54(2)	56(2)	40(2)	3(1)	-3(1)	-14(2)
C(7)	59(2)	71(2)	37(2)	-2(2)	4(1)	-13(2)
C(8)	53(2)	55(2)	45(2)	-8(1)	10(1)	-3(2)
C(10)	50(2)	47(2)	47(2)	-8(1)	-4(2)	5(1)
C(11)	74(2)	43(2)	43(2)	-4(1)	-8(2)	5(2)
C(12)	81(3)	43(2)	52(2)	-4(1)	-14(2)	12(2)
C(13)	64(2)	44(2)	43(2)	-7(1)	-14(2)	5(2)
C(14)	64(2)	51(2)	76(2)	-7(2)	-7(2)	-4(2)
C(15)	81(3)	66(2)	85(3)	1(2)	-20(2)	-17(2)
C(16)	115(4)	53(2)	95(3)	-6(2)	-40(3)	-13(3)
C(17)	114(4)	50(2)	77(3)	-23(2)	-36(3)	13(2)
C(18)	86(3)	51(2)	44(2)	-12(1)	-18(2)	15(2)
C(19)	62(2)	83(3)	50(2)	17(2)	-9(2)	-12(2)
C(20)	63(2)	91(3)	60(2)	24(2)	-15(2)	-16(2)
C(21)	124(5)	152(6)	171(7)	62(5)	36(5)	56(5)

Table 4. Anisotropic displacement parameters (Å²x 10³) for **4**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(12)-H(12)O(8)#1	0.82	1.86	2.671(3)	173.0
N(1)-H(1)O(12)#2	0.86	2.07	2.854(4)	152.0
C(7)-H(7B)O(20)#3	0.97	2.36	3.206(5)	145.4
C(12)-H(12A)O(8)	0.97	2.52	3.083(5)	116.9

Table 5. Hydrogen bonds for 4 [Å and $^\circ].$

Symmetry transformations used to generate equivalent atoms:

#1 x-1/2,-y+1/2,-z+1 #2 -x+1,y+1/2,-z+3/2 #3 x+1,y,z