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Abstract: Increased environmental concerns and global warming have diverted focus from eco-
friendly bio-composites. Naturals fibers are abundant and have low harvesting costs with adequate
mechanical properties. Hazards of synthetic fibers, recycling issues, and toxic byproducts are the main
driving factors in the research and development of bio-composites. Bio-composites are degradable,
renewable, non-abrasive, and non-toxic, with comparable properties to those of synthetic fiber
composites and used in many applications in various fields. A detailed analysis is carried out in this
review paper to discuss developments in bio-composites. The review covers structure, morphology,
and modifications of fiber, mechanical properties, degradable matrix materials, applications, and
limitations of bio-composites. Some of the key sectors employing bio-composites are the construction,
automobile, and packaging industries. Furthermore, bio-composites are used in the field of medicine
and cosmetics.

Keywords: natural fibers; surface modifications; renewable; bio-degradable

1. Introduction

Increased focus is being placed on the need to reduce global warming, environmental
damage, and pollution. The scientific community has been paying significant attention
to developing environmentally friendly and bio-degradable materials that can replace
the non-renewable materials that pose a threat to the environment [1,2]. Bio-composite
materials have become the center of attention due to their environmentally friendly and
biodegradable nature [3,4]. A number of hazards and shortcomings are associated with
synthetic composites. They have larger carbon footprints and need a large amount of energy
for fabrication [5]. A variety of inorganic fibers, including nylon, Kevlar, polypropylene,
and glass, are used in synthetic composites [6]. Fossil fuel depletion also endangers the
sustainability of these synthetic materials in the long term [7].

The dangers of climate change have made us focus more on reducing global warming,
which made many developed countries pledge to limit the increase in average worldwide
temperature below 2 ◦C [8]. Unlike synthetic materials, bio-composites can be degradable
without emissions of poisonous gases or substances [9]. Microbes degrade biomaterials
into an organic substance through compositing along with the release of minerals, water,
and CO2 [10,11]. Industries are encouraged to use bio-friendly materials to have a better
impact on the environment [12]. These bio-composite materials are promising candidates
to overcome contemporary environmental issues, [1] reduce energy demand, [13] and to
reduce carbon footprints [14,15]. On average 17% less energy is required to produce natural
composites than synthetic counterparts [7].

The global bio-composite market’s projected growth rate is 9.59%, to reach a USD
41 billion net worth by 2025 [16]. The automobile and construction industries are two
major sectors for bio-composites. Bio-composites are eco-friendly, degradable, renewable,
non-abrasive, non-toxic, and have low densities [17]. These materials are used in cars to
reduce the overall weight and to enhance fuel efficiency. Bio-composites are utilized to
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manufacture door panels, armrests, seatbacks, and trays [2]. They are also used externally
for trim parts and brake shoes. Bio-composite parts are better at sound absorbance and
shatter resistance [18].

Fibers used in bio-composites are produced from agricultural products and byprod-
ucts, which are subsequently intermixed with different polymer-based matrices [19].
Biodegradable and renewable polymer matrices are mixed with natural fibers known
as lignocellulosic fibers [20]. Natural fibers are mostly used as reinforcements but also
can be used as matrix material [21,22]. Bio-composites fall under the category of poly-
mer matrix composites. Polymer matrix composites are made up of natural (PLA, PHA,
PCL) or synthetic matrix materials (thermoplastic, thermosetting plastic), with one or
more reinforcements such as carbon fibers, glass fibers or natural fibers in the case of
bio-composites [23,24]. Cellulose fibers are organic and are produced from biomass [25]
and associated derivatives of agricultural products [26]. Cellulose is currently considered
one of the most studied and used polymers, followed by lignin [27]. Approximately 40–60%
of plant matter consists of cellulose, in addition to hemicellulose, lignin, and pectin [28].
The basic cellulose unit is anhydro-D-glucose, which contains three hydroxyls responsible
for hydrophilic nature [29]. Cellulose offers superior mechanical properties, while lignin
reduces water sorption and enhances thermal stability [30]. Lignin serves to bind plant
parts together, thereby acting as a cementing material. It also influences the structure and
properties of plants [20]. The lumen is a hollow central cavity in a fiber cell, responsible for
reducing the density, increasing thermal insulation, and noise-resistance properties [31].
Microfibril is a primary structural unit in the cell wall of a plant. The angle at which
the microfibril fiber connects with the cell wall directly influences the mechanical prop-
erties and acts as a reinforcing element arising from the linear linkage of crystallites [32].
Certain types of lignocellulosic fibers exhibit mechanical properties and overall strength
comparable to that of synthetic fibers such as fiberglass [33].

Thermoplastic polymer matrices, such as polypropylene and polyethylene, are hy-
drophobic and offer low compatibility with natural fibers. Surface treatments decrease
the fibers’ surface energy to optimize the strength and properties of the composite [34].
Bio-composite performance is ultimately dependent on the fiber/matrix interphase. Ad-
hesion between the matrix and fiber determines the final properties of the composite [35].
The mechanical properties of a composite depend on the amount and type of filler being
used, how fiber adheres to the material, and the final fiber orientation in the matrix [36].
The properties of these lignocellulosic fibers are also dependent on the origin of the plant
species, fiber, location of the plant, environment around the plant, and methods to extract
the fibers [20].

Polybutylene succinate (PBS), polylactic acid (PLA) [9,37], poly hydroxyalkanotes
(PHA) [38], and poly(ε-caprolactone) (PCL) [39] are commonly used biodegradable matrices
in bio-composites. Synthetic matrix materials are not biodegradable. Some synthetic
matrix materials are polyethylene, polypropylene, polycarbonate, polyvinylchloride, nylon,
acrylics, and carbon steel Kevlar, epoxy resins, etc. [40]. Out of these, due to its eco-friendly
and degradable nature, PLA has attracted significant attention. PLA is synthesized via
direct starch fermentation. The use of a ring-opening approach to polymerize cyclic lactide
dimers is preferred for PLA with a higher molecular weight. PLA is crystalline, transparent,
and brittle in nature [9]. PHA is generally produced using a microbial process in carbon
substrate, and it degrades easily at room temperature. However, it has mostly limited use
due to the high cost [38]. PBS belongs to aliphatic polyesters and is produced by two-step
polycondensation. PBS is semi-crystalline with an aliphatic structure and is biodegradable
due to the presence of odd ester bonds. However, like PLA, it has a higher production
cost [41,42]. PCL is developed from crude oil through the ring opening polymerization of
caprolactone monomers [39]. The action of microorganisms degrades it with water, CO2,
minerals, and methane. PLA exhibits inferior properties in comparison with PBS and PCL,
with higher production costs [43].
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Green bio-composites have pros and cons. Limitations of bio-composites include
poor fire resistance [2], restricted processing temperature, low thermal resistance [32], high
hydrophilicity, low mechanical and thermo-physio properties [40], and poor fiber–matrix
adhesion [44,45]. Due to their hydrophilic nature, these composites tend to absorb water
from the immediate environment [32], causing the composite to swell. Stem fiber, leaf fiber,
and seed fiber are the three main fibers [20]. The most common natural fibers are hemp,
doum, coir, jute, almond shells, rice husk, oat husk, wheat straw, switchgrass, corona, kenaf,
coconut, bamboo, bagasse, banana, sisal, sugarcane, oil palm empty fruit bunch [20,46–61].

2. Lignocellulosic Fibers

Lignocellulosic fibers consist of cellulose, hemicellulose, lignin, pectin, waxes, extrac-
tive, and trace elements [62,63]. Figure 1 shows the different structural constituents of a
plant fiber.
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2.1. Cellulose

Cellulose is the most abundant form of living terrestrial organism. Purer forms of
cellulose include cotton and hemp fibers, while in wood, stalks and leaves, cellulose is
found in combination with lignin and hemicellulose. Apart from plants, some bacteria and
fungi are found to have cellulose as well. In plants, cellulose is located in a secondary wall
that consists of linear homopolysaccharide composed of anhydro-D-glucose (C6H11O5).
Linkages of 1,4-b-D-glycosidic join them with a degree of polymerization near 10,000,
and each repeating unit contains three hydroxyl groups. Cellobiose is a repeating unit
and a dimer of glucose [65]. Hydrogen bonding between hydroxyl groups (with water
elimination [66]) is responsible for the 3D crystallinity of the structure and the hydrophilic
nature [29,64,67]. The length of the 1,4-b-D-glycosidic linkages is dependent on the cellulose
source [67]. Hydrogen bonding aids in a highly ordered structure. Hydrogen bonding
between chains is very strong in crystalline regions, responsible for the high strength of
fiber and making it insoluble in most of the solvents. In amorphous regions, these chains
can bond with other molecules, such as water. Cellulose is hydrophilic, although it is
insoluble in water; water absorption causes swelling. Cellulose properties are influenced
by factors such as the type of plant, fiber modification, age of the plant, extraction methods,
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chemical composition, location of the plant, the maturity of the plant, and microscopic and
molecular defects [66,68].

2.2. Hemicellulose

Hemicellulose is different from cellulose due to different sugar units. Hemicellulose
is a branched non-crystalline or amorphous structure, different from a linear cellulosic
structure. It has a degree of polymerization between 50 and 300, considerably less than
cellulose. Hemicellulose acts as a compatibilizer to support microfibrils, cellulose, and
lignin [69]. It is hydrophilic in nature, soluble in alkaline solution, and easy to hydrolyze in
acids [64]. Hemicellulose may differ from plant to plant with different constituents [70].
Table 1 shows constituents of different natural fibers.

Table 1. Constituents of different natural fibers.

Fiber Cellulose (%) Hemicellulose (%) Lignin (%) Pectin (%) Wax (%) Reference

Abaca 56–63 21–25 7–12 0.8 3 [23,71–73]

Alfa 45.4 38.5 14.9 - 2 [71,72]

Areca 57.35–58.21 13–15.42 23–24 - 0.12 [74]

Bagasse 32–44 19–24 22 10 - [71,75]

Bamboo 26–43 20.5 21–31 - - [23,71]

Banana 62–64 12.5 5–10 4 - [31,75–77]

Barley 31–45 27–38 14–19 - 2–7 [31]

Coir 45.6 20 45 4 - [71,72,78]

Corn 38–40 28 7–21 - 3.6–7 [31]

Cotton 82.7–90 4 0.75 6 0.6 [71,72]

Curaua 70.7–73.6 9.9 7.5–11.1 - - [23,71,72,75]

Eucalyptus 41.7 32.56 25.4 8.2 0.22 [79]

Flax 62–72.5 14.5–20.6 2.5 0.9 - [23,71,75]

Hemp 81 14–22 4–13 0.9 0.8 [23,71,80]

Henequen 60–77.6 28 8–13.1 - 0.5 [71,72]

Hibiscus 28 25 22.7 - - [81]

Isora 74 - 23 - 1.1 [71]

Jute 59–71.5 12–20 9–13 0.2 0.5 [23,71,82,83]

Kenaf 53.5 21–33 17–21.5 2 - [71,78,84]

Phromium 67 30 11 - - [71]

Pineapple 80.5 17.5 8.3–12.7 4 - [23,71]

Ramie 72 5–16.7 0.6–0.8 2 - [71,80]

Rice husk 28–36 23–28 12–14 - 14–20 [81]

Sisal 60–73 11.5–14 8–11 1.2 - [23,71,85]

Sorghum 27 25 11 - - [31]

Wheat 33–38 26–32 17–19 - 6.8 [79]

3. Fiber Modification

Fiber modification helps to overcome various problems of natural fibers, such as
poor fiber/matrix adhesion [35], moisture absorption [81], low fire resistance [82], inferior
mechanical properties [83], low thermal resistance, and restrictive processing tempera-
tures [32]. A wide number of methods are used to overcome these problems.



Molecules 2021, 26, 404 5 of 28

3.1. Fiber/Matrix Adhesion

Fiber addition in a matrix significantly alters the properties of the matrix due to the
dependency of bio-composites properties on the fiber/matrix interface. Strong interface
bonds must be ensured to achieve the majority of desired mechanical properties. Many
physical properties are considerably improved with strong fiber/matrix adhesion [35]. A
poor fiber/matrix interface results in reduced mechanical and physical properties. The
hydrophilic nature of fiber is one reason for poor interfaces, which leads to poor fiber
dispersion in a matrix. Hydrophobic matrix material and hydrophilic fibers are incom-
patible, which reduces the composite’s ability for stress transfer between the matrix and
fiber. Fiber dimensional changes lead to microcracking, thereby affecting fiber/matrix
adhesion [76,82,83]. Many techniques (e.g., surface treatments) have been employed to
enhance fiber/matrix adhesion. In addition to improving fiber/matrix adhesion, surface
treatments also reduce moisture sensitivity. Surface treatments employ methods such as
solvent extraction, physio-chemical treatments, corona discharge, plasma discharge, laser,
gamma-ray, and UV bombardment, and chemical modifications by the condensation of
coupling agents on a surface or their placement by free radical technique [20,84]. Physical
techniques modify the surface to increase interface bonding for better matrix and fiber
adhesion [23]. Corona discharge modifies natural fiber’s surface energy and improves
its compatibility with matrix material [85]. Tensile properties are significantly enhanced
with the corona treatment of hemp fiber [86]. Plasma treatment also improves fiber/matrix
compatibility. In plasma treatment, the charge is indued on the surface, and various gases
can induce different modifications. Surface energy is improved due to surface cross-linking.
Plasma-treated flax fibers have demonstrated enhanced fiber/matrix adhesion [87]. Interfa-
cial adhesions were improved in jute fibers by oxygen plasma treatment with the induction
of hydrophobic characters in fibers [88]. Chemical methods improve fiber/matrix adhesion
by introducing new groups between incompatible fibers and matrices [23]. Silane treatment
is an efficient method to improve fiber/matrix adhesion using SiH4 [89]. Maleated coupling
improves a composite’s strength by improving the fiber/matrix interface [90]. Another
method is a bacterial modification, which improves fiber/matrix adhesion through better
mechanical interlocking. The use of cellulose produced from bacteria is considered a green
method for surface modification and provides new means to modify fibers [91]. Alkali
treatment or the Mercerization process is used to induce rough surfaces at the fiber/matrix
interface [92]. The alkaline treatment works by altering hydrogen bonding in the struc-
ture and removing some lignin, waxes, and oils to expose short-length crystallites [93].
Alkaline-treated fiber has an increased concentration of exposed cellulose and surface
roughness for better interlocking [94,95]. High alkali concentration has adverse effects on
fibers, which can weaken and damage the fiber. Optimum concentration must be ensured
to have most of desired mechanical and physical properties [96]. Benzoyl treatment is also
used to improve fiber/matrix adhesion [97]. Detailed discussion on this method is present
in the next section. Isocyanate with a functional group (−N=C=O) readily reacts with the
hydroxyl group in lignin and cellulose to form strong covalent bonding. Isocyanate acts
as a promoter and a coupling agent to provide better fiber/matrix adhesion [98]. Graft
copolymerization is an effective surface treatment. Vinyl monomers are grafted on the
surface, improving fiber/matrix adhesion [99,100]. Permanganate treatment forms reactive
manganate ions. These ions react with hydroxyl groups in cellulose to initiate graft poly-
merization. This treatment provides chemical interlocking at the fiber/matrix interface to
improve adhesion [101].

3.2. Reducing Moisture Absorption by Natural Fiber

Strong polarized hydroxyl groups make natural fibers more hydrophilic. They ab-
sorb most of the moisture from the surrounding environment [102]. The fiber cell wall
has many hydrogen bonds. As the water comes in contact with the fiber, old hydrogen
bonds break, and new hydrogen bonds are formed between hydroxyl groups and water
molecules which are responsible for water absorption [97]. Hemicelluloses are mainly
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responsible for moisture absorption in natural fibers [103]. Hydrophilic natural fiber ab-
sorbs moisture, affects mechanical properties, gives dimensional instability, and develops
internal stresses [32]. Capillary action and water intake fills voids in the composite, giving
dimensional instability to the composite [20]. Moisture absorption causes swelling and
microcracks [104]. The hydrophilic nature of fibers prevents the use of bio-composites in
various potential applications [105]. Moisture absorption makes the composite a breeding
ground for fungi, bacteria, and harmful insects [106]. Apart from water absorption, micro
gaps and cracks can be a result of poor processing conditions, incompatibility between the
fiber and matrix, and poor environmental and service conditions [107]. Water absorption in
bio-composites is, somehow, a complex process due to the involvement of a hydrophobic
matrix and hydrophilic fibers. Diffusion and percolation are two main mechanisms of
water intake. In diffusion, water molecules are transported from higher concentration areas
to low concentration areas due to their random motion [108,109], while in percolation,
water is passed through pores of the composite [110]. Moisture absorption and composite
swelling are directly proportional to fiber thickness and size [111]. Water absorption in
composites decreases the Young’s modulus, the stress at maximum load, and various
other mechanical properties [112]. Fiber must be modified physically and chemically to
overcome moisture absorption issues. Compatibilizers and adhesion promotors showed
promising results to reduce moisture absorption [113]. Hydrothermal treatment increases
the crystallinity of cellulose in natural fiber and extracts hemicellulose content, effectively
reducing moisture intake. The Duralin process is also employed to reduce the moisture
content and swelling of the composite [114]. Acetylation of natural fiber is a renowned
esterification method, originally used to prevent the cell walls of wood cellulose from
water. Acetylation introduces the acetyl functional group (CH3COO−) with acetic acid as a
byproduct [115]. In this method, acetic anhydride replaces hydroxyl groups responsible
for the hydrophilic nature of fiber [116]. This method is useful to decrease the moisture
absorption properties of the composite [117]. Acetyl-treated fibers exhibit better resistance
to tensile strength loss during treatment [118]. Benzoyl treatment is another method used
to improve fiber/matrix adhesion, thermal stability, and to decrease the hydrophilic nature
of the fiber. Benzoyl chloride is used in fiber treatment. This method removes the majority
of lignin and waxes, along with oily materials, to expose reactive hydroxyl groups at the
surface. Benzoyl groups substitute hydroxyl groups, making natural fiber hydrophobic
and improving adhesion properties [97]. Peroxide treatment is an effective method to
reduce the moisture absorption in fiber. In this method, free peroxide radicals react with
hydroxyl groups to achieve the desired results and to improve the thermal stability [119].
The sodium chlorite method has shown promising results to reduce moisture content and to
enhance the hydrophobic properties of the fiber. Sodium chlorite is utilized in bleaching the
fibers to form chlorine dioxide, which reacts with lignin to effectively remove it, and also
reacts with hemicellulose to improve the hydrophobic nature [120,121]. Steric acid contains
carboxyl groups, and these groups react with hydroxyl groups to decrease their hydrophilic
nature. Pectin, waxes, and oily materials are also removed in this method [49,122]. Perman-
ganate treatment releases manganate ions to react with hydrophilic hydroxyl groups of
cellulose to improve water resistance natural fiber [123]. Triazine treatment uses triazine
derivates with multifunctional groups to reduce moisture adsorption in fibers. Chlorine
in multifunctional groups reacts with hydroxyl groups by esterification and provides a
link between cellulose and the coupling agent to enhance hydrophobic properties of the
fiber [124,125]. Fatty acid derivates are also used to improve the water-resistance of fibers.
Oleoyl chloride is one of the fatty acids derivates which reacts with the hydroxyl group
through esterification. Hydrophilic hydroxyl groups are removed by this method, giving
hydrophobic characteristics to fibers [126]. Fungal treatment is considered one of the best
methods to increase the water-resistance of a fiber. It is a green and eco-friendly method.
Non-cellulosic components of fibers are removed by specific enzymatic actions, along with
lignin and hemicellulose removal. Excessive enzymatic activity may lead to a decrease in
fiber strength [127].
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3.3. Thermal Degradation and Flammability Properties

Natural fiber constituents such as cellulose, hemicellulose, lignin, pectin, and waxes
are responsible for degradation and poor thermal properties. Both thermal stability and
moisture absorption properties are temperature-dependent [128]. Poor thermal properties
lead to the degradation of fibers with the release of various volatile products [20]. Cellulose
degrades between 260 ◦C and 350 ◦C, and hemicellulose between 200 ◦C and 260 ◦C, while
lignin starts to decompose at 160 ◦C and continues to degrade up to 400 ◦C [18]. Natural
fiber-based composites decompose with the release of toxic byproducts and heat [129].
Composite combustion releases toxic byproducts, smoke, char, combustible and non-
combustible gases [130]. Properties such as thermal stability, fire properties and water
resistance are dependent on the constituents of natural fibers. High cellulosic contents
make natural fibers readily flammable [131]. Orientation and structural properties of fibers
play a vital role in determining thermal and flammability properties. Flammability and
thermal properties are improved with the addition of silica and ash [132].

High crystallinity, char production and low polymerization improve fire resistance.
Char protects the materials’ core from combustion and maintains structural integrity [133].
Composites undergo heating, decomposition, flame ignition, combustion, and propagation
during the burning cycle [134]. Due to poor flammability, natural fibers have been limited
to a few applications [131]. It is a challenge to find methods to overcome this issue, because
few studies have been reported to address this problem. Flax fiber has the best fire resis-
tance properties due to low lignin contents [135]. Thermal stability and the flammability of
natural fibers is studied through various techniques, such as thermogravimetric analysis
(TGA), vertical flame tests, cone calorimetry techniques, etc. The rate of flame spread, heat
rate reserve (HRR), mass loss, and carbonization rate impact the flammability of fibers [82].
Some of the methods to minimize flammability and thermal issues are: the use of nanopar-
ticles, fire retardant coatings, impregnation of natural fibers with fire retardants before
manufacturing, the use of non-flammable binders, resins, polymer matrices, and the insula-
tion of composites to prevent possible damage from heat or flame [136,137]. Ammonium,
halogens, boron, phosphorous, bromine, aluminum and magnesium-based compounds,
zinc borate, silica, graphite, and alkaline earth metal compounds are commonly used
fire retardants. Phosphorous-based fire retardants exhibit auto-extinguish behavior in a
composite [2,134,138]. Ammonium-based retardants produce char, while bromine-based
compounds terminate chemical reactions for combustions [130]. Due to toxic byproducts,
the use of halogens is not recommended [138]. Phosphorous-based fire retardants are
not preferred due to environmental hazards and health issues [139]. Nanoparticles and
nanocomposites have shown good flame and thermal resistance properties but are not
cost-viable. The addition of flame retardants improves flammability properties by increas-
ing the specific heat and thermal conductivity, preserving physical integrity, and reducing
combustion heat in bio-composite [130]. The addition of flame retardants may have some
adverse effects, such as poor fiber/matrix adhesion and the poor dispersion of fibers in
a matrix [139]. Table 2 contains various research studies for bio-composites and surface
modifications.
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Table 2. Different research studies for bio-composites and modification techniques.

Composite Fabrication Method Key Findings and Mechanical Properties Effect of Surface Treatments References

Abaca–Roselle/Cardanol
formaldehyde composite Compression molding

Natural fibers improved thermal, wear
resistance, and mechanical properties of the

composite and improved the hardness, density,
and tensile strength of the matrix material.

Tensile and flexural properties improved due
to the presence of carbon and silica.

Alkali treatment increased fiber/matrix adhesion due
to the removal of impurities and increased

mechanical properties.
[140]

Areca fibers/Pine
resin composite Solvent casting method

The tensile strength of the composite is
affected by the adhesion of the fiber/matrix;
10 wt.% areca fibers and 90 wt.% pine resin

exhibited better mechanical properties due to
efficient stress transfer between fibers

and matrix.

Alkali treatment increased fiber/matrix adhesion.
Tensile strength increased by 25%, while impact
strength increased up to 24% due to treatment.

[141]

Banana
fibers/PLA/Nanoclay

composite
Melt blending

Nanoclay and PLA improved composite
stability, flame resistance, and thermal

properties. Nanoclay formed a protective layer
at the surface to prevent flame and acted as a

thermal barrier to prevent degradation.

Silane treatment improved fiber/matrix adhesion by
increasing the contact area of fibers. [142]

Flax/epoxy composite Vacuum infusion Flax/epoxy composite is suspectable to water
absorption due to high void content.

Sodium bicarbonate-treated fibers had less void
content mainly due to the removal of impurities. With
the increase in sodium bicarbonate concentration in
fiber treatment, properties such as flexural, tensile

strength and flexural moduli increased.

[143]

Hemp
fibers/polycaprolactone

bio-composite
Twin screw extrusion

Flexural, tensile and impact properties of
composite are improved. With the increase in
aspect ratio of hemp fiber, water absorption

increased. Flexural strength increased by 169%
and flexural modulus increased by 285% for
the aspect ratio of 26. Hemp fibers increased

the stiffness of the composite.

[144]
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Table 2. Cont.

Composite Fabrication Method Key Findings and Mechanical Properties Effect of Surface Treatments References

Jute fibers/unsaturated
polyester resin

Hand lay-up and
compression molding

Jute fibers enhanced properties such as tensile,
flexural strength, flexural modulus, and

interlaminar shear strength. Untreated fibers
lead to low density and low volume fraction.

Alkali-treated fibers showed an increase in tensile,
flexural strength, flexural modulus, and interlaminar

shear strength due to better fiber/matrix adhesion.
Alkali treatment removes hemicellulose and increases
interlocking points in fibers for better adhesion and

stress transfer.

[145]

Jute fibers/clay/epoxy
bio-composite Compression molding

The addition of 15 wt.% clay improved
mechanical properties due to uniform

dispersion in a composite. Clay can
agglomerate, which increases composite

porosity and decreases fiber/matrix adhesion.

Alkali treatment improved fiber/matrix adhesion
with increased cellulose after removing pectin, lignin,
and other impurities. An increase in cellulose content

leads to better interfacial adhesion.

[146]

Kenaf fibers/sea urchin
spike filler/neem oil/epoxy

composite
Hand lay-up

Neem oil made epoxy eco-friendly while sea
urchin spike filler and kenaf fibers increased
the toughness of the composite. The addition

of neem oil leads to the formation of an
interpolymer-penetrating network and ketone
groups, which decreased hardness and overall

tensile strength of the composite.

Amino silane-treated particles dispersed well in
matrix material without agglomeration, which

improved wear resistance and thermal degradation.
Treated fiber formed a layer at the fiber/matrix

interface, and high temperature was required to break
this layer. Modified fibers increased the moisture

resistance in the composite.

[147]

Ramie fibers/PLA composite Hot compression molding
Low temperature and pressure in compression

molding had led to poor fiber/matrix
adhesion and wettability.

Alkali/silane-treated fibers composite had better
tensile strength, modulus, and impact strength.

Cellulose content increased due to the removal of
impurities from fibers, which improved mechanical
properties. Treated fibers had better stress transfer

due to the formation of covalent bonds between fibers
and matrix.

[148]

Sisal fibers/starch composite Hot pressing

Compressive and tensile strength of the
composite increased with the addition of sisal
fibers. The addition of natural fibers increased

the biodegradability properties of the
composite.

Alkaline treatment increased fiber/matrix adhesion,
which improved mechanical properties. [149]
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3.4. Mechanical Properties

Bio-composites are used in the automobile, construction, and packaging industries.
Bio-composites are mostly used in non-load-bearing and non-structural applications due to
limitations in mechanical properties [150]. The construction sector requires composites to
bear high stress, compression, and tension [129]. Natural bio-composites exhibit reasonable
mechanical properties such as stiffness, strength, flexibility, and Young’s modulus [151].
Fiber type, fiber orientation, microfibril angle, treatment type, physical properties, and
adhesion between the fiber and the matrix are essential characteristics in composites to
determine mechanical properties [152]. The microfibril angle determines the stiffness of
the fiber [18]. Natural fibers act as reinforcements to improve mechanical properties [152].
Fiber/matrix adhesion is the most critical factor for the determination of mechanical
properties. Better adhesion improves the stress/load transfer between fiber and matrix.
Tensile strength is mostly dependent on matrix properties, while modulus is dependent on
fiber properties [153]. Mechanical properties of different fibers are listed in Table 3.

Table 3. Mechanical properties of different natural fibers.

Fiber
Density
(g/cm3)

Diameter
(µm)

Micro-
Fibrillar
Angle (◦)

Moisture
Content

(%)

Tensile
Strength

(MPa)

Elongation
at Break

(%)
References

Abaca 1.5 10–30 20–25 5–10 400–980 3–10 [23,75,154,155]

Areca 0.7–0.8 - - - 147–322 10.2–13.15 [156,157]

Bagasse 1.25 10–34 - - 222–290 1.1 [23,75,158]

Bamboo 0.6–1.11 240–330 - 9.16 140–800 1.40 [23,72,159–161]

Banana 1.35 50–250 11–12 10.71 529–914 3 [80,161–163]

Coir 1.2–1.5 100–450 30–49 8–11.36 175–180 30 [18,40,74,75,159,164]

Cotton 1.5–1.6 12–35 - 7.85–8.5 287–597 7–8 [72,163–167]

Curaua 1.4 170 - - 500–1150 3.7–4.3 [23,161]

Flax 1.5 5–38 5–10 1.2–8 345–1035 2.7–3.2 [23,161,167–169]

Hemp 1.48 - 2–6.2 6.2–12 690 1.6 [23,161,163,164,169]

Henequen 1.2 - - - 430–570 3.7–5.9 [71,72]

Isora 1.2–1.3 - - - 500–600 5–6 [71,170]

Jute 1.3–1.5 20–200 8 12.5–13.7 200–773 1.5–1.8 [23,75,164,168,171]

Kenaf 1.4 70–250 2–6.2 6.2–12 930 1.5 [23,163,165,165]

Nettle 1.51 20–80 - 11–17 650 1.7 [75,155,167]

Oil Palm 0.7–1.55 150–500 42–46 - 80–248 3.2 [23,75,165,172]

Palf 0.8–1.6 20–80 14 11.8 180–1627 1.6–14.5 [74,75,112]

Piassava 1.4 - - - 134–143 7.8–21.9 [74,75,173]

Pineapple 0.8–1.6 8–41 - 10–13 170–1627 2.4 [23,162,167,174]

Ramie 1.5 50 69–83 220–938 2–3.8 [23,163,164]

Sisal 1.5 50–300 - 11 511–635 3–7 [23,163,164]

4. Biodegradable Matrix Materials

Biodegradable matrices are environmental and eco-friendly. Disposal and the environ-
mental problems of composites can be solved using renewable and biodegradable matrices
and fibers [168]. These biodegradable composites have given rise to new markets [169].
Biodegradable polymer matrices are categorized according to the source. Biodegradable
polymers are created through agricultural products, byproducts, microbial actions, and
chemical methods [26,170]. Bio-composites are fabricated by combining natural fibers
in a matrix material. The matrix material can be biodegradable, non-biodegradable, or
synthetic. Synthetic matrix materials, along with natural fibers, are used to form hybrid
bio-composites [18]. Polymers can also be fabricated by combining or blending two biopoly-
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mers. The biodegradability of the polymer depends on factors such as the origin of the
polymer, the polymer structure, and the conditions around the polymer during degrada-
tion [171]. During biodegradation, the biopolymer is decomposed by microbial actions with
the release of CO2, various compounds, and biomass [161]. Biodegradable polymer matrix
materials have poor properties, but the introduction of natural fibers increases mechanical
properties [172]. Conventional polymers such as polyethylene, polyester, polypropylene,
and epoxy have been through the cycle of development and commercialization [173–175].
Years of research and development have resulted in high performance and better mechan-
ical properties. However, recycling and environmental issues have shifted attention to
bio-polymers [176]. As of 2020, a total of more than nine billion metric tons of synthetic
polymers has been produced from petroleum products [177,178]. Only about 25% of total
produced synthetic polymers are recycled or incinerated; most of it ends up in landfill
sites or the natural environment [179]. Low mechanical properties, lack of manufactur-
ing processes, high production cost, low melting temperatures, and a narrow processing
temperature range are limitations of biopolymers. Several methods have been employed
to produce higher molecular weight polymers [180,181]. Bio-based polymers can replace
synthetic polymers in key sectors such as the construction, automobile, and packaging
industries.

Some of the examples of bio-based polymer matrices are polybutylene succinate (PBS),
polylactic acid (PLA), poly hydroxyalkanotes (PHA), and poly(ε-caprolactone) (PCL) [9,37–39].

4.1. Polybutylene Succinate (PBS)

Polybutylene succinate (PBS) is fabricated from succinic acid and 1,4-butanediol (BDO).
PBS is a biodegradable polymer with excellent mechanical and thermal properties [182].
PBS belongs to the aliphatic polyester family. Due to ever-increasing environmental
concerns, monomers from renewable sources are encouraged for use [183]. Succinic acid
is produced from maleic anhydride hydrogenization: maleic anhydride is converted into
succinic anhydride; and highly pure succinic acid is produced via the electrolysis route.
Highly pure succinic acid is required in the pharmaceutical and food industries [184].
Succinic acid is also produced through the fermentation of agricultural carbohydrates
and byproducts [185]. Microbial organisms are responsible for fermentation. Different
bacterial cultures are used in fermentation processes, such as Actinobacillus succinogenes and
Anaerobiospirillum succiniciproducens [186]. The U.S.A. Department of Energy recognized
succinic acid as a replacement for petroleum-based products. Succinic acid is used in
the preparation of different chemical compounds [187]. BDO is produced mainly from
petroleum products [184]. Various processes such as the Reppe process, Mitsubishi 1,3-
butadiene acetoxylation technology, the LyondellBasell propylene oxide route, and Davy
Process Technology are used in industries [183,188]. PBS is synthesized through two-step
polycondensation. The first step involves esterification and transesterification of succinic
acid and BDO [189]. Oligomers are produced by esterification, and the next step involves
removing BDO via polycondensation to form higher molecular weight PBS. In this process,
the reactor must have a mechanical stirrer, oil bath, and nitrogen gas [190], along with
various catalysts [190].

PBS is a highly crystalline polyester with a melting temperature of around 115 ◦C,
critical for high-temperature applications [191]. Tensile yield strength and Young’s modulus
reach up to 35 MPa and 500 MPa, respectively. Both properties are highly dependent on
the degree of crystallinity for PBS [183,192,193]. Physical properties of PBS are altered by
copolymerization with different comonomers, such as ethylene glycol and adipic acid [192–
194]. Aliphatic structure and the presence of ester bonds makes PBS biodegradable in lipase
mixtures, soil, moisture content, and sludge [41,182]. Biodegradation of PBS depends on
chemical structure, the degree of crystallinity, specimen size, and conditions around the
specimen. The rate of aliphatic polyester is slowed down with an increase in aromatic
content, while it increases with the addition of comonomers [193–195]. The degradation
rate is controlled by PBS copolymerization. Processability of PBS is strongly dependent
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on melt strength, the viscosity of the melt, thermal stability, the degree of crystallization,
and water resistance. Extrusion and injection molding are suitable for PBS fabrication for
molecular weight under 100,000, while blowing and casting mechanisms require higher
molecular weight PBS for easy processing [183]. Mechanical properties of PBS are improved
significantly by blending with other bio-based polymers such as starch, PLA, carbohydrates,
and its copolymers [194]. Tensile, elastic modulus and impact properties of PBS are
enhanced with polylactic acid (PLA). With some limitations at the molecular level, PBS and
PLA are compatible [196]. PBS is replacing conventional polymers in packaging, bottles,
molds, fibers, flushable hygiene, shopping bags [41,197], etc.

4.2. Polylactic Acid (PLA)

Polylactic acid is an eco-friendly, bio-degradable polymer and is made up of lactic acid
produced from renewable agricultural products and byproducts such as starch extracted
from potatoes, corn grain, sugar cane, etc. Hydrolytic or thermal degradation of PLA results
in low toxicity byproducts [198–201]. Lactic acid is categorized into two optically active
isomers, L and D type enantiomers [202,203]: L type lactic acid rotates the polarized light
in a clockwise plane; D types rotate anticlockwise. Isomer type dictates PLA classification
in a family of three polymers: poly-D-lactic acid (PDLA), poly-L-lactic acid (PLLA), and
poly-L-D-lactic acid (PDLLA) [201,204]. PLA is fabricated through three routes, which are
polymerization through the formation of lactide, direct condensation polymerization, and
azeotropic dehydration condensation [205–207]. Ring-opening polymerization (ROP) is
one of the most widely used methods to fabricate PLA [208,209]. A cyclic dimer of lactic
acid is used in ROP, and the process involves ring-opening of the cyclic dimer in lactic acid.

Catalysts are used to control the molecular weight of PLA [210]. The L:D ratio in
lactic acid is controlled through factors such as temperature, residence time, type, and
concentration of catalyst [203]. ROP is performed in bulk, melt, or even in solution form
through different mechanisms such as cationic, anionic, and coordination insertion [211].
The direct or polycondensation route is the least expensive PLA process—it involves
solution and melts polycondensation with different solvents under high vacuum and
temperature [200,202]. Limitations in the production of solvent-free high molecular weight
PLA are associated with these routes [212]. Condensation polymerization yields low
molecular weight PLA, making it unfit for many applications. A low molecular weight in
PLA is due to polymer melt viscosity, low concentration of reactive end groups, moisture
presence, and impurities. Coupling agents or esterification promotors increase molecular
weight but with the addition of increased complexity and cost. Mechanical properties
and molecular weight are improved by removing solvents, moisture, and impurities from
the melt. Azeotropic dehydration condensation is used to obtain high molecular weight
PLA without any use of coupling agents or esterification promotors. Water is removed to
produce high molecular weight PLA [200,209,212]. This process involves the distillation
of lactic acid for 2 to 3 h at a temperature around 130–140 ◦C with the use of a catalyst.
Catalysts can cause impurities and an increase in production costs. Catalyst impurities are
removed with the addition of various acids. Enzymatic polymerization is another method
to produce PLA with mild processing conditions [200,208,213].

Research studies are trying to reduce the shortcoming and limitations of PLA [213].
PLA requires an estimated 25–50% less energy in fabrication than conventional polymers,
contributing to cost reduction in the process [214]. PLA has high strength, processability,
and mechanical properties. PLA exhibits better tensile properties than polystyrene PS and
polyethylene terephthalate (PET) [215]. PLA is the better choice for tensile and flexural
modulus properties among PET, PP, and HDPE. Impact strength values and elongation at
break are lower than PET, PP, and HDPE [216]. PLA is crystallized in three structural forms:
α, β, and γ. α form is developed from a melt or cold crystallization, and mechanical stretch-
ing and deformation in the formation of the β form. PLA has a high crystallization rate due
to fast-growing semi-crystalline regions [217,218]. Crystallinity influences properties such
as tensile strength, melting temperature, hardness, stiffness, etc. PLA is brittle with low
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toughness. Low toughness values limit the use of PLA in high-stress level applications. The
inertness of PLA causes troubles in surface modifications for various applications [201,207].
Thermally unstable PLA loses molecular weight during thermal treatments and processing
temperatures. Degradation of ester linkages, even at a temperature lower than melting
temperature, causes this thermal instability. Degradation increases by many folds after
melting temperature. Several methods are used to overcome this issue, such as hydrolysis,
oxidative degradation, esterification reactions, and depolymerization. Thermal degra-
dation is dependent on factors such as moisture content, size of the particles, lactic acid
concentration, the molecular weight of PLA, impurities, and the catalyst used [207,219,220].
PLA is degradable by hydrolysis when PLA is exposed to moisture for longer periods.
Degradation has two main steps. The first step involves the degradation of ester groups and
the lowering of PLA molecular weight. The second step involves yielding CO2 and water
through microbial action to degrade low molecular weight oligomers [212,219]. PLA is
blended with other polymers to overcome limitations and improve mechanical properties,
degradation, and thermal instability [203]. PLA is used in various household applications,
such as plastic bags, sanitary products, cups, bottles, plates, etc. [198]. PLA applications
range from textile products, to the pharmaceutical, medical, and packaging industries. In
biomedical applications, PLA eliminates the need to remove medical implants due to bio-
logical degradation with time. PLA has good compatibility with human tissues and organs
and has low production costs and excellent mechanical properties. PLA is used for surgical
sutures in tissues, skin, and closing wounds. PLA is additionally used in drug delivery
systems for the continuous release of drugs [207,208,220,221]. The non-toxic degradability
of PLA is very effective for implants and supports in the human body. PLA may take
four months to four years to degrade completely, dependent on chemical composition,
crystallinity, polymer porosity, and the degradation environment around the implant. PLA
is used for bone fixation devices, replacing metallic fixation devices. PLA is readily used to
make screws, pins, and wires for bone fixation [220,221]. PLA provides polymeric support
in tissue engineering and is used in tissue or organ construction. PLA is used to develop
filaments to reconstruct nerves for paralyzed persons. Schwann cells are grown on PLA
polymeric supports. Schwann cells are grown in damaged nerves to join them artificially.
Over time, polymeric support degrades, forming nerve connections. Adhesion of Schwann
cells on PLA support is limited and can be increased by various plasma techniques [222–
224]. Surface properties of polymers play vital roles in biomedical applications. Various
techniques have been utilized to improve surface properties. These techniques include
different physical and chemical methods, along with plasma and radiation treatments. PLA
is also used to produce agricultural equipment and disposable materials, in the automobile
industry, and textile industry [198–200].

4.3. Poly Hydroxyalkanote (PHA)

PHA belongs to a group of R-hydroxyalkanoic acids. PHA is an eco-friendly and
renewable polymer [225]. Only a few among 150 hydroxy acids monomers actively produce
PHA under normal conditions. The short-chain PHA has three to five carbon atoms, which
improve stiffness, brittleness, and crystallinity. Middle chain polymers have six to fourteen
carbon atoms and have a low degree of crystallinity [226,227]. PHA is dependent on
plants and bacteria for mass production [228]. Carbon accumulation in cells influences
PHA microstructure and properties [229]. PHA is also produced using Gram-positive
and Gram-negative bacteria, with over 75 different types, such as Pseudomonas, Bacillus,
and Ralstonia [227]. Bacterial PHA has a high molecular weight, varying between 200,000
to 30,00,000 Da due to different bacteria types and growth conditions [230]. Carbon
accumulation in a cell is the source of PHA [231], which only happens under stressed
conditions with a limited supply of nitrogen, oxygen, and phosphorus nutrients. Large-
scale microbial fermentation is used for the mass production of PHA. Mass production
is dependent on factors such as bacteria type, cell density, growth rate of bacterial strain,
total process time, substrate, and purification methods [231]. Sugar, fatty acids, sucrose,
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starch, molasses, wheat, corn, methane, and activated sludge effluent substrates are used in
PHA production [232–235]. PHA is commercially produced through glucose and sucrose
substrates [236]. High production costs, processing constraints, and poor mechanical
and physical properties are some of the factors limiting PHA applications [237]. High
output is achieved through batch or continuous fermentation processes. PHA is produced
in two-step continuous fermentation. In the first step, biomass is provided with the
full amount of nutrients, while limited nutrients are provided in the second step. Some
bacteria are efficient in limited nutrient supply, and vice versa. A well-balanced cell
growth rate of bacteria is essential to avoid the premature ending of the fermentation
process [230,238–241]. PHA is stored in cells that have to be extracted; however, extraction
methods have cost limitations [242]. Solvent extraction is the simplest method for PHA
extraction, where a cell is ruptured to access PHA. PHA dissolves in selective solvents
and is precipitated by non-solvents. Chlorine solvents are used to dissolve PHA, while
ethanol and methanol are used for precipitation [243]. A floating method in solvents is
employed to recover highly pure PHA [244]. The digestion method is an alternate solvent
extraction method that involves chemical or enzymatic digestion mechanisms. Chemical
methods degrade polymers and have harmful byproducts, thus, reducing the overall
extraction efficiency [245]. Enzymatic digestion methods are target-specific and are highly
efficient in PHA extraction [243]. Modern technology supercritical fluid extraction methods
are environmentally safe and cost-effective. Diffusion rates are enhanced due to the low
viscosity of supercritical fluids having negligible surface tension [246]. CO2, methanol, and
ammonia are used as supercritical fluids [247]. Parameters such as temperature, pressure,
and impurities determine the supercritical fluids’ efficiency. The aqueous two-phase
method consists of two different and unique phases and extracts high purity PHA [248].

PHA is a degradable polymer, and the degradation rate is dependent on the surround-
ing environment, pH level, water content, chemical composition, crystallinity, and surface
area of PHA [230]. Micro-organisms degrade biopolymers with the release of hydroxy
acids, which are carbon sources. PHA degradation releases CO2, water, and methane. PHA
is degradable up to 60 ◦C [229] and used in bone and tissue engineering [226,249]. PHA is
used in the development of heart valves to replace metallic valves [250], and also in drug
delivery systems; PHA acts as a carrier for drugs to transport bio-active compounds to
the target area [251]. PHA shows promising results in nerve grafting to repair damaged
nerves [252]. Thus, with enhanced compatibility and adhesion with natural fibers, PHA is
used as a polymer matrix in bio-composites [253].

5. Processing Techniques of Bio-Composites

Bio-composites are gaining momentum in various industries and research studies. The
demand for bio-composites has been tremendously increased in domestic and industrial
sectors due to a surge in environmental pollution concerns and increased environmen-
tal regulations by local and international bodies. For desired properties to achieve and
make bio-composites cost-effective, different modified chemical treatments and efficient
process techniques are needed [64]. Bio-composites are currently fabricated through con-
ventional methods such as compression molding, hand lay-up, injection, extrusion, and
pultrusion [254]. These manufacturing techniques are the result of years of research and
development. Research studies focus on developing and modifying existing techniques to
increase the quality of bio-composites and make them cost-effective. With a few modifi-
cations in existing techniques, bio-composites can be readily fabricated [23]. Fabrication
techniques are selected based on the requirements for fiber dispersion, orientation, and
aspect ratio in desired applications [255]. Factors such as production cost, final design,
shape, size, raw material properties, and process constraints are taken into account in
selecting any process and technique. Fiber/matrix adhesion, uniform dispersion of fibers,
and a high aspect ratio enhance the mechanical properties of bio-composites. Some of the
factors affecting manufacturing techniques and properties are fiber length, content, type,
orientation, and moisture content. Proper drying of fibers is necessary because moisture
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can alter properties and process parameters. Moisture in fibers increases void content and
porosity in bio-composites, which affects the final mechanical properties [256,257].

Various modification methods are employed to overcome the moisture issue in
fibers [23]. The presence of compounds such as silica and the chemical structure differences
among fibers affects manufacturing processes and properties in bio-composites [258,259].
Natural fibers degrade at a high temperature, which gives a narrow temperature range in
composite manufacturing [260]. Bio-composites must have a good shelf life and structural
integrity while in service [26]. Due to their non-abrasive nature, natural fibers cause less
wear and damage to tools and machines used in manufacturing [261]. Induced stresses
solidify melt prematurely, and end products can be shrunk by up to 8% [262]. Excess fibers
bundle up to form agglomerates and adversely affect bio-composites’ final properties [260].
Premature solidification and loss in the strength of final products are also caused by high
viscosity of the melt, while homogeneity of final products is affected by fiber length [263].

The addition of various additives solves processing issues, but the overall cost in-
creases and can cause new issues.

5.1. Compression Molding

Compression molding is a reliable method due to the high production rate and low
processing time. Compression and flow compression molding is employed in this process.
These two techniques are differentiated based on the final products. Glass fibers are manu-
factured through compression molding, and similar molding techniques can be applied in
natural fiber composites. Bio-composites fabricated through this process have adequate
mechanical properties for different applications [264]. Compression molding is used for
bulk production, such as in automobile parts production [265]. Compression molding
decreases fiber strength due to the dependency on initial fiber length and various process
parameters such as melt viscosity and screw speed and design. The incompatibility of nat-
ural fibers with matrices also reduces fiber strength and the strength of bio-composite [266].
In compression molding, fibers are placed between matrix layers.

Furthermore, load and heat are applied in the process [267]. Compression molding is
categorized into hot pressing and auto-clave methods. Sheet and bulk molding materials
are starting materials used to cover around 30–70% mold cavity. The mold is closed
correctly along with the application of pressure and heat. Natural fibers may break due to
high pressure and temperature. Sometimes, short fibers are mixed prior to compression
molding to reduce shrinkage and increase the strength of final products [268].

5.2. Extrusion

The plastic industry mostly uses extrusion. Single screw extruders or double screw
extruders are used, and screws are rotated clockwise or counterclockwise depending upon
the final products. For the limited mixing of melt, a single screw is used. In contrast, a
twin-screw extruder is used for the vigorous mixing of melt. Natural fibers are dispersed
uniformly in the melt by a twin-screw extruder. Extrusion is a hot-melt technique used
for the continuous production of bio-composites [62]. Single and twin extruder have a
different processing temperature range, process parameters, and screw designs. Process
parameters influence mechanical and thermal properties [269]. Process parameters such as
high pressure and high temperature damage natural fibers, albeit resulting in a better aspect
ratio but at the cost of mechanical properties such as high porosity [270]. Hang et al. [269]
studied the mechanical properties of composites made up of flax fiber using a twin-screw
extruder. Chaitanya et al. [271] studied the processing of PLA/sisal bio-composites using
extrusion injection molding. The final composite had a 30% weight fraction of fibers.
Extrusion injection molding is suitable for processing short and long length fiber, but
breakages were observed for long fibers. Extrusion exhibited uniform fiber dispersion for
homogenous bio-composites with better mechanical properties. Ranganathan et al. [272]
studied the structural properties of jute and viscose fiber hybrid composites. The effect of
fiber length and fiber content on fracture toughness and fatigue properties were studied.
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Polypropylene was used as the matrix material in twin-screw extrusion. Jute fibers were
dried at 60 ◦C for 48 h, and viscose fibers were dried at the same temperature for about two
hours. Samples of 30 wt.% jute fiber with the polypropylene matrix and various weight
percentages of viscose fibers were prepared. The composite with 30 wt.% jute fiber showed
unstable crack growth with lower fracture toughness. The addition of 10 wt.% of viscose
fiber stabilized crack growth. The fatigue life of the composite with 10 wt.% of viscose was
three times higher than that of jute fiber composite. The addition of viscose fiber increased
fracture energy. Awal et al. [273] analyzed PLA and cellulose fiber composites for thermal
and mechanical properties. Bio-composite was fabricated using extrusion molding. Wood
cellulosic fibers were used after drying fibers at 80 ◦C for 24 h. Thermo-gravimetric analysis
exhibited an upper limit for processing temperature. The heat distortion temperature was
slightly improved for the high-temperature life cycle for PLA and wood fibers composite.
The addition of 1.3 wt.% BioAdimide significantly improved the tensile strength and impact
strength of the composite. Bio-additives improved the interactions between the fiber and
the matrix for better mechanical properties and processability of bio-composites. Tensile
modulus for the PLA/wood/adimide composite improved by 26% from the PLA/wood
fiber composite.

6. Applications of Bio-Composites

A small number of bio-composites are commercialized and developed. Most of the
bio-composites are still under research and development. New processing techniques
and technologies are being developed to produce bio-composites at a lower cost. Mostly,
bio-composites are used in non-structural and non-load-bearing applications. Developing
countries are abundant in natural fibers, but the lack of resources prevents using these fibers
in composites and developing new processing techniques, while developed countries in
Europe and Asia are ahead in the development of bio-composites [274]. Despite the benefits
of these bio-composites, some challenges such as cost reduction, reliable performance, and
inferior mechanical properties are still to be addressed for mass production [26]. Despite
these challenges, bio-composites still have great potential to be used in various applications.
Research has shown promising results, but more research and developments are required to
commercialize bio-composites successfully [67]. Focus is being paid to achieve properties
comparable with synthetic composites. Bio-composites are biodegradable, renewable, and
natural composites with minimum impact on the environment and considerably lower
carbon emissions [275]. Growing awareness among people and new laws for environmen-
tal protection will promote meaningful improvements for bio-composites. Additionally,
developments in agricultural sciences will help to harvest fibers with more favorable
properties for these bio-composites. In the near future, bio-composites may completely
eradicate the dependence on synthetic products [276]. The energy required for the produc-
tion of bio-composite is much less than that of synthetic fiber. The production of synthetic
composites is energy extensive, while bio-composites save energy [7]. Different govern-
ments are encouraging industries to use bio-degradable materials to overcome waste and
pollution-related issues [277]. One of the main drawbacks in the use of bio-composites is
the variation of mechanical properties in plant fibers. Change in the region, climate, and
even fiber from another planet of the same type will likely be different in properties [278].
These shortcomings are balanced through different processing and chemical treatments.
The automobile, construction, textile, and packaging industries are the primary industries
to employ bio-composites.

6.1. Automobile Industry

Conventional composites have glass and carbon fiber reinforcements that have so
far dominated the automobile industry. Renewable alternatives are required to address
environmental concerns and reduce petroleum-based composites’ carbon footprints [279].
Several candidates have been studied, exhibiting promising results, while others are in
the development phase. Various natural fibers such as flax, hemp, kenaf, jute, coir, and
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sisal are used to produce bio-composites for automobiles. Bio-composites are also used
in automobiles to reduce overall weight, cut down production costs, and improve fuel
efficiency. Bio-composites are used to produce different components, such as bumpers,
door panels, seat pads, cup holders, trunk covers, armrests, headrests, and seat pads.
Furthermore, bio-composites are known to reduce vibrations and noise through damp-
ing [264]. Ford uses soy foam seats, bio-based cushions, and hemp fiber composites in
the front grills in various vehicle models [280]. Similarly, Mercedes-Benz use jute-based
bio-composites for interior panels, flax fiber composites for shelves and trunk covers, and
sisal-based composites for rear panel shelves [281]. The use of bio-composites led to a
reduced weight of roughly up to 10%, and energy consumption up to 80%, compared to
synthetic composites. Toyota use kenaf fibers in tire covers, soy foams for vehicle seats,
and PP/PLA-based bio-composites inside trims, toolbox areas, and package trays [282].
Similarly, Volkswagen use bio-composites to make door panels, flap linings, door inserts,
and package trays.

6.2. Construction and Textile Industry

In the construction industry, bio-composites are used to manufacture windows, doors,
window frames, ceilings, floor mating, and roof tiles. Load-bearing applications include
the manufacturing of floor slabs, beams, pipes, and tanks. Furthermore, bio-composites
are employed in the repairing and rehabilitation of various structural components. Due to
better thermal and acoustic properties, natural fiber composites are used as insulating and
soundproofing materials [283]. Hemp/lime/concrete composites have exhibited better
sound absorption ability than any other binders [284]. Life cycle assessment, durability
properties, and ecological aspects are taken into account before selecting any bio-composite
as a construction material. Low weight and comparable mechanical properties with
synthetic composites are crucial for construction applications. Similarly, natural fiber
composites have enormous potential to be used in the textile industry to manufacture
ropes, sacks, bags, and clothes. Moreover, many countries are adopting bio-composite
materials to address environmental issues. Many industries are investing in bio-composites
due to future demand.

7. Conclusions

The potential of bio-composites to be used as eco-friendly, renewable, and sustainable
substitutes is the main driving force for research, development, and commercialization. The
use of bio-composites in various applications has opened avenues for research studies and
industries to explore further. Early on, the lack of fabrication methods and higher produc-
tion costs restricted bio-composites’ growth, but environmental issues have removed these
hurdles. Bio-composites are regarded as the best replacement for synthetic composites
because of their comparable mechanical properties and eco-friendly nature. Synthetic com-
posites cause pollution, emit toxic byproducts, use excessive energy, and have recyclability
issues and high carbon footprints. The sustainability of synthetic composites comes into
question due to the depletion of finite petroleum resources. The use of synthetic composites
must be limited to protect the environment. In this review, bio-composites were analyzed
to provide an overview of the contemporary developments.

The structure, morphology, content, and mechanical properties of natural fibers were
discussed in detail, along with natural fiber constituents. Micro-fibrils, lumen, and different
bonding structures play important roles in determining the mechanical properties and
low density of fibers. Different modification techniques to improve shortcomings such
as the fiber/matrix adhesion, hydrophilicity, and flammability of natural fibers were em-
ployed. Modification techniques enhance fiber/matrix interlocking, as well as moisture and
thermal resistance. Some of the degradable polymer matrices are polybutylene succinate
(PBS), polylactic acid (PLA), poly hydroxyalkanotes (PHA), and poly(ε-caprolactone) (PCL).
During biodegradation, biopolymers are decomposed through microbial actions with the
release of CO2, various compounds, and biomass. The addition of natural fibers to these
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bio-degradable matrix materials enhances strength and other properties. Bio-composites
are manufactured through conventional methods such as compression molding, hand
lay-up, injection, extrusion, and pultrusion. Some of these manufacturing techniques and
research studies are focusing on the development and modifications of existing techniques
to increase the quality of bio-composites. Bio-composites were analyzed in terms of pro-
duction cost, final design, shape and size, raw material properties, and process constraints.
Various applications of bio-composites include construction, automobile, and textile in-
dustries. With the ever-increasing demand for bio-composites, numerous new potential
applications for bio-composites will be developed in the near future.
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