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Abstract: A synthetic route for the enantioselective construction of the tetracyclic spiro[indolizidine-
1,3′-oxindole] framework present in a large number of oxindole alkaloids, with a cis H-3/H-15
stereochemistry, a functionalized two-carbon substituent at C-15, and an E-ethylidene substituent at
C-20, is reported. The key steps of the synthesis are the generation of the tetracyclic spirooxindole ring
system by stereoselective spirocyclization from a tryptophanol-derived oxazolopiperidone lactam,
the removal of the hydroxymethyl group, and the stereoselective introduction of the E-ethylidene
substituent by acetylation at the α-position of the lactam carbonyl, followed by hydride reduction
and elimination. Following this route, the 21-oxo derivative of the enantiomer of the alkaloid
7(S)-geissoschizol oxindole has been prepared.

Keywords: oxindoles; alkaloids; spiro compounds; ethylidene

1. Introduction

The spiro[pyrrolidine-3,3′-oxindole] ring system is a structural moiety found in a large
number of natural products, pharmaceuticals, and biologically active compounds. This
moiety is present in oxindole alkaloids, which constitute a large group of monoterpenoid
alkaloids characterized by a spiro-fusion to a pyrrolidine ring at the 3-position of the indole
core [1–3]. Oxindole alkaloids possess a variety of pharmacological properties [4–12] and
have served as an inspiration for the development of new therapeutic agents [13]. One
of the most important substructural classes of these alkaloids incorporates a tetracyclic
spiro[indolizidine-1,3′-oxindole] framework, in which the pyrrolidine nucleus is embedded
in an indolizidine ring. Structurally, these tetracyclic oxindole alkaloids differ in the
functionalized substituent at C-15 and the two-carbon substituent at C-20 (usually ethyl,
vinyl or E-ethylidene), as well as in the configuration at the C-3, C-7, C-15, and (in some
cases) C-20 stereocenters (biogenetic numbering) [14], thus giving rise to a diversified
array of relative stereochemical relationships. Some representative examples are depicted
in Figure 1.
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Figure 1. Representative tetracyclic spiro[indolizidine-1,3′-oxindole] alkaloids. 

The members of this group of alkaloids often occur in nature as pairs of C-7 epimers 
[15,16], interconvertible under acidic or basic conditions by retro-Mannich/Mannich reac-
tions via a ring-opened intermediate [17–20]. Scheme 1 illustrates this equilibrium for 
geissoschizol oxindoles [16].  

 
Scheme 1. Equilibrating a C-7 epimeric pair of geissoschizol oxindoles. 

The appealing structure of these alkaloids and their significant biological activities 
have attracted considerable synthetic attention, resulting in a large number of total syn-
theses, both in the racemic series and in enantiopure form [21–24]. However, the access to 
E-ethylidene-bearing spiro[indolizidine-1,3′-oxindoles] with a cis H-3/H-15 stereochemis-
try has been little explored and to our knowledge no total syntheses of tetracyclic oxindole 
alkaloids with this substitution and stereochemical pattern have been reported so far. In 
fact, although the oxidative rearrangement of tetrahydro-β-carbolines is one of the most 
frequently used methods to assemble the spiro[pyrrolidine-3,3′-oxindole] system 
[18,19,21], its application to either cis or trans E-ethylidene-bearing Corynanthe-type in-
dolo[2,3-a]quinolizidine amines (but not amides) leads only to C-7 epimeric mixtures of 
tetracyclic spirooxindoles with a trans H-3/H-15 stereochemistry due to an equilibration 
of the C-3 and C-7 stereocenters via a reversible Mannich reaction (Scheme 2) [25,26]. The 
severe A1,3-interaction between the C-15 side chain and the methyl group on the ethyli-
dene moiety in the cis isomers, which is absent in the trans isomers, could account for the 
exclusive formation of the latter [26]. 

 
Scheme 2. Oxidative rearrangements of indolo[2,3-a]quinolizidines reported by S. F. Martin [26]. 
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Figure 1. Representative tetracyclic spiro[indolizidine-1,3′-oxindole] alkaloids.

The members of this group of alkaloids often occur in nature as pairs of C-7 epimers [15,16],
interconvertible under acidic or basic conditions by retro-Mannich/Mannich reactions via
a ring-opened intermediate [17–20]. Scheme 1 illustrates this equilibrium for geissoschizol
oxindoles [16].
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Scheme 1. Equilibrating a C-7 epimeric pair of geissoschizol oxindoles.

The appealing structure of these alkaloids and their significant biological activities
have attracted considerable synthetic attention, resulting in a large number of total syn-
theses, both in the racemic series and in enantiopure form [21–24]. However, the access to
E-ethylidene-bearing spiro[indolizidine-1,3′-oxindoles] with a cis H-3/H-15 stereochem-
istry has been little explored and to our knowledge no total syntheses of tetracyclic oxin-
dole alkaloids with this substitution and stereochemical pattern have been reported so
far. In fact, although the oxidative rearrangement of tetrahydro-β-carbolines is one of
the most frequently used methods to assemble the spiro[pyrrolidine-3,3′-oxindole] sys-
tem [18,19,21], its application to either cis or trans E-ethylidene-bearing Corynanthe-type
indolo[2,3-a]quinolizidine amines (but not amides) leads only to C-7 epimeric mixtures of
tetracyclic spirooxindoles with a trans H-3/H-15 stereochemistry due to an equilibration
of the C-3 and C-7 stereocenters via a reversible Mannich reaction (Scheme 2) [25,26]. The
severe A1,3-interaction between the C-15 side chain and the methyl group on the ethyli-
dene moiety in the cis isomers, which is absent in the trans isomers, could account for the
exclusive formation of the latter [26].
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Scheme 2. Oxidative rearrangements of indolo[2,3-a]quinolizidines reported by S. F. Martin [26].
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2. Results and Discussion

We present herein a procedure for the enantioselective construction of cis H-3/H-15
tetracyclic spiro[indolizidine-1,3′-oxindoles] bearing an E-ethylidene substituent at the C-20
position. The cis H-3/H-15 relationship was secured using the spirocyclization procedure
we have recently reported for the direct generation of spirooxindoles from tryptophanol-
derived oxazolopiperidone lactams [27], whereas the E-ethylidene substituent was stereos-
electively installed, taking advantage of the piperidone carbonyl present in the resulting
tetracyclic spirooxindole. Scheme 3 outlines the initial steps of the synthesis.

Molecules 2021, 26, x FOR PEER REVIEW 3 of 14 
 

 

2. Results and Discussion 
We present herein a procedure for the enantioselective construction of cis H-3/H-15 

tetracyclic spiro[indolizidine-1,3′-oxindoles] bearing an E-ethylidene substituent at the C-
20 position. The cis H-3/H-15 relationship was secured using the spirocyclization proce-
dure we have recently reported for the direct generation of spirooxindoles from tryp-
tophanol-derived oxazolopiperidone lactams [27], whereas the E-ethylidene substituent 
was stereoselectively installed, taking advantage of the piperidone carbonyl present in the 
resulting tetracyclic spirooxindole. Scheme 3 outlines the initial steps of the synthesis. 

 
Scheme 3. Initial steps of the synthesis. 

The required bicyclic lactam 2 was prepared, as previously reported [28], by cy-
clocondensation of prochiral aldehyde-diester 1 with (S)-tryptophanol in a process that 
involves the stereoselective desymmetrization of two enantiotopic acetate chains. A sub-
sequent bromination with pyridinium perbromide, with careful control of the reaction 
time (10 s) and operating under strictly anhydrous conditions to minimize the formation 
of the corresponding oxindole, afforded 2-bromoindole 3 in an improved yield (92%). The 
latter underwent smooth spirocyclization on treatment with TFA to provide (71%) tetra-
cyclic spirooxindole 4 as a single stereoisomer, whose absolute configuration was unam-
biguously confirmed by X-ray crystallographic analysis (Figure 2; see Supplementary Ma-
terials). 

 
Figure 2. ORTEP plot of the X-ray structure of spiro[indolizidine-1,3′-oxindole] 4. 

Removal of the hydroxymethyl substituent, which plays a decisive role as an element 
of stereocontrol in the spirocyclization reaction, was initially accomplished in four steps: 
oxidation to carboxylic acid 6 via the corresponding aldehyde 5, subsequent generation of 
selenoester 7, and finally radical reductive decarbonylation (Scheme 4) [29,30]. Following 
this procedure, tetracyclic oxindole 8 was obtained in 45% overall yield from aldehyde 5. 

Scheme 3. Initial steps of the synthesis.

The required bicyclic lactam 2 was prepared, as previously reported [28], by cyclocon-
densation of prochiral aldehyde-diester 1 with (S)-tryptophanol in a process that involves
the stereoselective desymmetrization of two enantiotopic acetate chains. A subsequent
bromination with pyridinium perbromide, with careful control of the reaction time (10 s)
and operating under strictly anhydrous conditions to minimize the formation of the cor-
responding oxindole, afforded 2-bromoindole 3 in an improved yield (92%). The latter
underwent smooth spirocyclization on treatment with TFA to provide (71%) tetracyclic
spirooxindole 4 as a single stereoisomer, whose absolute configuration was unambiguously
confirmed by X-ray crystallographic analysis (Figure 2; see Supplementary Materials).
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Removal of the hydroxymethyl substituent, which plays a decisive role as an element
of stereocontrol in the spirocyclization reaction, was initially accomplished in four steps:
oxidation to carboxylic acid 6 via the corresponding aldehyde 5, subsequent generation of
selenoester 7, and finally radical reductive decarbonylation (Scheme 4) [29,30]. Following
this procedure, tetracyclic oxindole 8 was obtained in 45% overall yield from aldehyde 5.
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Scheme 4. Removal of the hydroxymethyl substituent.

Alternatively, 8 was prepared in a more efficient manner by direct rhodium(I)-induced
decarbonylation of aldehyde 5. Thus, treatment of 5 with the rhodium(I) complex gener-
ated in situ from the chloro(1,5-cyclooctadiene)rhodium(I) dimer {[RhCl(cod)]2} and the
bidentate phosphine ligand 1,3-bis(diphenylphosphino)propane (dppp) [31] satisfactorily
provided oxindole 8 in 79% yield. The use of the rhodium(I) complex derived from car-
bonyl(chloro)bis(triphenylphosphine)rhodium(I) [RhCl(CO)(PPh3)2] and dppp [32] gave
less satisfactory results (46% yield).

The preparation of 8 in four steps and 40% overall yield from tryptophanol-derived
lactam 2 represents a notable improvement with respect to the previously reported eight-
step route from the same starting lactam 2, involving the generation of a spiroindoline and
the final oxidation of an indoline [27,28], which gave 8 in 13% overall yield (Scheme 5).
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Scheme 5. Previous synthesis of oxindole 8 via oxidation of the indoline moiety.

Having secured an efficient and reliable sequence to access the tetracyclic scaffold 8,
we focused on the introduction of the C-20 two-carbon substituent. Chemoselective LiBH4
reduction of the ester group and subsequent successive protection of the resulting primary
alcohol 9 with tert-butydimethylsilyl chloride (TBDMSCl) and the indole nitrogen with
either methoxymethyl chloride (MOMCl) or di-tert-butyl dicarbonate (Boc2O) afforded the
diprotected intermediates 12 and 13 (Scheme 6). Under the LiBH4 reduction conditions,
only minor amounts (5%) of the corresponding indoline 10 were formed.
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Scheme 6. Stereoselective introduction of the E-ethylidene chain.

Initial attempts to directly introduce a 1-hydroxyethyl chain by an aldol-type reaction
between 12 or 13 and acetaldehyde (LDA, −78 ◦C) were unsuccessful, and the correspond-
ing alcohols were only formed in trace amounts. Satisfactorily, the E-ethylidene substituent
was installed by acylation at the α-position of the lactam carbonyl of 12, followed by
hydride reduction and stereoselective elimination. Thus, acetylation of 12 with methyl
acetate in the presence of LDA afforded ketone 14 as a single stereoisomer in 52% yield,
with 29% of the starting material being recovered. Although a subsequent reduction with
NaBH4 gave a nearly equimolecular mixture of epimeric alcohols 15a and 15b, they could
be separated by column chromatography and independently converted to the E-ethylidene
derivative 16 in excellent overall yield.

Alcohol 15a was dehydrated by treatment with DCC and CuCl as a catalyst in refluxing
toluene [33–35] to stereoselectively provide the E-ethylidene derivative 16 in 91% yield.
This is a useful method for the syn elimination of β-hydroxycarbonyl compounds that
proceeds via an isourea intermediate through a six-membered cyclic transition state [36].
In turn, alcohol 15b was subjected to an anti-elimination sequence [34,35] by treatment
of the corresponding mesylate with DBU to give the expected E-ethylidene derivative 16
(60% yield) along with minor amounts of its Z isomer (20% yield). The stereochemistry
of both isomers was assigned from their 1H-NMR spectra, in which the olefinic proton
of the E isomer appears at a lower field (δ 6.67) than that of the Z isomer (δ 5.94) due
to the anisotropic effect of the lactam carbonyl group. A final treatment of 16 under
smooth conditions brought about the simultaneous deprotection of the oxindole and
alcohol moieties to provide the cis H-3/H-15, E-ethylidene-bearing spiro[indolizidine-1,3′-
oxindole] 17.

In summary, we have developed a procedure for the stereoselective construction
of the spiro[indolizidine-1,3′-oxindole] framework characteristic of tetracyclic oxindole
alkaloids, bearing a cis H-3/H-15 stereochemistry and incorporating a functionalized
two-carbon substituent at C-15 and an E-ethylidene substituent at C-20. These studies
could open synthetic routes to tetracyclic oxindole alkaloids featuring this substitution
and stereochemical pattern, for instance, 7(S)-kopsirensine A or 7(S)-isositsirikine oxindole.
In fact, compound 17 can be envisaged as the enantiomer of 21-oxo-7(S)-geissoschizol
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oxindole. The use of (R)-tryptophanol instead of the S enantiomer in the synthetic sequence
outlined in Scheme 6 would provide access to the natural enantiomeric series.

3. Experimental Section
3.1. General Information

All air sensitive manipulations were carried out under a dry argon or nitrogen atmo-
sphere. THF and CH2Cl2 were dried using a column solvent purification system. Analytical
thin-layer chromatography was performed on SiO2 (Merck silica gel 60 F254), and the spots
were located with 1% aqueous KMnO4. Chromatography refers to flash chromatography
and was carried out on SiO2 (SDS silica gel 60 ACC, 35–75 mm, 230–240 mesh ASTM).
NMR spectra were recorded at 400 (1H) and 100.6 (13C), and chemical shifts are reported
in δ values downfield from TMS or relative to residual chloroform (7.26 ppm, 77.0 ppm)
as an internal standard. Data are reported in the following manner: Chemical shift, mul-
tiplicity, coupling constant (J) in hertz (Hz), integrated intensity, and assignment (when
possible). Assignments and stereochemical determinations are given only when they are
derived from definitive two-dimensional NMR experiments (HSQC-COSY). IR spectra
were performed in a spectrophotometer Nicolet Avantar 320 FT-IR, and only noteworthy
IR absorptions (cm−1) are listed. High resolution mass spectra (HMRS) were performed by
Centres Científics i Tecnològics de la Universitat de Barcelona.

3.2. Improved Preparation of Tetracyclic Oxindole 4

(3S,7R,8aS)-3-[(2-Bromo-3-indolyl)methyl]-7-(methoxycarbonylmethyl)-5-oxo-2,3,6,7,8,8a-
hexahydro-5H-oxazolo[3,2-a]pyridine (3). A solution of pyridinium tribromide (PyHBr3,
4.20 g, 13.1 mmol) in anhydrous THF (57 mL) was added at 0 ◦C by a large transfer, under
an argon atmosphere, to a stirred solution of lactam 2 [28] (3.21 g, 9.36 mmol) in anhy-
drous CH2Cl2 (57 mL). Saturated aqueous solutions of Na2S2O3 (19 mL) and NaHCO3
(10 mL) were added 10 s later. Distilled H2O (10 mL) was added, and the mixture was
extracted with CH2Cl2. The combined organic extracts were dried over anhydrous mgSO4,
filtered, and concentrated under reduced pressure. Flash chromatography (hexane to 7:3
hexane-EtOAc) of the resulting residue gave bromo derivative 3 (3.63 g, 92%) as a white
foam: [α]22

D = −74.1 (c 1.4, CHCl3); IR (KBr): 3171 (NH), 1630, 1734 (CO) cm−1; 1H-NMR
(400 MHz, CDCl3, COSY, g-HSQC): δ = 1.31–1.40 (qm, J = 11.6 Hz, 1H, H-8), 2.17 (dd,
J = 17.6, 10.4 Hz, 1H, H-6), 2.32 (dm, J = 11.6 Hz, 1H, H-8), 2.37 (m, 1H, H-7), 2.40 (s, 2H,
CH2CO2), 2.65 (dd, J = 17.6, 4.8 Hz, 1H, H-6), 2.69 (dd, J = 14.0, 10.4 Hz, 1H, CH2-Ind),
3.65–3.69 (m, 2H, CH2-Ind, H-2), 3.69 (s, 3H, CH3O), 4.08 (d, J = 8.8 Hz, 1H, H-2), 4.31 (ddd,
J = 9.6, 6.8, 3.2 Hz, 1H, H-3), 4.70 (dd, J = 10.0, 3.2 Hz, 1H, H-8a), 7.07 (td, J = 8.0, 0.8 Hz, 1H,
HAR), 7.13 (td, J = 8.0, 0.8 Hz, 1H, HAR), 7.28 (dd, J = 8.0, 0.8 Hz, 1H, HAR), 7.76 (dd, J = 8.0,
0.8 Hz, 1H, HAR), 9.28 (br. s, 1H, NH); 13C-NMR (100.6 MHz, CDCl3): δ = 26.4 (CH2-Ind),
27.2 (C-7), 34.4 (C-8), 37.6 (C-6), 40.1 (CH2CO), 51.8 (CH3O), 55.5 (C-3), 70.2 (C-2), 88.3
(C-8a), 108.8 (C-Br), 110.4 (CHAR), 112.0 (CAR), 118.7 (CHAR), 120.3 (CHAR), 122.5 (CHAR),
127.9 (CAR), 136.1 (CAR), 166.8 (CO), 171.8 (CO); HRMS (ESI) calcd for [C19H22BrN2O4 +
Na+]: 433.0577, found: 433.0577.

(1’R,3′S,7′R,8a’R)-3′-(Hydroxymethyl)-7′-(methoxycarbonylmethyl)-2,5′-dioxospiro[indoline-
3,1′-indolizidine] (4). TFA (3.15 mL, 40.9 mmol) was added at room temperature under an
argon atmosphere to a solution of bromo derivative 3 (556 mg, 1.32 mmol) in anhydrous
CH2Cl2 (25 mL). The resulting mixture was stirred at room temperature for 16 h and then
concentrated under reduced pressure. Flash chromatography (silica previously washed
with Et3N; 1:1 to 1:9 hexane-EtOAc) of the resulting residue gave spirooxindole 4 (337 mg,
71%) as a white foam: [α]22

D = + 46.1 (c 1.0, CHCl3); IR (KBr): 3401 (NH), 1617, 1724
(CO) cm−1; 1H-NMR (400 MHz, CDCl3, COSY, g-HSQC): δ = 0.69 (q, J = 12.4 Hz, 1H, H-14),
1.70 (dm, J = 12.4 Hz, 1H, H-14), 1.96 (dd, J = 18.0, 12.0 Hz, 1H, H-20), 2.14–2.26 (m, 4H, H-6,
CH2CO), 2.38 (m, 1H, H-15), 2.67 (ddd, J = 18.0, 3.6, 1.2 Hz, 1H, H-20), 3.63 (s, 3H, CH3O),
3.82 (dd, J = 12.0, 2.4 Hz, 1H, CH2OH), 3.89 (dd, J = 12.0, 7.2 Hz, 1H, CH2OH), 4.10 (dd,
J = 12.4, 4.4 Hz, 1H, H-3), 4.64 (m, 1H, H-5), 6.92 (d, J = 7.6 Hz, 1H, HAR), 7.00 (d, J = 7.6 Hz,
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1H, HAR), 7.07 (td, J = 7.6, 0.8 Hz, 1H, HAR), 7.29 (td, J = 7.6, 1.2 Hz, 1H, HAR), 7.88 (br. s,
1H, NH); 13C-NMR (100.6 MHz, CDCl3): δ = 29.0 (C-15), 29.6 (C-14), 36.7 (C-6), 37.5 (C-20),
39.6 (CH2CO), 51.7 (CH3O), 56.2 (C-7), 60.0 (C-5), 64.5 (C-3), 66.5 (CH2OH), 110.7 (CHAR),
123.2 (CHAR), 123.5 (CHAR), 128.9 (CHAR), 129.4 (CAR), 140.3 (CAR), 170.9 (CO), 171.6 (CO),
177.2 (CO); HRMS (ESI) calcd for [C19H22N2O5 + H+]: 359.1601, found: 359.1601.

3.3. Removal of the Hydroxymethyl Substituent

(1’R,3′S,7′R,8a’R)-3′-Formyl-7′-(methoxycarbonylmethyl)-2,5′-dioxospiro[indoline-3,1′-
indolizidine] (5). Dess-Martin periodinane (DMP, 649 mg, 1.53 mmol) and NaHCO3 (257 mg,
3.06 mmol) were added at room temperature under an argon atmosphere to a solution of
spirooxindole 4 (367 mg, 1.02 mmol) in anhydrous CH2Cl2 (38 mL). The resulting mixture
was stirred at room temperature for 4 h. Saturated aqueous solutions of Na2S2O3 (30 mL)
and NaHCO3 (30 mL) were added and the mixture was stirred for 30 min. The aqueous
layer was extracted with CH2Cl2. The combined organic extracts were dried, filtered,
and concentrated under reduced pressure. Flash chromatography (1:1 hexane-EtOAc to
EtOAc) of the resulting residue gave aldehyde 5 (280 mg, 77%) as a white foam: 1H-NMR
(400 MHz, CDCl3, COSY, g-HSQC): δ = 0.75 (q, J = 12.4 Hz, 1H, H-14), 1.73 (dm, J = 12.4 Hz,
1H, H-14), 1.99 (dd, J = 17.8, 12.0 Hz, 1H, H-20), 2.14–2.33 (m, 3H, CH2CO, H-6), 2.44–2.53
(m, 2H, H-6, H-15), 2.70 (ddd, J = 17.8, 5.4, 1.9 Hz, 1H, H-20), 3.63 (s, 3H, CH3O), 4.15 (dd,
J = 11.4, 4.2 Hz, 1H, H-3), 4.88 (t, J = 9.6 Hz, 1H, H-5), 6.90 (d, J = 7.4 Hz, 1H, HAR), 6.97 (d,
J = 7.8 Hz, 1H, HAR), 7.07 (td, J = 7.5, 1.0 Hz, 1H, HAR), 7.30 (td, J = 7.6, 0.4 Hz, 1H, HAR),
7.69 (br. s, 1H, NH), 9.73 (d, J = 1.7 Hz, 1H, CHO); 13C-NMR (100.6 MHz, CDCl3): δ = 29.5
(C-15), 29.7 (C-14), 34.6 (C-6), 37.2 (C-20), 39.7 (CH2CO), 51.7 (CH3O), 56.7 (C-7), 62.9 (C-5),
65.0 (C-3), 110.8 (CHAR), 123.3 (CHAR), 123.5 (CHAR), 128.8 (CHAR), 129.1 (CAR), 140.2
(CAR), 169.1 (CO), 171.6 (CO), 176.4 (CO), 197.4 (CHO); HRMS (ESI) calcd for [C19H20N2O5
+ H+]: 357.1445, found: 357.1450.

(1′R,3′S,7′R,8a’R)-7′-(Methoxycarbonylmethyl)-2,5′-dioxo-3′-(phenylselenocarbonyl)spi-ro[indoline-
3,1′-indolizidine] (7). First step: 2-Methyl-2-butene (2 M in hexane, 6.4 mL) and t-BuOH
(25.2 mL) were added at room temperature to a solution of aldehyde 5 (321 mg, 0.9 mmol)
in CH3CN (8.1 mL). A solution of NaClO2 (472 mg, 5.22 mmol) and NaH2PO4 (733 mg,
5.31 mmol) in distilled H2O (8.7 mL) was added at 0 ◦C to the above mixture, which was
stirred at room temperature for 1 h. Then, 0.1 M Na2S2O3 and 2 N HCl solutions were
added until pH = 1, and the resulting mixture was extracted with EtOAc, dried over anhy-
drous mgSO4, filtered, and concentrated under reduced pressure to give carboxylic acid 6,
which was used in the next step without purification. Second step: Diphenyl diselenide
[(PhSe)2, 478 mg, 1.53 mmol] and tri-n-butylphosphine (n-Bu3P, 0.63 mL, 2.52 mmol) were
added at room temperature under an argon atmosphere to a solution of crude acid 6 in
anhydrous CH2Cl2 (5.4 mL). The resulting mixture was stirred at reflux for 16 h. Distilled
H2O was added. The aqueous layer was extracted with CH2Cl2, and the combined organic
extracts were dried over anhydrous mgSO4, filtered, and concentrated under reduced pres-
sure. Flash chromatography (hexane to 7:3 hexane-EtOAc) of the resulting residue gave
seleno ester 7 (216 mg, 50% overall yield for the two steps) as a yellow foam: [α]22

D = −4.4
(c 1.04, CHCl3); IR (film): 3242 (NH), 1726, 1698, 1660, 1635 (CO) cm−1; 1H-NMR (400 MHz,
CDCl3, COSY, g-HSQC): δ = 0.73 (q, J = 12.8 Hz, 1H, H-14), 1.75–1.82 (dm, J = 12.8 Hz, 1H,
H-14), 1.99 (dd, J = 18.0, 12.0 Hz, 1H, H-20), 2.17 (dd, J = 15.6, 7.6 Hz, 1H, CH2CO), 2.30 (dd,
J = 15.6, 6.4 Hz, 1H, CH2CO), 2.46 (dd, J = 12.8, 8.4 Hz, 1H, H-6), 2.46–2.58 (m, 1H, H-15),
2.62 (dd, J = 12.8, 8.4 Hz, 1H, H-6), 2.73–2.79 (dm, J = 18.0 Hz, 1H, H-20), 3.64 (s, 3H, CH3O),
4.37 (dd, J = 11.2, 4.4 Hz, H-3), 5.13 (t, J = 9.2 Hz, 1H, H-5), 6.84 (d, J = 7.6 Hz, 1H, HAR),
6.99 (d, J = 7.6 Hz, 1H, H HAR), 7.05 (td, J = 7.6, 1.2 Hz, 1H, HAR), 7.29 (td, J = 8.0, 1.2 Hz,
1H, HAR), 7.36–7.39 (m, 3H, HAR), 7.52–7.55 (m, 2H, HAR), 8.74 (s, 1H, NH); 13C-NMR
(100.6 MHz, CDCl3): δ = 29.3 (C-15), 29.6 (C-14), 37.5 (C-20), 38.0 (C-6), 39.6 (CH2CO), 51.8
(CH3O), 57.1 (C-7), 65.6 (C-3), 66.4 (C-5), 110.8 (CHAR), 123.3 (CHAR), 123.4 (CHAR), 124.8
(CAR), 128.8–129.4 (4CHAR, CAR), 136.1 (2CHAR), 140.2 (CAR), 169.4 (CO), 171.6 (CO), 176.1
(CO), 200.5 (CO); HRMS (ESI) calcd for [C25H24N2O5Se + H+]: 513.0923, found: 513.0927.



Molecules 2021, 26, 428 8 of 14

(1′R,7′R,8a’R)-7′-(Methoxycarbonylmethyl)-2,5′-dioxospiro[indoline-3,1′-indolizidine] (8).
Method A: from seleno derivative 7: Azobisisobutyronitrile (AIBN, 9 mg, 0.05 mmol)
was added under an argon atmosphere to a solution of seleno derivative 7 (216 mg,
0.43 mmol) in anhydrous benzene (20 mL). The mixture was heated to reflux, and a
solution of tributyltin hydride (TBTH, 180 µL, 0.65 mmol) in anhydrous benzene (4 mL)
was added very slowly (over 30 min). The resulting mixture was stirred at reflux for 1 h,
and the solvent was evaporated. Flash chromatography (6:4 hexane-EtOAc to 100% EtOAc)
of the resulting residue gave spirooxindole 8 (127 mg, 90%). Method B: from aldehyde
5: Argon was bubbled through anhydrous diglyme (3.2 mL) for 30 min. Chloro(1,5-
cyclooctadiene)rhodium(I) dimer (3 mg, 0.006 mmol) and 1,3-bis(diphenylphosphino)
propane (dppp, 10 mg, 0.023 mmol) were weighed in corning tubes and introduced into the
reaction flask under an argon flow using inert glovebox equipment. Anhydrous diglyme
(2.2 mL) was transferred into the reaction flask and the bubbling of argon was continued
for 15 min. Aldehyde 5 (80 mg, 0.23 mmol) was dissolved in anhydrous diglyme and
transferred into the flask. The mixture was stirred at reflux for 24 h. Distilled H2O (2.2 mL)
and CH2Cl2 (2.2 mL) were added, the layers were separated, and the aqueous phase
was extracted with CH2Cl2. The combined organic extracts were washed with brine,
dried over anhydrous mgSO4, filtered, and concentrated under reduced pressure. Flash
chromatography (1:1 to 1:9 hexane-EtOAc) of the resulting residue gave compound 8
(57 mg, 75%) as a white foam and minor amounts of its 5,6-dehydro derivative, which was
hydrogenated (10% Pd/C, absolute EtOH) to give additional compound 8 (3 mg, 4%) after
flash chromatography: [α]22

D = + 63.0 (c 0.55, CHCl3); IR (film): 3194 (NH), 1727, 1619
(CO) cm−1; 1H-NMR (400 MHz, CDCl3, COSY, g-HSQC): δ = 0.72 (q, J = 12.4 Hz, 1H, H-14),
1.67 (dm, J = 12.4 Hz, 1H, H-14), 1.95 (dd, J = 17.6, 12.0 Hz, 1H, H-20), 2.09 (dd, J = 12.4,
8.4 Hz, 1H, H-6), 2.14 (dd, J = 15.6, 7.6 Hz, 1H, CH2CO), 2.23 (dd, J = 15.6, 6.4 Hz, 1H,
CH2CO), 2.35 (m, 1H, H-15), 2.52 (q, J = 12.4 Hz, 1H, H-6), 2.61 (dd, J = 17.6, 4.8 Hz, 1H,
H-20), 3.61 (s, 3H, CH3O), 3.83 (t, J = 11.2 Hz, 1H, H-5), 3.99 (tm, J = 11.2 Hz, 1H, H-5), 4.04
(dd, J = 11.2, 4.4 Hz, 1H, H-3), 6.91 (d, J = 7.2 Hz, 1H, HAR), 6.99 (d, J = 7.6 Hz, 1H, HAR),
7.05 (t, J = 7.6 Hz, 1H, HAR), 7.28 (t, J = 7.6 Hz, 1H, HAR), 8.92 (br. s, 1H, NH); 13C-NMR
(100.6 MHz, CDCl3): δ = 29.6 (C-15), 29.7 (C-14), 33.3 (C-6), 37.3 (C-20), 39.9 (CH2CO), 43.9
(C-5), 51.7 (CH3O), 56.9 (C-7), 64.3 (C-3), 110.5 (CHAR), 123.1 (CHAR), 123.7 (CHAR), 128.6
(CHAR), 129.7 (CAR), 140.2 (CAR), 168.4 (CO), 171.7 (CO), 177.5 (CO); HRMS (ESI) calcd for
[C18H20N2O4 + H+]: 329.1496, found: 329.1497.

3.4. Introduction of the E-Ethylidene Chain

(1’R,7′S,8a’R)-7′-(2-Hydroxyethyl)-2,5′-dioxospiro[indoline-3,1′-indolizidine] (9): Lithium
borohydride (LiBH4, 20 mg, 0.9 mmol) was added at 0 ◦C under an argon atmosphere to
a solution of compound 8 (49 mg, 0.15 mmol) in anhydrous THF (5 mL). The resulting
mixture was stirred at room temperature for 72 h. The reaction was quenched at 0 ◦C by
distilled H2O (5 mL), and the mixture was concentrated under reduced pressure using a
rotary evaporator with a dry ice condenser. Flash chromatography (95:5 EtOAc-MeOH) of
the resulting residue gave oxindole 9 (34 mg, 76%) as a white foam and minor amounts of
indoline 10 (3 mg, 5%). Oxindole 9: [α]22

D = + 58,0 (c 1.12, MeOH); IR (film): 3100–3600
(NH, OH), 1731, 1714 (CO) cm−1; 1H-NMR (400 MHz, CDCl3, COSY, g-HSQC): δ = 0.64
(q, J = 12.0 Hz, 1H, H-14), 1.43 (m, 2H, CH2CH2O), 1.64 (dm, J = 12.0 Hz, 1H, H-14), 1.90
(dd, J = 17.6, 12.0 Hz, 1H, H-20), 2.05 (m, 2H, H-6, H-15), 2.49 (dt, J = 10.4 Hz, 1H, H-6),
2.58 (dd, J = 17.6, 5.2 Hz, 1H, H-20), 3.60 (t, J = 6.4 Hz, 2H, CH2O), 3.80 (dd, J = 11.6,
9.2 Hz, 1H, H-5), 3.98 (m, 2H, H-5, H-3), 6.91 (d, J = 7.6 Hz, 1H, HAR), 6.97 (d, J = 8.0 Hz,
1H, HAR), 7.04 (t, J = 7.6 Hz, 1H, HAR), 7.26 (td, J = 7.6, 1.2 Hz, 1H, HAR), 8.83 (br. s,
1H, NH); 13C-NMR (100.6 MHz, CDCl3): δ = 29.5 (C-15), 29.9 (C-14), 33.2 (C-6), 37.9 (C-
20), 38.4 (CH2CH2O), 43.8 (C-5), 57.0 (C-7), 59.7 (CH2O), 64.6 (C-3), 110.3 (CHAR), 123.1
(CHAR), 123.8 (CHAR), 128.6 (CHAR), 129.9 (CAR), 140.1 (CAR), 169.2 (CO), 177.5 (CO);
HRMS (ESI) calcd for [C17H20N2O3 + Na+]: 323.1366, found: 323.1371. (1′S,7′S,8a’R)-7′-
(2-Hydroxyethyl)-5′-oxospiro[indoline-3,1′-indolizidine] (10): IR (film): 3346 (NH, OH), 1606
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(CO) cm−1; 1H-NMR (400 MHz, CDCl3, COSY, g-HSQC): δ = 0.69 (q, J = 12.4 Hz, 1H, H-14),
1.48 (m, 2H, CH2CH2O), 1.83–1.92 (m, 2H, H-14, H-20), 1.97–2.08 (m, 2H, H-15, H-6), 2.25
(ddd, J = 12.8, 8.4, 2.0 Hz, 1H, H-6), 2.54 (ddd, J = 17.6, 5.2, 1.6 Hz, 1H, H-20), 3.50–3.66 (m,
2H, H-5, H-3), 3.51 (d, J = 9.2 Hz, 1H, H-2), 3.57 (d, J = 9.2 Hz, 1H, H-2), 3.65 (t, J = 6.4 Hz,
2H, CH2CH2O), 3.83–3.91 (m, 1H, H-5), 6.66 (d, J = 7.6 Hz, 1H, HAR), 6.71 (t, J = 7.6 Hz,
1H, HAR), 6.77 (dd, J = 7.6, 1.6 Hz, 1H, HAR), 7.08 (td, J = 7.6, 1.2 Hz, 1H, HAR); 13C-NMR
(100.6 MHz, CDCl3): δ = 29.7 (C-15), 30.3 (C-14), 35.9 (C-6), 38.2 (C-20), 38.7 (CH2CH2O),
43.5 (C-5), 54.9 (C-2), 55.4 (C-7), 60.0 (CH2CH2O), 66.1 (C-3), 110.1 (CHAR), 119.5 (CHAR),
124.0 (CHAR), 128.5 (CHAR), 131.0 (CAR), 151.2 (CAR), 169.2 (CO); HRMS (ESI) calcd for
[C17H22N2O2 + H+]: 287.1754, found: 287.1758.

(1′R,7′S,8a’R)-7′-{2-[(tert-Butyldimethylsilyl)oxy]ethyl}-2,5′-dioxospiro[indoline-3,1′-indolizidine]
(11). tert-Butyldimethylsilyl chloride (TBDMSCl, 27 mg, 0.18 mmol) and imidazole (25 mg,
0.36 mmol) were added at 0 ◦C under an argon atmosphere to a solution of alcohol 9
(27 mg, 0.09 mmol) in anhydrous DMF (1 mL). The resulting mixture was stirred at room
temperature for 16 h. Brine was added, and the mixture was extracted with EtOAc. The
combined organic extracts were dried over anhydrous mgSO4, filtered, and concentrated
under reduced pressure. Flash chromatography (7:3 hexane-EtOAc to 1:1 hexane-EtOAc)
of the resulting residue gave silyl derivative 11 (30 mg, 80%) as a white foam: [α]22

D = +
37.09 (c 0.23, CHCl3); IR (film): 3181 (NH), 1725, 1620 (CO) cm−1; 1H-NMR (400 MHz,
CDCl3, COSY, g-HSQC): δ = −0.01 (s, 3H, CH3Si), 0.00 (s, 3H, CH3Si), 0.65 (qd, J = 12.4,
3.6 Hz, 1H, H-14), 0.83 [s, 9H, C(CH3)3], 1.39 (m, 2H, CH2CH2O), 1.65 (dm, J = 12.4 Hz,
1H, H-14), 1.89 (dd, J = 16.4, 11.6 Hz, 1H, H-20), 2.03–2.09 (m, 2H, H-15, H-6), 2.50–2.58 (m,
2H, H-6, H-20), 3.55 (m, 2H, CH2O), 3.81 (t, J = 12.4 Hz, 1H, H-5), 3.95–4.03 (m, 2H, H-5,
H-3), 6.91–6.95 (m, 2H, HAR), 7.03–7.07 (m, 1H, HAR), 7.27 (m, 1H, HAR), 7.68 (br. s, 1H,
NH); 13C-NMR (100.6 MHz, CDCl3): δ = −5.5 (2CH3Si), 18.2 [C(CH3)3], 25.8 [C(CH3)3],
29.7 (C-15), 30.1 (C-14), 33.3 (C-6), 37.9 (C-20), 38.5 (CH2CH2O), 43.8 (C-5), 57.0 (C-7), 60.1
(CH2O), 64.8 (C-3), 110.2 (CHAR), 123.1 (CHAR), 123.9 (CHAR), 128.5 (CHAR), 129.9 (CAR),
140.0 (CAR), 169.2 (CO), 177.5 (CO); HRMS (ESI) calcd for [C23H34N2O3Si + H+]: 415.2411,
found: 415.2419.

(1′R,7′S,8a’R)-7′-{2-[(tert-Butyldimethylsilyl)oxy]ethyl}-1-(methoxymethyl)-2,5′-dioxospiro[indoline-
3,1′-indolizidine] (12). A solution of compound 11 (386 mg, 0.93 mmol) in anhydrous THF
(2.5 mL) was transferred at 0 ◦C under an argon atmosphere to a suspension of NaH (95%,
36 mg, 1.4 mmol) in anhydrous DMF (2.5 mL). The resulting mixture was stirred at 0 ◦C
for 30 min. Methoxymethyl chloride (MOMCl, 0.12 mL, 1.4 mmol) was added, and the
resulting mixture was stirred at room temperature for 1.5 h. The mixture was cooled to 0 ◦C
and saturated aqueous NaHCO3 (11.2 mL) was added. The mixture was extracted with
EtOAc and the combined organic extracts were dried over anhydrous mgSO4, filtered, and
concentrated under reduced pressure. Flash chromatography (hexane to 7:3 hexane-EtOAc)
of the resulting residue gave the N-MOM derivative 12 (283 mg, 67%) as a white foam:
[α]22

D = + 50.6 (c 2.26, CHCl3); IR (film): 1725, 1651 (CO) cm−1; 1H-NMR (400 MHz, CDCl3,
COSY, g-HSQC): δ = −0.02 (s, 3H, CH3Si), −0.03 (s, 3H, CH3Si), 0.64 (q, J = 12.4 Hz, 1H,
H-14), 0.82 [s, 9H, C(CH3)3], 1.37 (dd, J = 12.8, 6.4 Hz, 2H, CH2CH2O), 1.55 (dm, J = 12.4 Hz,
1H, H-14), 1.89 (dd, J = 17.6, 12.0 Hz, 1H, H-20), 2.00–2.07 (m, 2H, H-15, H-6), 2.50–2.57 (m,
2H, H-20, H-6), 3.32 (s, 3H, CH3O), 3.54 (t, J = 6.0 Hz, 2H, CH2CH2O), 3.81 (t, J = 11.6 Hz,
1H, H-5), 3.96–4.03 (m, 2H, H-5, H-3), 5.15 (s, 2H, NCH2O), 6.94 (d, J = 7.6 Hz, 1H, HAR),
7.08–7.11 (m, 2H, HAR), 7.32 (t, J = 7.6 Hz, 1H, HAR); 13C-NMR (100.6 MHz, CDCl3):
δ = −5.5 (2CH3Si), 18.2 [C(CH3)3], 25.8 [C(CH3)3], 29.6 (C-15), 30.2 (C-14), 33.7 (C-6), 37.8
(C-20), 38.6 (CH2CH2O), 43.8 (C-5), 56.3, 56.9 (C-7, CH3O), 60.0 (CH2CH2O), 64.8 (C-3),
71.5 (NCH2O), 110.0 (CHAR), 123.6 (CHAR), 123.7 (CHAR), 128.6 (CHAR), 129.1 (CAR), 141.2
(CAR), 169.1 (CO), 176.3 (CO); HRMS (ESI) calcd for [C25H38N2O4Si + H+]: 459.2674, found:
459.2675.

(1′R,7′S,8a’R)-7′-{2-[(tert-Butyldimethylsilyl)oxy]ethyl}-1-(tert-butoxycarbonyl)-2,5′-dioxospiro[indoline-
3,1′-indolizidine] (13). NaH (95%, 25 mg, 0.64 mmol) and (Boc)2O (70 mg, 0.32 mmol) were
added at 0 ◦C under an argon atmosphere to a solution of compound 11 (33 mg, 0.08 mmol)
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in anhydrous DMF (1 mL). The mixture was stirred at room temperature for 16 h. The
reaction was quenched by the addition of a few drops of distilled H2O, and the resulting
residue was dried over anhydrous mgSO4, filtered, and concentrated under reduced pres-
sure. Flash chromatography (hexane to 4:1 EtOAc-MeOH) gave N-Boc derivative 13 (26 mg,
64%): [α]22

D = + 56.7 (c 0.92, CHCl3); IR (film): 1794, 1766, 1733 (CO) cm−1; 1H-NMR
(400 MHz, CDCl3, COSY, g-HSQC): δ = −0.28 (s, 3H, CH3Si), −0.21 (s, 3H, CH3Si), 0.60 (q,
J = 12.0 Hz, 1H, H-14), 0.82 [s, 9H, SiC(CH3)3], 1.37–1.45 (m, 2H, CH2CH2O), 1.65 [s, 9H,
C(CH3)3], 1.65 (masked, 1H, H-14), 1.88 (dd, J = 17.6, 12.0 Hz, 1H, H-20), 2.01 (m, 1H, H-15),
2.08 (dd, J = 12.8, 6.8 Hz, 1H, H-6), 2.52 (m, 2H, H-6, H-20), 3.50–3.57 (m, 2H, CH2CH2O),
3.79 (t, J = 12.0 Hz, 1H, H-5), 3.94–4.03 (m, 2H, H-3, H-5), 6.90 (d, J = 6.8 Hz, 1H, HAR),
7.16 (t, J = 7.6 Hz, 1H, HAR), 7.34 (td, J = 7.2, 1.2 Hz, 1H, HAR), 7.90 (d, J = 8.0 Hz, 1H,
HAR); 13C-NMR (100.6 MHz, CDCl3): δ =−5.5 (2CH3Si), 18.1 [SiC(CH3)3], 25.8 [SiC(CH3)3],
28.1 [C(CH3)3], 29.9 (C-15), 30.2 (C-14), 34.5 (C-6), 37.8 (C-20), 38.5 (CH2CH2O), 43.7 (C-5),
56.8 (C-7), 60.2 (CH2CH2O), 65.5 (C-3), 84.9 [C(CH3)3], 115.3 (CHAR), 123.3 (CHAR), 125.1
(CHAR), 128.5 (CAR), 128.7 (CHAR), 138.9 (CAR), 148.9 (CO), 169.1 (CO), 174.6 (CO); HRMS
(ESI) calcd for [C28H42N2O5Si + H+]: 515.2936, found: 515.2941.

(1′R,6′R,7′S,8a’R)-6′-Acetyl-7′-{2-[(tert-butyldimethylsilyl)oxy]ethyl}-1-(methoxymtehyl)-2,5′-
dioxospiro[indoline-3,1′-indolizidine] (14). Lithium diisopropylamide (LDA, 0.26 mL of a 2.0 M
solution in THF/heptane/ethylbenzene, 0.42 mmol) was added at −78 ◦C under an argon
atmosphere to a solution of spiro compound 12 (62 mg, 0.14 mmol) in anhydrous THF
(0.7 mL), and the mixture was stirred at−78 ◦C for 1 h. Methyl acetate (0.05 mL, 0.56 mmol)
was added at −78 ◦C, and the resulting mixture was stirred at room temperature for 4 h.
Saturated aqueous NH4Cl was added, and the mixture was extracted with CH2Cl2. The
combined organic extracts were dried over anhydrous mgSO4, filtered, and concentrated
under reduced pressure. Flash chromatography (hexane to 7:3 hexane-EtOAc) of the result-
ing residue gave starting material 12 (18 mg, 29%) and acetyl derivative 14 (35 mg, 52%)
as a white foam: [α]22

D = + 26.2 (c 0.82, CHCl3); IR (film): 1723, 1642, 1613 (CO) cm−1;
1H-NMR (400 MHz, CDCl3, COSY, g-HSQC): δ =−0.07 (s, 3H, CH3Si),−0.06 (s, 3H, CH3Si),
0.70–0.84 (m, 1H, H-14), 0.79 [s, 9H, C(CH3)3], 1.19–1.25 (m, 1H, CH2CH2O), 1.41–1.49 (m,
1H, CH2CH2O), 1.64–1.70 (m, 1H, H-14), 2.05 (dd, J = 12.8, 2.8 Hz, 1H, H-6), 2.37 (s, 3H,
COCH3), 2.40–2.46 (m, 1H, H-15), 2.55 (dt, J = 12.8, 10.8 Hz, 1H, H-6), 3.21 (d, J = 10.8 Hz,
1H, H-20), 3.32 (s, 3H, CH3O), 3.47 (t, J = 6.4 Hz, 2H, CH2CH2O), 3.81 (dd, J = 12.8, 10.8 Hz,
1H, H-5), 3.96–4.02 (m, 1H, H-5), 4.09 (dd, J = 11.6, 4.0 Hz, 1H, H-3), 5.13 (d, J = 10.8 Hz,
1H, NCH2O), 5.15 (d, J = 10.8 Hz, 1H, NCH2O), 6.92 (d, J = 7.6 Hz, 1H, HAR), 7.08–7.12
(m, 2H, HAR), 7.33 (td, J = 9.2, 1.2 Hz, 1H, HAR); 13C-NMR (100.6 MHz, CDCl3): δ = −5.6
(CH3Si), −5.5 (CH3Si), 18.1 [C(CH3)3], 25.8 [C(CH3)3], 28.8 (C-14), 31.1 (CH3CO), 32.7
(C-15), 33.7 (C-6), 36.6 (CH2CH2O), 44.3 (C-5), 56.3 (CH3O), 56.9 (C-7), 60.2 (CH2CH2O),
61.7 (C-20), 64.3 (C-3), 71.5 (NCH2O), 110.1 (CHAR), 123.6 (CHAR), 123.7 (CHAR), 128.7
(CAR), 128.8 (CHAR), 141.2 (CAR), 165.8 (CO), 176.0 (CO), 205.2 (CO); HRMS (ESI) calcd for
[C27H40N2O5Si + H+]: 501.2779, found: 501.2791.

(1′R,6′R,7′S,8a’R)-7′-{2-[(tert-Butyldimethylsilyl)oxy]ethyl}-6′-(1R- and 1S-hydroxyethyl)-
1-(methoxymethyl)-2,5′-dioxospiro[indoline-3,1′-indolizidine] (15a and 15b). NaBH4 (10 mg,
0.24 mmol) was added at −10 ◦C under an argon atmosphere to a solution of ketone
14 (60 mg, 0.12 mmol) in anhydrous MeOH (2 mL). The resulting mixture was stirred
at −10 ◦C for 1 h. Saturated aqueous NaHCO3 (1.3 mL) and CH2Cl2 were added, and
the mixture was stirred for 5 min. The organic solvent was evaporated, and the result-
ing aqueous mixture was extracted with CH2Cl2. The combined organic extracts were
dried over anhydrous mgSO4, filtered, and concentrated under reduced pressure. Flash
chromatography (7:3 hexane-EtOAc to 1:1 hexane-EtOAc) of the resulting residue gave
alcohols 15a (28 mg, 46%) and 15b (27 mg, 46%) as white foams. 15a: [α]22

D = + 30.3 (c 1.16,
CHCl3); IR (film): 3427 (OH), 1725, 1614 (CO) cm−1; 1H-NMR (400 MHz, CDCl3, COSY,
g-HSQC): δ = −0.05 (s, 3H, CH3Si), −0.04 (s, 3H, CH3Si), 0.65–0.81 (m, 1H, H-14), 0.81 [s,
9H, C(CH3)3], 1.24–1.32 (m, 1H, CH2CH2O), 1.39 (d, J = 6.4 Hz, 3H, CH3CHOH), 1.58 (dt,
J = 13.2, 3.9 Hz, 1H, H-14), 1.76–1.85 (m, 1H, CH2CH2O), 1.92–1.95 (m, 1H, H-15), 2.00–2.05
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(m, 1H, H-6), 2.11 (dd, J = 9.2, 4.8 Hz, 1H, H-20), 2.54 (td, J = 12.4, 9.6 Hz, 1H, H-6), 3.32
(s, 3H, CH3O), 3.45–3.56 (m, 2H, CH2CH2O), 3.81 (dd, J = 12.4, 9.6 Hz, 1H, H-5), 3.96–4.03
(m, 3H, H-3, H-5, CHOH), 5.15 (s, 2H, NCH2O), 6.96 (dm, J = 8.0 Hz, 1H, HAR), 7.08–7.12
(m, 2H, HAR), 7.33 (td, J = 8.0, 1.2 Hz, 1H, HAR); 13C-NMR (100.6 MHz, CDCl3): δ = −5.5
(2CH3Si), 18.1 [C(CH3)3], 22.1 (CH3CHOH), 25.8 [C(CH3)3], 30.4 (C-14), 32.4 (C-15), 33.9
(C-6), 38.0 (CH2CH2O), 44.7 (C-5), 53.3 (C-20), 56.3 (CH3O), 57.2 (C-7), 60.7 (CH2CH2O),
63.6 (C-3), 69.7 (CHOH), 71.5 (NCH2O), 110.1 (CHAR), 123.6 (CHAR), 123.8 (CHAR), 128.7
(CHAR, CAR), 141.2 (CAR), 171.2 (CO), 176.2 (CO); HRMS (ESI) calcd for [C27H42N2O5Si
+ H+]: 503.2936, found: 503.2937. 15b: [α]22

D = + 14.0 (c 1.13, CHCl3); IR (film): 3418
(OH), 1725, 1614 (CO) cm−1; 1H-NMR (400 MHz, CDCl3, COSY, g-HSQC): δ = −0.07 (s,
3H, CH3Si), −0.05 (s, 3H, CH3Si), 0.70–0.84 (m, 1H, H-14), 0.80 [s, 9H, C(CH3)3], 1.18–1.20
(m, 1H, CH2CH2O), 1.19 (d, J = 6.4 Hz, 3H, CH3CHOH), 1.61–1.75 (m, 3H, H-14, H-15,
CH2CH2O), 2.06 (dd, J = 12.8, 6.4 Hz, 1H, H-6), 2.34 (dd, J = 10.8, 3.6 Hz, 1H, H-20), 2.55
(tm, J = 12.8 Hz, 1H, H-6), 3.32 (s, 3H, CH3O), 3.44–3.54 (m, 2H, CH2CH2O), 3.84 (dd,
J = 12.8, 10.8 Hz, 1H, H-5), 3.96–4.01 (m, 3H, H-3, H-5, CHOH), 5.15 (s, 2H, NCH2O), 6.94
(d, J = 7.2 Hz, 1H, HAR), 7.09–7.13 (m, 2H, HAR), 7.34 (t, J = 7.6 Hz, 1H, HAR); 13C-NMR
(100.6 MHz, CDCl3): δ = −5.5 (2CH3Si), 18.0 [C(CH3)3], 18.6 (CH3CHOH), 25.8 [C(CH3)3],
29.3 (C-14), 32.2 (C-15), 33.8 (C-6), 36.3 (CH2CH2O), 44.1 (C-5), 52.3 (C-20), 56.3 (C-7), 57.0
(CH3O), 59.9 (CH2CH2O), 64.1 (C-3), 67.1 (CHOH), 71.5 (NCH2O), 110.2 (CHAR), 123.7
(CHAR), 123.8 (CHAR), 128.7 (CAR), 128.8 (CHAR), 141.2 (CAR), 172.2 (CO), 176.1 (CO);
HRMS (ESI) calcd for [C27H42N2O5Si + H+]: 503.2936, found: 503.2933.

(1′R,6′E,7′S,8a’R)-7′-{2-[(tert-Butyldimethylsilyl)oxy]ethyl}-6′-ethylidene-1-(methoxymethyl)-2,5′-
dioxospiro[indoline-3,1′-indolizidine] (16). From alcohol 15a: N,N′-Dicyclohexylcarbodiimide
(DCC, 54 mg, 0.26 mmol) and copper(I) chloride (CuCl, 52 mg, 0.52 mmol) were added
under an argon atmosphere to a solution of alcohol 15a (26 mg, 0.05 mmol) in anhydrous
toluene (1.6 mL), and the resulting mixture was stirred at reflux for 5 h. The suspension was
filtered through Celite®, and the residue was washed with CH3CN. The resulting filtrate
was kept in the freezer overnight and filtered again through Celite®, washing with minimal
amounts of cold CH3CN. The organic filtrate was concentrated under reduced pressure.
Flash chromatography (1:9 hexane-EtOAc) of the resulting residue gave the E-ethylidene
derivative 16 (22 mg, 91%). From alcohol 15b: First step: Et3N (18 µL, 0.13 mmol) and
mesyl chloride (MsCl, 9 µL, 0.11 mmol) were added at 0 ◦C under an argon atmosphere to
a solution of alcohol 15b (21 mg, 0.04 mmol) in anhydrous CH2Cl2 (0.6 mL). The resulting
mixture was stirred at 0 ◦C for 4 h. Saturated aqueous NH4Cl (1.2 mL) was added, and the
mixture was extracted with CH2Cl2. The combined organic extracts were dried over anhy-
drous mgSO4, filtered, and concentrated under reduced pressure to give the corresponding
mesylate, which was used in the next step without further purification. Second step: Diaz-
abicycloundecene (DBU, 27 µL, 0.18 mmol) was added under an argon atmosphere to a
solution of the above mesylate in anhydrous THF (0.6 mL), and the resulting mixture was
stirred at reflux overnight. Distilled H2O was added, and the mixture was extracted with
EtOAc. The combined organic extracts were dried over anhydrous mgSO4, filtered, and
concentrated under reduced pressure. Flash chromatography (hexane to 7:3 hexane-EtOAc)
of the residue gave the Z isomer of compound 16 (4 mg, 20%) and the E-ethylidene deriva-
tive 16 (12 mg, 60%) as white foams. 16: [α]22

D = −2.9 (c 0.76, CHCl3); IR (film): 1725, 1613
(CO) cm−1; 1H-NMR (400 MHz, CDCl3, COSY, g-HSQC): δ = −0.1 (s, 3H, CH3Si), −0.07 (s,
3H, CH3Si), 0.78 [s, 9H, C(CH3)3], 0.94–1.05 (q, J = 12.0 Hz, 1H, H-14), 1.29–1.36 (m, 1H,
CH2CH2O), 1.65–1.70 (m, 1H, H-14), 1.77–1.85 (m, 4H, CH2CH2O, =CHCH3), 1.87–1.95
(dm, J = 12.4 Hz, 1H, H-6), 2.51 (m, 1H, H-6), 2.87–2.96 (m, 1H, H-15), 3.32 (s, 3H, CH3O),
3.36–3.52 (m, 2H, CH2CH2O), 3.88–4.30 (m, 3H, H-5, H-3), 5.14 (d, J = 10.8 Hz, 1H, NCH2O),
5.17 (d, J = 10.8 Hz, 1H, NCH2O), 6.67 (m, 1H, =CHCH3), 7.09–7.16 (m, 3H, HAR), 7.33 (td,
J = 7.2, 1.6 Hz, HAR); 13C-NMR (100.6 MHz, CDCl3): δ = −5.5 (2CH3Si), 14.4 (=CHCH3),
18.1 [C(CH3)3], 25.8 [C(CH3)3], 30.8 (C-15), 31.1 (C-14), 34.8 (C-6), 39.4 (CH2CH2O), 44.6
(C-5), 56.3 (CH3O), 57.4 (C-7), 60.4 (CH2CH2O), 61.6 (C-3), 71.5 (NCH2O), 110.1 (CHAR),
123.5 (CHAR), 124.3 (CHAR), 128.7 (CHAR), 128.8 (CAR), 133.5 (=CHCH3), 135.7 (C-20), 141.2
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(CAR), 167.6 (CO), 176.6 (CO); HRMS (ESI) calcd for [C27H40N2O4Si + H+]: 485.2830, found:
485.2825. Z-isomer of 16: IR (film): 1726, 1614 (CO) cm−1; 1H-NMR (400 MHz, CDCl3,
COSY, g-HSQC, selected resonances): δ = −0.05 (s, 3H, CH3Si), −0.04 (s, 3H, CH3Si), 0.81
[s, 9H, C(CH3)3], 1.54–1.64 (m, 1H, H-14), 1.83 (m, 1H, CH2CH2O), 2.04 (ddd, J = 12.4,
7.6, 1.6 Hz, 1H, H-6), 2.20 (dd, J = 7.2, 2.0 Hz, 3H, =CHCH3), 2.54–2.60 (m, 1H, H-6), 3.32
(s, 3H, CH3O), 3.48–3.60 (m, 2H, CH2CH2O), 3.83–3.89 (m, 1H, H-5), 4.02–4.08 (m, 2H,
H-3, H-5), 5.15 (s, 2H, NCH2O), 5.94 (qd, J = 7.2, 2.0 Hz, 1H, =CHCH3), 6.99 (dd, J = 8.0,
1.2 Hz, 1H, HAR), 7.07–7.11 (m, 2H, HAR), 7.31 (td, J = 7.6, 1.2 Hz, 1H, HAR); 13C-NMR
(100.6 MHz, CDCl3, selected resonances): δ = −5.5 (CH3Si), −5.4 (CH3Si), 15.8 (=CHCH3),
18.1 [C(CH3)3], 25.8 [C(CH3)3], 29.8 (C-14), 34.1 (C-6), 36.2 (CH2CH2O), 44.0 (C-5), 56.3
(CH3O), 57.0 (C-7), 60.3 (CH2CH2O), 63.9 (C-3), 71.4 (NCH2O), 109.9 (CHAR), 123.6 (CHAR),
123.9 (CHAR), 128.6 (CHAR), 132.1 (CAR), 134.2 (=CHCH3), 141.2 (CAR), 165.5 (CO), 176.4
(CO); HRMS (ESI) calcd for [C27H40N2O4Si + H+]: 485.2830, found: 485.2825.

(1′R,6′E,7′S,8a’R)-6′-Ethylidene-7′-(2-hydroxyethyl)-2,5′-dioxospiro[indoline-3,1′-indolizidine]
(17). TMSCl (30 µL, 0.23 mmol) and sodium iodide (35 mg, 0.23 mmol) were added at 0 ◦C
under an argon atmosphere to a solution of compound 16 (25 mg, 0.05 mg) in anhydrous
CH3CN (0.9 mL). The resulting mixture was stirred at 0 ◦C for 2 h. Saturated aqueous
NaHCO3 was added and the mixture was extracted with EtOAc. The combined organic
extracts were washed with brine, dried over anhydrous mgSO4, filtered, and concentrated
under reduced pressure. The resulting residue was taken in MeOH (4.7 mL), Et3N (22 µL,
0.15 mmol) was added to the solution, and the mixture was stirred at 55 ◦C for 1 h. Satu-
rated aqueous NH4Cl (1.7 mL) was added, the organic solvent was evaporated, and the
aqueous mixture was extracted with EtOAc. The combined organic extracts were washed
with brine, dried over anhydrous mgSO4, filtered, and concentrated under reduced pres-
sure. Flash chromatography (hexane to 1:1 hexane-EtOAc) of the residue gave compound
17 (11 mg, 68%) as a white foam: [α]22

D = −4.3 (c 0.44, CHCl3); IR (film): 3500–3000
(NH, OH), 1721, 1651 (CO) cm−1; 1H-NMR (400 MHz, CDCl3, COSY, g-HSQC): δ = 1.06
(q, J = 12.0 Hz, 1H, H-14), 1.39–1.48 (m, 1H, CH2CH2O), 1.70–1.76 (m, 1H, H-14), 1.80
(dd, J = 7.2, 1.2 Hz, 1H, =CHCH3), 1.83–1.91 (m, 1H, CH2CH2O), 2.01–2.06 (m, 1H, H-6),
2.46–2.54 (m, 1H, H-6), 2.93–3.00 (m, 1H, H-15), 3.43–3.49 (m, 1H, CH2CH2O), 3.53–3.59 (m,
1H, CH2CH2O), 3.88–4.02 (m, 3H, H-5, H-3), 6.71 (qd, J = 7.2, 2.0 Hz, 1H, =CHCH3), 6.97 (d,
J = 7.6 Hz, 1H, HAR), 7.05–7.13 (m, 2H, HAR), 7.26–7.30 (m, 1H, HAR), 8.01 (br. s, 1H, NH);
13C-NMR (100.6 MHz, CDCl3): δ = 14.5 (=CHCH3), 30.5 (C-14), 30.9 (C-15), 34.4 (C-6), 38.5
(CH2CH2O), 44.8 (C-5), 57.4 (C-7), 59.9 (CH2CH2O), 61.5 (C-3), 110.5 (CHAR), 122.9 (CHAR),
124.4 (CHAR), 128.6 (CHAR), 129.7 (CAR), 133.6 (=CHCH3), 134.7 (C-20), 140.2 (CAR), 167.1
(CO), 177.7 (CO); HRMS (ESI) calcd for [C19H22N2O3 + H+]: 327.1703, found: 327.1702.

Supplementary Materials: The following are available online. Copies of 1H and 13C NMR spec-
tra and crystallographic data for spirooxindole 4 (CCDC 2052158). CCDC 2052158 contains the
supplementary crystallographic data for this paper. These data can be obtained free of charge via
http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge
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