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Abstract: Antimicrobial resistance represents a significant world-wide health threat that is looming.
To meet this challenge, new classes of antimicrobial agents and the redesign of existing ones will
be required. This review summarizes some of the studies that have been carried out in my own
laboratories involving membrane-disrupting agents. A major discovery that we made, using a Triton
X-100 as a prototypical membrane-disrupting molecule and cholesterol-rich liposomes as model
systems, was that membrane disruption can occur by two distinct processes, depending on the
state of aggregation of the attacking agent. Specifically, we found that monomers induced leakage,
while attack by aggregates resulted in a catastrophic rupture of the membrane. This discovery led
us to design of a series of derivatives of the clinically important antifungal agent, Amphotericin B,
where we demonstrated the feasibility of separating antifungal from hemolytic activity by decreasing
the molecule’s tendency to aggregate, i.e., by controlling its monomer concentration. Using an
entirely different approach (i.e., a “taming” strategy), we found that by covalently attaching one or
more facial amphiphiles (“floats”) to Amphotericin B, its aggregate forms were much less active in
lysing red blood cells while maintaining high antifungal activity. The possibility of applying such
“monomer control” and “taming” strategies to other membrane-disrupting antimicrobial agents is
briefly discussed.
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1. Antimicrobial Agents under Siege

According to a 2019 Antimicrobial Threats Report from the Centers of Disease Control
and Prevention (CDC), more than 2.8 million antimicrobial-resistant infections occur each
year in the United States, resulting in more than 35,000 deaths [1]. At present, the CDC
considers the following bacteria as “urgent threats” to the public health: Carbapenem-
resistant Acinetobacter, Candida auris, Clostridioides difficle, Carbapenem-resistant Enterobac-
teriaceae, and drug-resistant Neisseria gonorrhoeae. The CDC also considers the following
11 bacteria as “serious threats”: drug-resistant Campylobacter, drug-resistant Candida, ESBL-
producing Enterobacteriaceae, Vancomycin-resistant Enterococci (VRE), multidrug-resistant
Pseudomonas aeruginosa, drug-resistant nontyphoidal Salmonella, drug-resistant Salmonella
serotype Typhi, drug-resistant Shigella, Methicillin-resistant Staphylococcus aureus (MRSA),
drug-resistant Streptococcus pneumoniae and drug-resistant Tuberculosis. The two bac-
teria that the CDC views as “concerning threats” are Erythromycin-resistant Group A
Streptococcus and Clindamycin-resistant Group B Streptococcus.

Although the world is now focusing on the development of vaccines and therapies
to fight SARS-CoV-2, the coronavirus that is responsible for the current COVD-19 pan-
demic, the antimicrobial resistance problem (AMR) represents a major world-wide health
threat that is looming [1–11]. While substantial resources have been made available to
address the COVID-19 pandemic, relatively little investment is being made to combat the
antimicrobial resistance problem. Because of a lack of financial incentive, this situation
has been compounded by the abandonment of antimicrobial research by most of the large
pharmaceutical companies. At present, the development of new antimicrobial agents is
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mainly being carried out in small start-up companies and academic laboratories with the
financial support from venture capital, public, and philanthropic agencies. This emerging
crisis of antimicrobial resistance and the withdrawal of the large pharmaceutical companies
from research in this area has been discussed in a series of recent publications [5–11].

2. Why Consider Membrane-Disrupting Antimicrobial Agents?

Our own efforts in the antimicrobial area have been based on the belief that antimi-
crobial agents that operate at the membrane level are likely to be less susceptible to drug
resistance than ones that must enter a microorganism to destroy it. Specifically, we rea-
soned that if an antimicrobial drug doesn’t have to enter the cytoplasm of a bacterial or
fungal cell to kill it, then two of the more common mechanisms of drug resistance would
be circumvented, i.e., enzymatic degradation and export mechanisms [12].

A classic example of a membrane-disrupting antimicrobial agent that supports our
thinking is the heptaene macrolide, Amphotericin B (Figure 1). Thus, despite its broad use
in treating systemic fungal infections for more than 50 years, the development of resistance
against this agent has proven to be extremely rare [13,14].
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Figure 1. Structure of the Amphotericin B molecule.

Although there have been numerous studies of the membrane-disrupting action of
Amphotericin B, the precise mechanism by which it destroys the integrity of the plasma
membrane of fungal cells remains as a matter of debate. One of the oldest proposed
mechanisms that remains popular is the “barrel stave” model (Figure 2) [15–22]. Here,
Amphotericin B is thought to combine with ergosterol in fungal membranes to form water-
filled pores through which monovalent ions (K+, Na+, H+, and Cl−) readily pass; the net
result being cell death. Whether there is a thinning of the lipid membrane in the vicinity of
individual pores, or whether two such pores must align across the membrane to form a
contiguous channel remains as an alternate possibility.

More recently, an entirely different mechanism of action of Amphotericin B has been
postulated. In this case, the heptaene macrolide is presumed to act like a “sponge” in
removing ergosterol from fungal membranes and depositing it on the membrane’s surface
(Figure 2C) [23]. The extent to which the barrel stave and sponge mechanisms may
contribute to the overall antifungal activity of Amphotericin B, however, remains to be
established.
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Figure 2. Stylized illustration showing (A) a single water-filled pore derived from Amphotericin B
(gray oval) and ergosterol (red rectangle) with membrane thinning, (B) two aligned water-filled pores
that extend across a lipid bilayer, and (C) a collection of Amphotericin B and ergosterol complexes
lying on the surface of a fungal membrane.

3. The Issue of Toxicity

The value of Amphotericin B as an antifungal drug derives from its modest selectivity
in destroying fungal cells over mammalian cells. This selectivity appears to be due to a
higher affinity that Amphotericin B has towards ergosterol (the sterol found in fungi) over
cholesterol (the sterol found in mammalian cells) (Figure 3) [17,22]. It should be noted,
however, that despite its broad use in treating systemic fungal infections, Amphotericin
B remains as one of the most toxic drugs that exists in modern medicine. Owing to
its severe and potentially lethal side effects, clinicians often refer to Amphotericin B as
“Ampho-terrible”.
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Figure 3. Molecular structures of ergosterol and cholesterol.

The significant toxicity associated with Amphotericin B is, in fact, a common problem
that exists for virtually all membrane-disrupting antimicrobial agents. To judge the toxicity
of an agent to mammalian cells, it is common practice to first measure its hemolytic activity
in vitro, i.e., its ability to release hemoglobin from red blood cells. In an enlightening
study by Bolard and coworkers, it was reported that while aggregates of Amphotericin
B exhibit both hemolytic and antifungal activity, its monomers exhibit only antifungal
activity [24]. The basis for this striking difference, however, was not revealed in that study.
It is noteworthy that this difference could account for the reduced toxicity that is associated
with liposomal formulations of Amphotericin B (e.g., AmBisome), which are currently in
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clinical use. In particular, the liposomes may simply serve as a reservoir for releasing low
concentrations of monomers of Amphotericin B [25].

4. Discovery of a Membrane Rupture and Leakage Dichotomy

Prior to Bolard’s publication, we initiated a study that was aimed at gaining funda-
mental insight into how membrane-disrupting agents, in general, act on lipid bilayers [26].
In that study we focused on Triton X-100, a commonly used membrane-disrupting agent,
as a prototype (Figure 4). A key discovery that we made was that Triton X-100 can disrupt
cholesterol-rich bilayers by two distinct pathways depending upon its state of aggrega-
tion. Specifically, we found that below its critical aggregation concentration, attack by
monomers resulted in the formation of leaky membranes. In sharp contrast, attack on simi-
lar cholesterol-rich membranes by aggregated forms of Triton X-100 (i.e., at concentrations
in excess of its critical aggregation concentration), resulted in a catastrophic rupture of the
membrane. These findings then led us to postulate that the hemolytic action of aggregated
forms of Amphotericin B was the likely result of an analogous rupture events [26].

Molecules 2021, 26, x FOR PEER REVIEW 4 of 11 
 

 

currently in clinical use. In particular, the liposomes may simply serve as a reservoir for 

releasing low concentrations of monomers of Amphotericin B [25]. 

4. Discovery of a Membrane Rupture and Leakage Dichotomy 

Prior to Bolard’s publication, we initiated a study that was aimed at gaining funda-

mental insight into how membrane-disrupting agents, in general, act on lipid bilayers [26]. 

In that study we focused on Triton X-100, a commonly used membrane-disrupting agent, 

as a prototype (Figure 4). A key discovery that we made was that Triton X-100 can disrupt 

cholesterol-rich bilayers by two distinct pathways depending upon its state of aggrega-

tion. Specifically, we found that below its critical aggregation concentration, attack by 

monomers resulted in the formation of leaky membranes. In sharp contrast, attack on sim-

ilar cholesterol-rich membranes by aggregated forms of Triton X-100 (i.e., at concentra-

tions in excess of its critical aggregation concentration), resulted in a catastrophic rupture 

of the membrane. These findings then led us to postulate that the hemolytic action of ag-

gregated forms of Amphotericin B was the likely result of an analogous rupture events 

[26]. 

 

Figure 4. Structure of Triton X-100. 

4.1. Separating Antifungal from Hemolytic Activity by Synthetic Design 

Based on our discovery of this membrane rupture and leakage dichotomy, we were 

motivated to synthesize a family of Amphotericin B derivatives in which their critical ag-

gregation concentrations could be fined-tuned by adjusting the length of a pendant 

poly(ethylene glycol) unit, i.e., conjugates 1a–c (Figure 5) [27]. 

 

Figure 5. Poly(ethylene glycol) derivatives of Amphotericin B. 

To our satisfaction, all three of these conjugates exhibited antifungal activity that was 

similar to that of the native Amphotericin B molecule. In addition, we found that the an-

tifungal activity of each conjugate could be separated from its hemolytic activity. Specifi-

cally, significant hemolytic activity was observed only at concentrations that were in ex-

cess of their critical aggregation concentrations (Figure 6). These results were fully con-

sistent with both Bolard’s findings and the rupture and leakage dichotomy that we dis-

covered for Triton X-100. 

Figure 4. Structure of Triton X-100.

4.1. Separating Antifungal from Hemolytic Activity by Synthetic Design

Based on our discovery of this membrane rupture and leakage dichotomy, we were
motivated to synthesize a family of Amphotericin B derivatives in which their critical
aggregation concentrations could be fined-tuned by adjusting the length of a pendant
poly(ethylene glycol) unit, i.e., conjugates 1a–c (Figure 5) [27].
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Figure 5. Poly(ethylene glycol) derivatives of Amphotericin B.

To our satisfaction, all three of these conjugates exhibited antifungal activity that
was similar to that of the native Amphotericin B molecule. In addition, we found that
the antifungal activity of each conjugate could be separated from its hemolytic activity.
Specifically, significant hemolytic activity was observed only at concentrations that were
in excess of their critical aggregation concentrations (Figure 6). These results were fully
consistent with both Bolard’s findings and the rupture and leakage dichotomy that we
discovered for Triton X-100.
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4.2. A Taming Strategy

An entirely different approach that we have devised for improving the selectivity of
membrane-disrupting antimicrobial agents in general, and for Amphotericin B in particular,
is to reduce the hemolytic activity of aggregated forms via a “taming” strategy [28,29]. In
Figure 7 an illustration is shown of our taming concept. Here, a membrane-disrupting
antimicrobial agent is covalently attached to a molecule that serves as a “float”, i.e., a
molecule that prevents deep penetration of the agent into the lipid bilayer. An example
of such a float is the facially amphiphilic molecule, cholic acid, which is known to favor
binding to the surface of lipid membranes [30]. Our working hypothesis was that by
preventing such aggregates from extending across the membrane, rupture of the bilayer
would prove difficult if not impossible.
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Figure 7. Illustration of: (left) an untamed aggregated agent extending across a lipid bilayer; (right)
a tamed analog held close to the membrane’s surface. The red and black rectangles represent
hydrophilic and hydrophobic faces of a facially amphiphilic moiety, respectively.

4.3. The Taming of Amphotericin B

For proof of concept, we synthesized a series of conjugates of Amphotericin B bearing
one, and also two, choloyl moieties. In Figure 8, it is shown that the simplest representative
examples in which Amphotericin B has been covalently attached to a single choloyl group
using four different spacers, i.e., 2a–d [29].
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and Fmoc-protected derivative of Amphotericin B, 3.

To prepare these conjugates, we first synthesized a derivative of Amphotericin B
(i.e., 3) in which its amino group was protected in the form of an Fmoc-carbamate, and
its carboxylic acid moiety was activated by reaction with N,N,N′,N′-tetramethyl-O-(3,4-
dihydro-4-oxo-123-benzotriazin-3-yl)uranium tetrafluoroborate [28]. This derivative has
proven to be a very convenient and stable precursor for the synthesis of a broad series of
conjugates of Amphotericin B. Thus, direct condensation of 3 with a family of α,ω-diamines
that were monoacylated with cholic acid, followed by deprotection with piperidine afforded
the desired conjugates, 2a–d [29].

Taking advantage of 3, and also a di-walled molecular umbrella bearing a pendant
amine group, we could also readily synthesize an Amphotericin B conjugate bearing two
choloyl moieties, 4 (Figure 9) [28].
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It is noteworthy that in related studies we obtained evidence via a parallax analysis
that an analog of 4, bearing a pendant fluorophore (Cascade Blue), in place of Ampho-
tericin B, favors binding to lipid membranes such that the choloyl moieties lie close to the
membrane’s surface [31].

4.4. Aggregation Properties of Amphotericin B and Its Conjugates

To define the critical aggregation of Amphotericin B and its conjugates, we devised
a simple approach that takes advantage of a well-defined absorption band for heptaene
macrolide monomers, which lies at 409 nm [27]. Upon aggregation, the apparent molar
absorptivity at 409 nm decreases. As discussed previously, if one defines T, m, and P as
the total, the monomeric and the aggregate concentrations of Amphotericin B, respectively,
and if ε, εm and εp are defined as the apparent molar absorptivity, the molar absorptivity of
the monomer and the molar absorptivity of the aggregate components, respectively, then
it can be shown that ε = εp + (εm − εp)m/T. Thus, when concentrations Amphotericin B
and its conjugates are in excess of their critical aggregation concentrations, m is a constant
value and ε is expected to be inversely proportional to T. Thus, by plotting the apparent
molar absorptivity at 409 nm as a function of the reciprocal of the analytical concentration
of Amphotericin B or a conjugate, one can estimate its critical aggregation concentration
from the intercept of two straight lines. Based on this method, the critical aggregation
concentration for 2a–d and 4 were all estimated to be ca. 1 µM, which was the same as
Amphotericin B, itself [28,29].

4.5. Separation of Antifungal from Hemolytic Activity via Taming

To evaluate the antifungal properties of 2a–d and 4, we determined their minimum
inhibitory concentrations (MIC) with respect to C. albicans, C glabrata, C. neoformans, and
C. gatti [28,29]. As shown in Table 1, the two conjugates having the shortest spacers, 2a,b,
exhibited broad-spectrum antifungal activities that compared favorably with Amphotericin
B. Those analogs having longer spacers, 2c, d, exhibited high antifungal activity against
some but not all of the fungi that were tested. The conjugate bearing two choloyl moieties,
4, also showed broad spectrum antifungal activities, which compared favorably with
Amphotericin B.

Table 1. Antifungal activities.

Microbe a AmB 2a 2b 2c 2d 4

C. albicans 0.5 1 2 2 >16 1

C. glabrata 0.5 2 2 >16 >16 2

C. neoformans 0.3 1 1 1 1 1

C. gatti 0.3 1 1 1 1 1
a Minimum inhibitory concentrations (MIC) are the lowest concentrations (µg/mL) required for completely
inhibiting fungal growth.

To judge the toxicity of these membrane-disrupting antimicrobial agents towards
mammalian cells, we evaluated their hemolytic activity using sheep red blood cells and
determined the concentrations required for 50% hemolysis [29]. In the case of Ampho-
tericin B, 50% hemolysis was observed using a concentration of 4 µM. In sharp contrast,
the concentration of 2a that was required for 50% hemolysis was 465 µM. For 2b–d, neg-
ligible hemolysis was found at concentrations as high as 400 µM. With conjugate 4, 50%
hemolysis required a concentration of 375 µM. Thus, in all cases, these tamed derivatives
of Amphotericin B were two or more orders of magnitude less hemolytic than the native
drug.

To further evaluate the toxicity of these agents, we also examined their effect on
HEK293 T cells. At a concentration of 25 µg/mL, Amphotericin B was highly toxic
(<5% cell viability), 2a was moderately toxic (ca. 40% cell viability), and 2b was modestly
toxic (ca. 70% cell viability). At this same 25 µg/mL, 2c and 2d showed close to negligible
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toxicity (>90% cell viability). In the case of conjugate 4, no evidence of cytotoxicity was
observed with a concentration as high as 100 µM (100% cell viability) [28].

4.6. Other Membrane-Disrupting Antimicrobial Agents Worthy of Consideration

In this review, I have discussed our fundamental studies with Triton X-100 that have
led to a discovery of two distinct pathways of membrane disruption, i.e., mild leakage
induced by monomers and catastrophic membrane rupture by aggregates. I have also
described our design and synthesis of derivatives of the clinically important antifungal
agent, Amphotericin B, which has allowed for the separation of the antimicrobial activity
from the hemolytic activity by controlling their monomer concentration. A taming concept
that I have discussed, in which facial amphiphiles are covalently attached to Amphotericin
B to reduce its membrane rupturing activity is an entirely distinct approach for enhancing
its cellular selectivity.

The generality of these two very different strategies (monomer control and taming) for
improving the selectivity of other membrane-disrupting agents remains to be established.
In the following, I briefly discuss, what I believe are, two broad classes of molecules whose
therapeutic potential might be enhanced by either or both of these strategies.

Antimicrobial Peptides. Antimicrobial peptides (AMPs) represent a broad class of
membrane-disrupting molecules that contain, typically 12 to 50 amino acids [32–35]. Since
their discovery in the 1980′s, there has been considerable effort made to utilize naturally
occurring AMPs, derivatives of AMPs and mimics of AMPs as drug candidates. A major
problem with all of these agents, similar to Amphotericin B, is there low cellular selectivity
and toxicity. In principle, if the selectivity of such molecules could be enhanced, this would
aid in their development as therapeutic agents.

Closely related to antimicrobial peptides are, what have been termed, “cell-penetrating
peptides” (CPPs) [36,37]. As previously noted, the difference in the functioning of antimi-
crobial peptides and cell-penetrating peptides may simply be a matter of the concentrations
that are employed [38]. Thus, some peptides have already been shown to have both cell
penetrating and lytic functions, and that these two distinct functions are strongly depen-
dent on their concentration, i.e., at low concentrations they can penetrate cells, while at
higher concentrations (where aggregation is likely) they lyse membranes [38,39]. Based on
our studies with Triton X-100 and also Amphotericin B, it’s reasonable to believe that this
behavior is directly related to the rupture and leakage dichotomy that we have discovered.
To the best of my knowledge, careful studies that attempt to correlate membrane lysis and
cell penetration with the aggregation properties of such peptides have not yet been re-
ported. Given all of the research that has been made with antimicrobial and cell-penetrating
peptides, I believe that such studies would be an important contribution that could afford
new insight that helps to guide future work in this area.

Quaternary Ammonium Compounds. Because quaternary ammonium compounds
are highly toxic to both mammalian cells and Gram-negative bacteria, their use as an-
timicrobial agents has been limited as disinfectants [40]. I believe that if attention were
paid to the rupture and leakage properties of quaternary ammonium compounds, and
if advantage could be taken of our monomer control and taming strategies, this could
lead the way to new and useful therapeutic agents. It is noteworthy, in this regard, that a
previous study of a series of quaternary ammonium compounds that were derived from
L-phenylalanine were found to have a strong membrane selectivity dependence on their
concentration [41]. Specifically, at high concentrations, where monomers and aggregates
were present, these molecules showed significant hemolytic activity as well as antibacterial
activity. In sharp contrast, at low concentrations where only monomers were present, these
same molecules exhibited only antibacterial activity. Whether hybrid antimicrobial agents
that are starting to emerge, (e.g., where quaternary ammonium groups are incorporated
into potent antibiotics such as Polymyxin B and Vancomycin to aid in the destruction of
bacterial membranes), could also take advantage of monomer control and taming is an
intriguing question that, in my opinion, also warrants consideration [42,43].
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