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Abstract: Reactive oxygen species (ROS) have been implicated in numerous pathological processes
and their homeostasis facilitates the dynamic balance of intracellular redox states. Among ROS,
hypobromous acid (HOBr) has a high similarity to hypochlorous acid (HOCl) in both chemical
and physical properties, whereas it has received relatively little attention. Meanwhile, selective
recognition of endogenous HOBr suffers great challenges due to the fact that the concentration of
this molecule is much lower than that of HOCl. Fluorescence-based detection systems have emerged
as very important tools to monitor biomolecules in living cells and organisms owing to distinct
advantages, particularly the temporal and spatial sampling for in vivo imaging applications. To
date, the development of HOBr-specific fluorescent probes is still proceeding quite slowly, and the
research related to this area has not been systematically summarized. In this review, we are the first
to review the progress made so far in fluorescent probes for selective recognition and detection of
HOBr. The molecular structures, sensing mechanisms, and their successful applications of these
probes as bioimaging agents are discussed here in detail. Importantly, we hope this review will call
for more attention to this rising field, and that this could stimulate new future achievements.
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1. Introduction

Nature contains a complex collection of elements, molecules, and ions that play irre-
placeable roles in a wide range of chemical and biological processes. Selective recognition
of these specific guests is a significant research area in supramolecular chemistry [1,2].
Among the various guests, reactive oxygen species (ROS), which have higher reactivity
than molecular oxygen in the ground state, as their name suggests, are groups of reactive
neutral and anionic small molecules [3]. In particular, intracellular ROS are produced
within many cell types upon incomplete reduction of oxygen through multiple electron
transfer reactions, depending on the cell and tissue types [4].

One of the major sources of intracellular ROS is NADPH oxidase process (Figure 1a),
and the commonly seen ROS include hydrogen peroxide (H2O2), hypohalous acids (HOCl/
ClO−), superoxide anion (O2•−), hydroxyl radical (•OH), singlet oxygen (1O2), peroxyni-
trite (ONOO−) and ozone (O3) [5]. It has been widely demonstrated that endogenous ROS
are involved in numerous biological signaling pathways [6–8]. However, excess production
of ROS can lead to oxidative damage to a wide range of biomolecules such as carbohydrates,
proteins, nucleic acids, and lipids, which has been implicated in physiological and patho-
physiological processes such as cancer, aging, cardiovascular disease, diabetes mellitus,
gastrointestinal diseases, Alzheimer’s disease (AD), and so on [9–11]. ROS concentrations
within an expected threshold facilitate the dynamic balance of intracellular redox state.
Undoubtedly, selective recognition and detection of those species have attracted a great
deal of attention [12–14]. Not surprisingly, biologists and chemists have made joint efforts
to conceive feasible ROS-related therapeutic approaches in the past decades. Nevertheless,
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the monitoring and quantitation of ROS remains a challenging task not only due to their
high reactivity and short lifetime, but also to the low concentrations in vivo.
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the heme peroxidases such as eosinophil peroxidase (EPO) or myeloperoxidase (MPO) 
[15]. Importantly, HOBr is a potent oxidizer with effective antibacterial activity, and is 
also regarded as an integral factor in the neutrophil host defense system. For instance, 
HOBr participates in the formation of sulfilimine cross-links in collagen IV, whose scaf-
folds are essential to the formation and function of basement membranes (BMs) in vivo 
[16]. In a similar fashion to other ROS, excessive generation of HOBr will injure organ-
isms, which always results in inflammatory tissue damage and a variety of diseases [17–
19]. Increasing evidence reveals that the EPO levels in serum of asthmatic patients is 
three times higher than that in healthy individuals [20]. Considering that the bromide 
concentration in blood and plasma is far lower than that of chloride (ca. 1000-fold) [21], 
the concentration of endogenous HOBr is relatively lower than HOCl, which renders the 
selective recognition of endogenous HOBr more challenging than other ROS. 

Among various analytical techniques, fluorescent probes have emerged as indis-
pensable tools to monitor biomolecules in living cells and organisms owing to the high 
sensitivity, non-invasive imaging, real-time detection, low cost, and superb spa-
tio-temporal resolution [22–25]. Particularly, the probes with near-infrared (NIR) emis-
sion (650–900 nm) are highly favored for in bio-imaging due to their distinct ability of 
tissue penetration [26–28]. Meanwhile, ratiometric fluorescent probes are highly desira-
ble because these molecules could overcome the ambiguities of single fluorescence in-
tensity and offer quantitative measurements via self-calibration of two emission bands 
[29]. In addition, in contrast to aggregation-caused quenching (ACQ) that is quite com-
mon in most conjugated fluorescent molecular systems, the aggregation-induced emis-

Figure 1. (a) The intracellular generation of reactive oxygen species (ROS) and (b) the formation of endogenous hypobro-
mous acid (HOBr) catalyzed by eosinophil peroxidase (EPO) or myeloperoxidase (MPO).

Hypobromous acid (HOBr) is an important ROS with a high similarity to HOCl
in both chemical and physical properties. In organelles, HOBr is generated from the
peroxidation of bromide anions (Br−) with H2O2 (Figure 1b), whose reaction is catalyzed by
the heme peroxidases such as eosinophil peroxidase (EPO) or myeloperoxidase (MPO) [15].
Importantly, HOBr is a potent oxidizer with effective antibacterial activity, and is also
regarded as an integral factor in the neutrophil host defense system. For instance, HOBr
participates in the formation of sulfilimine cross-links in collagen IV, whose scaffolds are
essential to the formation and function of basement membranes (BMs) in vivo [16]. In a
similar fashion to other ROS, excessive generation of HOBr will injure organisms, which
always results in inflammatory tissue damage and a variety of diseases [17–19]. Increasing
evidence reveals that the EPO levels in serum of asthmatic patients is three times higher
than that in healthy individuals [20]. Considering that the bromide concentration in blood
and plasma is far lower than that of chloride (ca. 1000-fold) [21], the concentration of
endogenous HOBr is relatively lower than HOCl, which renders the selective recognition
of endogenous HOBr more challenging than other ROS.

Among various analytical techniques, fluorescent probes have emerged as indispens-
able tools to monitor biomolecules in living cells and organisms owing to the high sensitiv-
ity, non-invasive imaging, real-time detection, low cost, and superb spatio-temporal resolu-
tion [22–25]. Particularly, the probes with near-infrared (NIR) emission (650–900 nm) are
highly favored for in bio-imaging due to their distinct ability of tissue penetration [26–28].
Meanwhile, ratiometric fluorescent probes are highly desirable because these molecules
could overcome the ambiguities of single fluorescence intensity and offer quantitative
measurements via self-calibration of two emission bands [29]. In addition, in contrast to
aggregation-caused quenching (ACQ) that is quite common in most conjugated fluorescent
molecular systems, the aggregation-induced emission (AIE) first discovered by Tang’s
group in 2001 has become a major player in chemosensors [30–34].

To date, various classic fluorescence dyes, acting as signal reporters such as coumar-
ins [35], 1,8-naphthalimides [36,37], rhodamines [38], difluoroboron dipyrromethenes
(better known as BODIPY) [39–42], cyanine dyes [43], pyrene [44–46], AIE-active lumino-
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gens [47–49] and so on [50–52], have been widely developed to construct fluorescent
chemosensors for broad and exciting applications. Recently, we have summarized small-
molecule-based fluorescent probes for f-block metal ions [53] and pillararene-based recep-
tors for binding of different metal ions [54] as well as fluorescent chemosensors and smart
materials constructed from macrocyclic arenes that incorporate BODIPY [55]. Specifically,
the reaction-based fluorescent probes (also known as chemodosimeters), whose recognition
events involve irreversible chemical reactions as induced by a target analyte, have received
great attention during the last decade as this promising and attractive strategy always
offers high selectivity and sensitivity [56–59].

With regard to ROS, selective recognition of these reactive species using fluorescent
detectors has been well documented in several excellent reviews, which mainly focus on
•OH [60], HOCl/ClO− [61], H2O2 [62], ONOO− [63] and 1O2 [64]. Hitherto, the research
related to fluorescent probes for selective recognition of HOBr has not been systematically
summarized. Despite the growing interest, the development of HOBr-specific fluorescent
probes is still evolving very slowly. Obviously, all the reported fluorescent probes for ROS
function in a reaction-based manner [65–67], and HOBr is not an exception. There are
three strategies to construct a suitable fluorescent probe for HOBr (Figure 2): (a) oxidation
reactions caused by HOBr, where HOBr acts as a strong oxidant; (b) coupling cyclization of
an amino group and S-methyl moiety catalyzed by HOBr; (c) HOBr-induced substitution
reactions. In light of the recent achievements and deficiency in HOBr-specific fluorescence
probes, this is a timely review of the advances made so far in constructions and applications
of fluorescent probes for HOBr using diverse fluorophores.
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In this mini review, we will provide all the literature of fluorescent probes for selective
recognition and detection of HOBr, which represents the first comprehensive summary
related to this attractive research area. The main text will be organized based on the
three HOBr-sensing strategies as described above. The molecular structures, sensing
mechanisms, and their successful applications as bioimaging agents will be discussed in
detail. The purpose of this review is not only to provide a general overview of the design
and development of fluorescent probes for HOBr, but more importantly, it calls for more
attention to this rising field.



Molecules 2021, 26, 363 4 of 18

2. Probes Based on the Oxidation Reactions Caused by HOBr

Not until 2012 did Han’s group report the construction of cyanine-based fluorescent
probes 1 and 2 for the selective recognition of HOBr (Figure 3), which is the first example
of a fluorescent probe for HOBr [68]. In this system, the cyanine platform served as a
signaling fluorophore, while the 4-hydroxylamino-2,2,6,6-tetramethylpiperidine-N-oxyl
(TemOH) moiety was incorporated both as the reaction site to HOBr and an effective
fluorescent modulator. Despite an almost complete lack of changes in the absorption
spectrum for the two probes upon treatment with HOBr under simulated physiological
conditions (0.2 M PBS, pH = 7.4, 10 µM probes), a remarkable ratiometric fluorescence
response for 1 and fluorescence quenching behavior for 2 were observed. The probe 1
exhibited two absorption maxima at 445 nm and 610 nm, together with the corresponding
fluorescence maxima at 550 nm and 632 nm. The addition of HOBr did not cause a change
of the fluorescence intensity at 550 nm but led to a decrease of the fluorescence intensity at
630 nm (quantum yield varying from 0.10 to 0.02), from which a 13-fold-decrease of the
ratiometric fluorescence response F632 nm/F550 nm could be deduced while increasing the
amount of HOBr from 0 to 110 µM. This unique recognition mechanism could be ascribed
to HOBr-mediated oxidation of the TemOH moiety to the corresponding oxyammonium
cation, which resulted in a donor-excited PET (d-PET) quenching effect. In addition, further
addition of ascorbic acid to the in situ system gave rise to the recovery of its fluorescence
emission due to the ascorbic acid-induced reduction of the oxyammonium cation, resulting
from the inhibition of the d-PET process. The fluorescence intensity could also be turned
off and on repeatedly with the alternate addition of HOBr and ascorbic acid in at least three
cycles. With regard to cyanine probe 2, it exhibited NIR absorption and emission located at
702 nm and 755 nm (Φ = 0.11) in the same media, respectively. Similarly to 1, compound 2
responded to the HOBr/ascorbic acid redox cycle in a sequential manner, but the latter
dye suffered from serious bleaching after three cycles. Importantly, the two probes showed
low toxicity to the RAW264.7 cell line and localized in the cytoplasm, and so they could be
successfully used to monitor intracellular HOBr.
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Subsequently, the same group developed BODIPY-based fluorescent probe 3 for HOBr
in H2O-CH3CN (4:1, v/v, 20 mM PBS, pH = 7.4) solution [69]. Structurally, probe 3
contained the 4-methoxyphenylselenide unit as a modulator (Figure 4a), which could not
only extend the π-conjugation system of the fluorophore but also facilitated the fluorescence
of the probe to tune to the NIR region owing to the strong electron-donating affinity
of the Se atom. As expected, compound 3 showed very weak fluorescence with the
maximum emission wavelength located NIR region (λem = 711 nm, Φ = 0.00083) due to
the heavy atom effect and efficient PET process from the diarylselenides to the BODIPY
backbone. In the presence of HOBr, the fluorescence emission was significantly blue-shifted
to 635 nm (Φ = 0.206) with a 118-fold ratiometric (F635 nm/F711 nm) enhancement, which
was also accompanied by an obvious color change from green to blue, indicating that
probe 3 was an excellent colorimetric and ratiometric fluorescent sensor for HOBr. This
recognition process could be attributed to the oxidation of selenide to selenoxide by HOBr,
causing a shortening of the donor-acceptor π-conjugated system as the selenoxide has much
higher electron-withdrawing ability. Actually, selenium-incorporating fluorescent probes
have been widely demonstrated to be potent chemosensors for several ROS, including
peroxynitrite and hypochlorous acid [70–74]. However, in this system, probe 3 was found
to be highly selective towards recognition of HOBr and not liable to interference by other
ROS (Figure 4b). Additionally, only the addition of H2S (with high selectivity over other
reactive sulfur species such as Cys, Hcys and GSH) induced the reduction of selenoxide
to the corresponding selenide, leading to recovery of its original fluorescence. The redox
recognition event mediated by HOBr and H2S, whose detection limit is determined to be
50 nM and 0.1 µM respectively, could be repeated at least five cycles. The probe possessed
good cell membrane permeability and was applied to continuously detect intracellular
HOBr/H2S redox cycle replacement in RAW264.7 cells.
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In 2020, Zeng and coworkers reported a coumarin-based fluorescent probe 4 for
selective detection of HOBr (Figure 5a), whose sensing mechanism was based on HOBr-
mediated oxidation of amidoxime to the corresponding cyano group [75]. Probe 4 had
good water solubility and exhibited a 5 nm red shift (from 395 to 400 nm) in its absorption
spectrum in PBS buffer solution (pH = 7.4) upon addition of HOBr. On the other hand, the
fluorescence intensity of 4 at 460 nm was greatly enhanced with the quantum yield varying
from 0.0445 to 0.79 in the presence of HOBr, which could be ascribed to the ICT effect of
the resultant product. The sensing ability was demonstrated to be optimal in the pH range
of 7.0 to 8.0. This probe had a quite fast response time (less than 30 s) and the detection
limit of HOBr was calculated as low as 30.6 nM. Probe 4 displayed a good selectivity for
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HOBr over other potential interferences, including ROS, RNS, various amino acids, and
metal ions. Moreover, the content of HOBr in blood was monitored by the probe after
successful establishment of an arthritic model mice (Figure 5b). The fluorescence intensity
of 4 in the arthritic mice’s blood gradually increased within 6 days and reached a maximum
value on the sixth day (Figure 5c), which was 4-fold higher than the value of untreated
blood samples, indicating that probe 4 has potential for early diagnosis and evaluation of
inflammation in clinical practice.
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3. Coupling and Cyclization of Amino and S-Methyl Groups Catalyzed by HOBr

Inspired by the key role that HOBr plays in the formation of sulfilimine (-S=N-)
cross-links in collagen IV [16], Tang and coworkers pioneered the construction of a simple
and ultrasensitive fluorescent probe 5 for selective recognition of HOBr (Figure 6a) [76].
This unique mechanism was based on a specific coupling cyclization between the amino
group and S-methyl group catalyzed by HOBr (Figure 6b). The probe 5 was easily synthe-
sized using commercially available o-(methylthio)-phenylboronic acid and o-bromoaniline
through a Suzuki cross-coupling reaction in 85% yield. In PBS solution (pH = 7.4), the max-
imum excitation and emission wavelength of 5 located at 375 nm and 435 nm respectively,
whereas those of the reaction product after treatment of 5 with HOBr were corresponding
to 480 and 525 nm (Φ = 0.31). The large red shift of the maximum emission wavelength
(ca. 90 nm) can be ascribed to the extended rigid skeleton of the reaction product. The
probe featured an ultrasensitive response (detection limit of 17 pM), fast sensing time
(approximate 3 min), low cytotoxicity (IC50 = 711.20 µM) and high selectivity for HOBr
over other highly active oxidizing species (particularly the HOCl analogue, Figure 6c)
and active reducing species (Figure 6d). Compared with probes 1–3 that detected HOBr
only through activation after exposure to EPO, hydrogen peroxide (H2O2), and bromide
anions (Br−) in live-cells, probes 5 imaged HOBr without bromine anion stimulation and
exhibited different intensities of fluorescence emission with Br−, Br−/H2O2, or HOBr in
HepG2 cells and zebrafish. Consequently, this probe ought to be a promising candidate for
quantifying changes in endogenous HOBr, and is beneficial for a better understanding of
the interconversion of Br−, Br−/H2O2, and HOBr in living organisms. The work shown
not only presents the first example of a fluorescent probe for the specific detection of HOBr
in vivo, but also it paves the way for acquiring other novel fluorescent sensors for HOBr
with tailored properties (see the following examples). Soon afterwards, it was found that
only H2Te reductant could trigger the recovery of the fluorescence to the original level
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of 5 as the sulfilimine bond can be easily cleaved by H2Te [77]. Thus, compound 5 was
demonstrated to be an excellent sequential fluorescence sensor for HOBr followed by H2Te
with high sensitivity and selectivity. The detection limit of H2Te was as low as 8.0 µM, and
at least four cycles with a reasonable fluorescence decrement were acquired upon alternate
addition of HOBr and H2Te. Furthermore, the cyclized product of 5 formed by HOBr could
also be capable of detecting H2Te in HepG2 cells. Importantly, this HOBr/H2Te-mediated
conjugated system worked very well in modulating the formation and cleavage of the
sulfilimine bond in both dipeptide and C-terminal noncollagenous (NC1) hexamers, which
offers a better understanding of the physiological function of collagen IV.
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Dicyanomethylene-benzopyran (DCMB) derivatives are well-known NIR fluorophores
with good stability and large Stokes shifts owing to the distinct push-pull effect and ex-
tended π-conjugation, which are ideal platforms to construct potent NIR fluorescent sensors
for various analytes [78–81]. Conjugation between DCMB and the skeleton of compound
5 ought to afford a unique fluorescent probe for HOBr. As expected, compound 6 has
demonstrated to be an excellent fluorescent probe for markedly selective recognition of
HOBr over the ROS, reactive nitrogen species (RNS), reactive sulfur species (RSS), com-
mon biological amino acids and metal ions (Figure 7), although the probe worked in a
fluorescence quenching manner [82]. The absorption centered at 478 nm of free probe 6 in
PBS-CH3CN (3:2, v/v, pH 7.4) solution sharply decreased, accompanied by appearance of
two new peaks at 392 nm and 448 nm in the presence of HOBr. Meanwhile, probe 6 showed
strong fluorescence emission at 655 nm due to the efficient ICT process, which was mostly
quenched and red-shifted to 700 nm together with a remarkable fluorescence color change
from red to colorless after treatment with HOBr. The corresponding sensing mechanism
could also be attributed to HOBr-triggered cyclization, and the reaction product lacked
satisfactory ICT. The reaction kinetics of 6 with HOBr took about 8 min to level off. Probe
6 maintained its sensing ability in a wide pH range (pH = 4.0–8.0) with a detection limit
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of 0.66 µM. Moreover, this probe had a low cytotoxicity and was successfully applied for
monitoring HOBr in MCF-7 cells.
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Figure 7. Dicyanomethylene-benzopyran (DCMB)-based near-infrared (NIR) fluorescent probe 6 for
HOBr in a fluorescence quenching manner.

Taking advantage of the same coupling cyclization of the amino group and S-methyl
group, sulfilimine-based fluorescent probe 7 containing 4-CF3-7-aminoquinoline as the
fluorophore for sensing HOBr was described in detail by Zhu and coworkers (Figure 8) [83].
Compound 7 displayed three intense absorption bands peaking at 275 nm, 335 nm, and
380 nm in PBS-EtOH (6:4, v/v, pH = 7.4) solution. The addition of HOBr induced a decrease
of the absorption at 275 nm and 380 nm, as well as the emergence of two new absorption
peaks appearing at 300 nm and 410 nm. The strong emission peak of 7 at 505 nm was
gradually decreasing and a new emission signal started to appear at 545 nm along with
a sustained increase of HOBr. The ratios of fluorescence intensity (F545/F505) offered a
good linear correlation with the amount of HOBr in the range of 0–20 µM, from which the
detection limit was estimated to be 92 nM. In addition, the low cytotoxicity and good bio-
compatibility of 7 also allowed the probe to recognize and image exogenous/endogenous
HOBr in living RAW 264.7 cells and zebrafish.
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Each of the distinct subcellular organelles plays an indispensable role in cellular
processes, which requires an appropriate microenvironment and specific biological species
to maintain their cellular functions [84,85]. Mitochondria, essential organelles in most
eukaryotic organisms and the major contributor to cellular ROS levels, are responsible
for energy supply and aerobic metabolism [86]. Consequently, monitoring mitochondrial
microenvironments including ROS, pH, polarity, viscosity, and temperature may give more
information on the status of this organelle [87–90].

On the basis of the same coupling/cyclization recognition mechanism, rhodamine
derivative 8 (Figure 9) was rationally constructed by Tang and coworkers, which is the
first example of a mitochondria-targeting fluorescent probe designed for monitoring
native HOBr in vivo [91]. Rhodamine 110 can serve as both the fluorophore and the
mitochondria-targeting unit, avoiding chemical modification of the parent dye with addi-
tional mitochondria-targeting groups. In HEPES buffer solution (10 mM, pH 7.4, containing
0.3% DMSO as a cosolvent), the probe 8 displayed the excitation and emission peaking
at 495 and 530 nm, respectively, whereas the reaction product of 8 after treatment with
HOBr showed the excitation and emission maxima in the NIR region, located at 624 and
663 nm, respectively. Benefitting from the high fluorescence quantum yield of the reaction
product (Φ = 0.68) in the NIR region, which can greatly enlarge the signal-to-noise ratio
and improves the detection sensitivity, probe 8 had an extremely low detection limit for
HOBr (20 pM) and fast response time (ca. 3 min). Meanwhile, this molecule possessed low
cytotoxicity (IC50 = 650 µM) and persistence of the fluorescence sensing ability for HOBr
in a wide pH range (pH = 2.0–12). This probe did not exhibit any obvious interference by
various bioanalytes including competing ROS, RNS, and commonly-seen metal ions and
amino acids. It was also successfully utilized to image native HOBr in mitochondria of
HepG2 cells and zebrafish. Taking the imaging of zebrafish as an example, in comparison
to Figure 9a,c, a significant fluorescence enhancement was observed with the feeding of
Br− followed by probe 8 (Figure 9b), demonstrating that 8 was capable of monitoring the
exogenous HOBr in vivo as HOBr can be only generated from Br− in this case.
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Figure 9. Mitochondria-targeting NIR fluorescent probe 8 for HOBr (left) and its fluorescence imaging of native HOBr in
zebrafish (right). (a) Zebrafish fed with 8 for 30 min (50.0 µM); (b) zebrafish fed with Br− (100 µM) for 30 min followed
by 8 (50.0 µM) for another 30 min; (c) zebrafish incubated with NAC (a scavenger of HOBr,20.0 µM) for 30 min followed
by 8 (50.0 µM) for another 30 min. (d–f) Correspond to bright-field images of (a–c). (λex = 633 nm, λem = 650–750 nm).
Reproduced with permission from Reference [91]. Copyright 2017 American Chemical Society.

Apart from rhodamine dyes, these fluorophores decorated with one positively charged
group, e.g., the classic pyridinium cation and triphenylphosphonium (TPP), can also
have excellent mitochondrial targeting ability owing to the inherent charge attraction
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from the negative potential of inner mitochondrial membrane [92]. According to this
strategy, Tian and Huang introduced a TPP group onto the backbone of 5, leading to obtain
another mitochondria-targeting ratiometric fluorescent probe 9 for selective recognition
and biosensing of HOBr with high selectivity and sensitivity (Figure 10) [93]. In PBS
solution (pH = 7.4, containing 0.5% DMSO), probe 9 behaved almost in the same fashion
to 5, indicative of the nearly-identical fluorescence emission centered at 437 nm. The
initial emission of 9 gradually decreased with the addition of HOBr, accompanied by the
enhancement of a new emission peak at 528 nm. Compound 9 had a faster response time
(30 s) and a higher detection limit (1.8 ± 0.2 nM) for HOBr as compared to those of 5.
The low cytotoxicity, good biocompatibility and appreciable tolerance to a wide pH range
(pH = 4.0–9.0) allowed probe 9 to function very well in real-time imaging and biosensing
of HOBr in the mitochondria of RAW264.7 cells. More importantly, the work shown here
clearly demonstrated that endogenous HOBr could also be generated from O2

•−-induced
oxidative stress rather than only the Br− stimulation in mitochondria.
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The lysosome is the main digestive compartment in the eukaryotic cell, where nu-
merous macromolecules are degraded for cellular recycling [94]. Lysosome-targeting
fluorescent probes have also been widely constructed for various biological species [95–97].
In particular, lysosome contains hydrolytic enzymes with a high proton concentration
(pH < 6.0), meaning that it performs its function only under acidic conditions. Structurally,
lysosome-localized fluorescent probes always incorporate lipophilic amines (e.g., morpho-
line and tertiary amine) [98]. These moieties can be easily protonated, which facilitate the
positively charged probes to be entrapped and diffuse in the lysosomes.

Almost at the same time, two 1,8-naphthalimide-based fluorescent probes 10 [99]
and 11 [100] for selective detection of HOBr in lysosomes were described in detail by
two different groups (Figure 11). The two probes, containing the same morpholine group
specifically designed for lysosome location, possessed a different position of the functional
groups of 2-methylthiophenyl and amino groups. This slight structural variation between
the two compounds did cause a distinctly different response towards HOBr in their photo-
physical or sensing properties. Naphthalimide derivative 10 was a two-photon fluorescent
(88.8 GM) probe with a fluorescence quantum yield of 0.59 that functioned through a
fluorescence switch-off manner. In HEPES solution (pH = 7.4, containing 0.1% DMSO),
probe 10 displayed a strong absorption peak at 437 nm and a strong fluorescence centered
at 540 nm, which was red-shifted to 451 nm and obviously quenched upon addition of
HOBr. This on-off fluorescence phenomenon was attributed to efficient PET process of the
reaction product, which was also confirmed by density functional theory (DFT) calculation.
With respect to 11 in PBS buffer-CH3CN solution (3:2, v/v, 10 mM, pH = 7.4), the addition
of HOBr led to a decrease of the emission of the free probe at 555 nm and the appearance
of a new emission peak at 610 nm, accompanied by a prominent color transformation of
the solution from yellow to red under 365 nm UV irradiation. The detection limits of 10
and 11 for HOBr were determined to be 33.5 nM and 99 nM, respectively. Both of the
two probes showed good lysosome-targeting affinity, low cytotoxicity, fast response time
(nearly seconds), high degree of selectivity and excellent persistence of sensing ability for
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HOBr in a wider pH range, which allowed it to work very well in imaging of HOBr in HeLa
cells. Moreover, probe 10 was capable of detecting endogenous HOBr in living mice due
to the nature of its two-photon properties. Importantly, the distinct recognition behavior
retrieved from the slight structural difference in the present two examples can be useful for
the design of other new fluorescent chemosensors with novel sensing performance.
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4. Probes Based on Substitution Reactions Caused by HOBr

Selective recognition and monitoring of HOBr can be achieved through substitution
reactions, where HOBr acts as either the reactant or catalyst. In 2018, the first substitution-
based fluorescent probe 4-methylphenol (p-cresol, 12, λex = 260 nm, λem = 305 nm) was
described to react with HOBr (Figure 12), resulting in formation of nonfluorescent bromi-
nation products (i.e., monobromo-, dibromo-cresols) [101]. Under the specific conditions,
compound 12 demonstrated a detection limit for HOBr down to 0.37 µM. Intriguingly,
the biothiols (e.g., Cys, GSH, Hcy, etc.) could also react wih HOBr, giving rise to the
corresponding oxidation product, sulfenic acid. The decreasing fluorescence intensity of 12
caused by this HOBr scavenging antioxidant was not comparable to that of the HOBr by
itself. As a result, the competitive reaction of HOBr between 12 and biothiols also allowed
the probe to determine the HOBr scavenging activity of various biothiols.
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Given the aggregation-induced emission enhancement (AIEE) properties of BODIPY
derivative 13 through J-aggregation [102], Kim and coworkers demonstrated that 13 was
also an efficient fluorescent probe for selective recognition of HOBr via dibromo substitution
(Figure 13) [103]. In aqueous solution (100 mM acetate buffer, pH = 5.0, containing 0.1%
CH3CN), this probe had the absorption and emission maxima centered at 580 and 581 nm,
respectively. The addition of HOBr triggered the characteristic absorption and emission
bands to decrease markedly and red-shift to 613 and 616 nm (ca. 22-fold fluorescence
enhancement at 616 nm), respectively. These spectral changes could be ascribed to the
suspended aggregates of the formed dibrominated product, which was confirmed by
HPLC-MS analysis. HOBr also induced a naked-eye observable color change of the solution
from pink to purple, together with a fluorescence color change from orange to red under
UV lamp irradiation (365 nm). This probe showed extremely fast response (<2 s) for
HOBr, and maintained its sensing ability in a pH range from 4.0 to 9.0. The emission
ratio (F616 nm/F581 nm) of 13 was linearly dependent on the concentration of HOBr in the
range of 1.0–5.0 µM, from which the detection limit was deduced to be 3.8 nM. The other
ROS, and commonly-seen amino acids, biothiols as well as hydrolytic enzymes (including
esterase, trypsin, lipase, lysozyme) did not interfere with the selective recognition of HOBr.
Specifically for HOCl, this ROS could also react with 13 to give the dichlorinated product
but even at a large excess amount ([HOCl]/[13] ≥ 80). As a result, probe 13 was halogenated
with a much higher kinetic selectivity for HOBr over HOCl (≥1200 fold). Benefiting from
the obtained advantageous photophysical properties, probe 13 was successfully applied to
monitoring EPO activity and fluorescence assays of oxidative stress in cancer cells as well
as immune response detection in live mice.
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s) for HOBr, and maintained its sensing ability in a pH range from 4.0 to 9.0. The emis-
sion ratio (F616 nm/F581 nm) of 13 was linearly dependent on the concentration of HOBr in the 
range of 1.0–5.0 μM, from which the detection limit was deduced to be 3.8 nM. The other 
ROS, and commonly-seen amino acids, biothiols as well as hydrolytic enzymes (includ-
ing esterase, trypsin, lipase, lysozyme) did not interfere with the selective recognition of 
HOBr. Specifically for HOCl, this ROS could also react with 13 to give the dichlorinated 
product but even at a large excess amount ([HOCl]/[13] ≥ 80). As a result, probe 13 was 
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Figure 13. BODIPY-based fluorescent probe 13 for selective recognition of HOBr through dibromi-
nated substitution. Reproduced with permission from Reference [103]. Copyright 2018 American
Chemical Society.

Zhu and coworkers presented 1,8-naphthalimide derivative 14 for the selective de-
tection of HOBr (Figure 14), whose sensing mechanism was based on intramolecular
substitution reaction mediated by HOBr rather than HOBr-acting as the brominating reac-
tant [104]. Upon treatment with HOBr, the absorption band of 14 in H2O-EtOH (9:1, v/v,
20 mM PBS, pH = 7.4) shifted from 438 to 424 nm. Initially, probe 14 itself showed weak
fluorescence at 530 nm, which was increased and blue-shifted to 505 nm in the presence
of HOBr. Meanwhile, compound 14 exhibited a rapid response toward HOBr with the
detection limit of 200 nM and reached its saturation point after about 1 min. This probe
demonstrated no obvious interference from other ROS, RNS. and various biology-related
metal ions. The obtained recognition behavior and good biocompatibility also allowed the
probe to visualize HOBr both in RAW 264.7 cells and in zebrafish.
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5. Summary and Outlook

The design and synthesis of fluorescent probes with specific recognition properties are
quite fascinating as these molecules are amenable to biological imaging applications owing
to their remarkable advantages of in vivo bioimaging analysis and real-time visualization.
Selective and sensitive recognition of endogenous HOBr are in urgent demand, which
can make a better understanding of its roles in numerous physiological and pathological
processes. In this review, the advances made so far in fluorescent probes for HOBr have
been discussed, which is the first comprehensive summary related to this area. The
recognition properties were outlined in Table 1, and particular attention was paid to the
design strategies, structural diversity, sensing mechanisms, and their applications.

Table 1. Summary of the fluorescent probes for HOBr.

Entry Probe Solvent System Signal Type λex/λem (nm) Response
Time Applications Detection

Limit Ref.

1 1 0.2 M PBS (pH = 7.4) ratiometric 445/550;
610/632 900 s HOBr-imaging in

RAW264.7 cells n.d. a [68]

2 2 0.2 M PBS (pH = 7.4) turn-off 702/755 900 s HOBr-imaging in
RAW264.7 cells n.d. a [68]

3 3 20 mM PBS containing 20%
CH3CN (pH = 7.4) ratiometric 610/635, 711 3.0 min HOBr-imaging in

RAW264.7 cells 50 nM [69]

4 4 10 mM PBS (pH = 7.4) turn-on 395/460 30 s

monitoring HOBr in
arthritis model mice and
real-time evaluating the
development of arthritis

30.6 nM [75]

5 5 10 mM PBS containing 0.5%
CH3CN (pH = 7.4) turn-on 480/525 ca. 3.0 min

imaging endogenous
HOBr in HepG2 cells and

zebrafish
17 pM [76]

6 6 10 mM PBS -CH3CN (3: 2, v/v,
pH = 7.4) turn-off 488/655 8.0 min monitoring HOBr in

MCF-7 cells 660 nM [82]

7 7 10 mM PBS-EtOH (6:4, v/v,
pH = 7.4). ratiometric 460/505, 545 50 s

tracking the changes of
HOBr in RAW 264.7 cells

and zebrafish
92 nM [83]

8 8 10 mM HEPES containing 0.3%
DMSO (pH = 7.4) turn-on 624/663 ca. 3.0 min

imaging native HOBr in
mitochondria of HepG2

cells and zebrafish
20 pM [91]

9 9 10 mM PBS containing 0.5%
DMSO (pH = 7.4) ratiometric 405/437, 528 30 s

imaging of HOBr in
mitochondria of
RAW264.7 cells

18 nM [93]

10 10 10 mM HEPES containing 0.1%
DMSO (pH = 7.4) turn-off 430/540 immediately

imaging of exogenous and
endogenous HOBr in Hela

cells and mice
33.5 nM [99]

11 11 10mM PBS-CH3CN (3:2, v/v,
pH = 7.4) ratiometric 475/555, 610 12 s

imaging of exogenous and
endogenous HOBr in

HeLa cells
99 nM [100]

12 12 distilled water turn-off 260/305 n.d. a

determination of the
HOBr scavenging activity

of biothiols and some
pharmaceutical samples

0.37 µM [101]

13 13 100 mM acetate buffer containing
0.1% CH3CN (pH = 5.0) ratiometric 480/581, 616 ≤2 s

monitoring EPO activity
and fluorescence assays of
oxidative stress in cancer
cells (HCT116 and A549)

as well as immune
response detection in live

mice.

3.8 nM [103]

a n.d. means not determined.
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Compared to other ROS, HOBr received relatively little attention, and the research
area of fluorescent probes for HOBr has gained slow development since the first case was
reported in 2012. Developing HOBr-specific fluorescent probes is an inter-disciplinary
effort that requires the combined knowledge of organic chemistry, chemical biology and
medicinal chemistry. Collectively, there are extensive challenges and opportunities in this
emerging research field. In general, construction of new fluorescent probes containing
versatile backbones with distinct recognition properties (e.g., high quantum yield, high
photostability, rapid response time, low detection limit, high sensitivity and selectivity, low
cytotoxicity, organelle-specificity, etc.) is significant, which will undoubtedly enrich the
rare examples of fluorescent probes for HOBr. Specifically, the potential interference from
HOCl ought to be taken into account when designing a fluorescent probe for HOBr with
novel performance, since this reactive oxygen species has a high similarity to HOBr in both
chemical and physical properties. Considering that there is only one reported example
of a two-photon excitation probe and no case of second near-infrared biochannel (NIR-II,
1000–1700 nm) fluorescent probes for HOBr, more efforts should be made to conceive
and study these luminescence probes. This is because these two types of fluorescent
probes are crucial for long-time tracking of tissue, body-imaging, and biological processes
due to their high deep penetration and low autofluorescence as well as time-resolved
fluorescence imaging. A wide range of other types of probes for HOBr including fluorescent
nanoparticles, nanoclusters, quantum dots, polymers, proteins, metal complexes (e.g.,
platinum, ruthenium, iridium, and rare earth complexes, MOF) have not been achieved,
which ought to be the subject of initial studies. In addition, a sensing strategy for HOBr
using supramolecular assembly has not been addressed.

Needless to say, the research of fluorescent probes for HOBr is just starting and
still in its infancy, which leaves a great number of possibilities and opportunities. The
review shown here not only provides a comprehensive summation of the construction and
applications of fluorescent probes for HOBr, but we hope it will also be helpful for boosting
this frontier field.
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