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Abstract: Nitrogen-containing flame retardants have been extensively applied due to their low toxic-
ity and smoke-suppression properties; however, their poor charring ability restricts their applications.
Herein, a representative nitrogen-containing flame retardant, polyheptanazine, was investigated. Two
novel, cost-effective phosphorus-doped polyheptazine (PCN) and cobalt-anchored PCN (Co@PCN)
flame retardants were synthesized via a thermal condensation method. The X-ray photoelectron
spectroscopy (XPS) results indicated effective doping of P into triazine. Then, flame-retardant parti-
cles were introduced into thermoplastic polyurethane (TPU) using a melt-blending approach. The
introduction of 3 wt% PCN and Co@PCN could remarkably suppress peak heat release rate (pHRR)
(48.5% and 40.0%), peak smoke production rate (pSPR) (25.5% and 21.8%), and increasing residues
(10.18 wt%→17.04 wt% and 14.08 wt%). Improvements in charring stability and flame retardancy
were ascribed to the formation of P–N bonds and P=N bonds in triazine rings, which promoted the
retention of P in the condensed phase, which produced additional high-quality residues.

Keywords: flame retardants; thermoplastic polyurethane; phosphorous doped; polyheptanazine;
thermal decomposition

1. Introduction

Nitrogen-containing compounds are used as halogen-free flame retardants for poly-
mers due to their low toxicity and smoke suppression during fires [1]. Nitrogen-containing
compounds improve flame retardancy mainly by diluting the concentration of oxygen
and by encouraging the dripping of a polymer [2,3]. However, the poor flame-retardant
efficiency of nitrogen-containing flame retardants restricts their applications. Inspired by
the condensed-phase flame retardancy mechanism, the formation of more char residues
in the condensed phase is a superior way to reduce the heat release rate (HRR) during
combustion.

Triazine-based compounds are halogen-free flame retardants frequently used for ther-
moplastic polyurethane (TPU) because of their smoke suppression during combustion and
their low toxicity [4,5]. Most triazine-based flame retardants decompose to produce non-
combustible gases, which act as gas-phase flame retardants [6]. Polyheptazines, derivatives
of triazine flame retardants, promote a condensed-phase flame retardancy mechanism by
forming a physical barrier in a polymer matrix [7–9]. All of these flame-retardant systems
have demonstrated that no reaction occurs between flame retardants and the polymer
matrix during degradation, which does not change the residue production. Thus, it is
important to investigate methods to realize charring of the condensed phase without
changing the two-dimensional framework of polyheptanazine. Recent studies have demon-
strated that phosphorus doping can improve the thermo-oxidative stability of graphene
oxide (GO) and reduced graphene oxide (rGO) [10]. Polyheptanazine contains nitrogen
triangles with six lone-pairs of electrons, which are available for doping [11]. Phosphorus
can be used in flame retardants and may replace the halogenated variants currently in
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use [12]. Research on P-containing flame retardants is increasing due to environmental
pollution caused by halogenated flame retardants [13,14]. A variety of halogen-free flame
retardants for polymers have been developed, most of which contain P [15–18]. In recent
years, phosphorus-doped polyheptazines have attracted increasing attention due to their
applications in wastewater treatment [19], photocatalysts [20,21], electrocatalysts [22], or-
ganic matter degradation [23,24], and bioimaging [25]. According to the literature [12],
compounds containing P–N bonds can promote the formation of more stable char residues
due to the formation of a crosslinked network between P–N bond compounds and polymer
chains during combustion. Therefore, it is speculated that P–N bonds can be formed by
controlling interstitial P doping to obtain more effective polyheptazine flame retardants.

Transition metals can also improve the flame retardancy of TPU [26,27]. Shi et al. [28]
prepared spinel copper cobaltate/polyheptazine nanohybrids (C–CuCo2O4) via a hy-
drothermal method. The results showed that the introduction of C–CuCo2O4 into TPU
achieved a flame-retardant effect and reduced the release of toxic gases. In his other work,
polystyrene/g-C3N4/ZnCo2O4 composites were prepared [29], and the results showed
that the introduction of hybrids enhanced the thermal stability of PS during catalysis. The
introduction of a Co compound into the polymer can reduce the evolution of aromatic
compounds, which means the reduction of toxic organic volatiles [30,31]. Many studies
have shown that Co can improve the charring property of polymers and can suppress the
release of toxic gases during degradation [32]. It has been reported that an abundance of
N atoms on the surface of polyheptanazine provides a tremendous number of adsorption
sites for anchoring metal ions [22]. Generally, analogous to Fe–N bonds [33], the specific
interactions between Co–N bonds is useful for improving water oxidation [34].

To enhance the effect of condensed-phase flame retardancy of polyheptazine (CN), a
phosphorus-doped polyheptanazine (PCN) was prepared by using the diammonium hydro-
gen phosphate as the P source and urea as the polyheptazine precursor. After further heat
treatment with cobalt acetate, Co was successfully anchored on the surface of phosphorus-
doped polyheptazine (Co@PCN). Afterward, these flame-retardant particles were incorpo-
rated into TPU, and then the thermal stability and fire hazards of the nanocomposites were
investigated. Introducing P and Co is expected to improve the poor condensed-phase flame
retardancy typically observed in nitrogen-containing flame retardants.

2. Results and Discussion
2.1. Characterization of PCN and Co@PCN

As shown in Figure 1a, Fourier-transform infrared (FTIR) spectroscopy was used to
define the functional groups and chemical species in the prepared particles. In general,
the original CN contains three typical vibration bands, included N–H and C–N bonds,
located around 3200 cm−1 and 1200–1650 cm−1, respectively. The third peak was detected
at 814 cm−1, which was caused by the out-of-plane bending vibration of heptanazine
rings [35]. The vibrational bands of P–N functional groups of PCN and Co@PCN were
not detected, which may be due to the overlap of these vibrational bands with strong
C–N vibrational bands [36–38]. Nevertheless, a small wavenumber shift occurred in the
sharp band around 814 cm−1 (Figure 1b), indicating a change in the electron cloud in
C–N bonds and C=N bonds induced by phosphorus doping [39]. A similar phenomenon
was also observed in Co@PCN. There was also a new band at 495 cm−1 in PCN and
Co@PCN, which originated from the P–O–P bending mode [40]. The crystal structure and
phase purity of PCN and Co@PCN were assessed by X-ray diffraction (XRD) using CN
as a reference sample. The results are shown in Figure 1c. The pattern of CN had two
characteristic peaks. The peak at 12.97◦ was caused by in-plane repeating units at, and the
other one at 27.73◦ originated from the interlayer stacking of conjugated aromatic units [35].
The PCN particles showed a similar XRD pattern to the original polyheptanazine, which
indicates that polyheptanazine retained its framework well during the phosphorization
process. However, there were some small sharp peaks in the P-doped samples, indicating
that the samples may contain crystalline phosphate impurities [23,40,41]. In addition, the
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weakening of the PCN (002) diffraction peak may be caused by the inclusion of hetero-
element P during thermal phosphorization, which enlarged the interlayer spacing and
reduced the thickness of the graphitic structure. The further decrease in the diffraction
intensity of metal-containing samples (Co@PCN) may be attributed to chemical coupling
between PCN and metal phosphide clusters [35,42]. Figure 1d shows the TG-DSC curve of
a mixture of urea and diammonium hydrogen phosphate (DHP). The endothermic peak of
the mixture at 134 ◦C was the melting of urea. The melting point of DHP is about 155 ◦C.
Figure 1d shows that urea and DHP began to react at 150–230 ◦C. The corresponding
peak at 237 ◦C was due to the formation of a triazine structure. The polymerization of the
triazine compound occurred at 364 ◦C, which was earlier than the similar peak temperature
of CN prepared using pristine urea [3]. The residues of the mixture of urea and DHP
were 3.8% at 550 ◦C from the curves of TG-DSC (Simultaneous thermogravimetric analysis
coupled with differential scanning calorimeter) The obtained product yield (PCN) was
about 5.2% from calcination in muffle furnace. The reason for the differences may be due
to the different environments in which mixture were located.
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As shown in Figure 2, similar to that of CN and PCN, Co@PCN still presented a
distinct nanosheet structure. The composition of chemical species in Co@PCN particles
was further investigated using scanning transmission electron microscope (STEM) and
energy-dispersive spectrum mapping (EDS) analysis. Significantly, P and Co showed
analogous distribution patterns as N (Figure 2h,i), which demonstrated effective doping of
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P into the triazine rings of CN. We did not observe nanoclusters on the surface of Co@PCN.
It should be noted that the low-density distribution of Co suggested that there were other
forms of CoP or cobalt oxides besides the nanoclusters. A considerable part of these may
be only sub-nanometer or even atomic in size [35].
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The X-ray photoelectron spectroscopy (XPS) analysis images of CN, PCN, and Co@PCN
are given in Figure 3, and the atomic percentages of these particles are listed in Table 1. In
the C 1s spectrum (Figure 3b) of CN, the peaks at 285.08 and 288.28 eV were attributed to the
sp2 graphitic carbon (C–C=C) and sp2-bonded carbon in the triazine rings (N–C=N), respec-
tively [43]. CN has a lower area ratio of graphitic carbon than PCN, and C–O (289.48 eV)
appeared. The C 1s XPS spectra of Co@PCN can be divided into four peaks at 284.93,
287.23, 288.13, and 288.78 eV, corresponding to sp2 graphitic C, C–N, sp2-bonded carbon
in N–C=N, and sp2-hybridized C bonded to –NH2 on the aromatic ring, respectively [22].
The XPS N 1s spectra of CN (Figure 3c) at 398.68, 399.28, and 400.68 eV were attributed
to sp2-hybridized nitrogen C–N=C, tertiary nitrogen N–C3, and C–N–H (positive charge
localization in heterocycles), respectively [35]. The last peak positioned at 401.78 eV was
identified as C–NH2 in PCN [44,45]. Two additional peaks for Co@PCN located at 398.98
and 400.48 eV corresponded to N–Co and C–NH2, respectively [34,46]. The C 1s XPS
spectra of PCN and Co@PCN (Figure 3d) can be divided into two peaks at 531.43 eV and
532.88 eV, corresponding to adsorbed O and oxygen and H2O on the surface [22]. The P 2p
XPS spectra of PCN and Co@PCN contained peaks at 133.13, 133.93, and 134.83 eV, which
correspond to P–N, P=N, and P–O bonds, respectively (Figure 3e) [36,39,47]. This implied
that P likely replaced C in the s-triazine units to form P–N and P=N bonds because the
binding energies of P–C coordination bonds (131.2–132.2 eV) were lower than that of P–N
and P=N bonds [22]. P–O bonds were ascribed to oxidized P on the surface [39]. The Co 2p
spectrum is displayed in Figure 3f, and the peaks positioned at 781.43 and 797.63 eV were
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associated with Co3+. The peaks at 783.03 and 801.48 eV were related to Co2+ [48,49]. The
peaks at 803.98 and 786.48 eV were assigned to the satellite peaks of Co 2p1/2 and 2p3/2 [49].
The peaks at 779.6 and 795.0 eV were related to the Co−Nx structure of Co@PCN, which
formed due to van der Waals forces [50,51].
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Table 1. The C, N, O, P, and Co atomic percentage of CN, PCN, and Co/PCN.

Samples C, at.% N, at.% O, at.% P, at.% Co, at.%

CN 41.74 56.93 1.33 - -
PCN 25.90 33.30 32.54 8.14 -

Co@PCN 32.20 43.52 11.45 10.05 2.78

The thermogravimetric analysis (TGA) curves of CN, PCN, and Co@PCN are shown
in Figure 4 (in nitrogen), and the corresponding thermal decomposition data are given in
Table 2. The initial decomposition temperature, the temperature at 50% weight loss, and
the temperature at the maximal weight were recorded as T−5, T−50, and T−max, respectively.
CN presented a one-step decomposition process over the whole temperature range. Unlike
CN, PCN exhibited three different thermal decomposition processes (Figure 4b). The
decomposition of PCN at 200–550 ◦C may be attributed to the decomposition of a small
amount of oxidized P and oligomers. The T−50 of PCN and Co@PCN were higher than
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that of CN, indicating that the formation of a graphitic polyheptanazine framework was
not affected by phosphorus doping or cobalt loading. The residues of PCN and Co@PCN
at 750 ◦C were 26.3% and 47.1%, respectively, which were much higher than that of CN,
typically 0% at 750 ◦C. This indicated that phosphorus doping greatly increased the residues
of CN, possibly due to the formation of P−N bonds, which encouraged the retention of P
in the condensed phase during thermal decomposition.
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Table 2. The related data of three kinds of flame retardants in nitrogen atmosphere.

Sample T−5
1 T−50

2 T−max
3 Residues at 750 ◦C (wt%)

CN 558 663 686 0
PCN 247 683 699 26.3

Co@PCN 541 738 685 47.1
1 T−5 corresponds to the temperature at 10% weight loss. 2 T−50 corresponds to the temperature at 50% weight
loss. 3 T−max corresponds to the temperature at maximal weight loss rate.

2.2. Fracture Surface Analysis of TPU and its Nanocomposites

Dispersions of CN, PCN, and Co@PCN with the TPU matrix were studied using SEM.
From Figure 5a, pure TPU had a relatively smooth and fractured surface while the fracture
surfaces of CN-TPU, PCN-TPU, and Co@PCN-TPU were rough and uneven. CN particles
were tightly embedded in TPU (Figure 5b), demonstrating their strong interactions with
the polymer. As shown in Figure 5c, aggregations were observed in PCN-TPU, suggesting
the poor dispersion of PCN particles in the TPU matrix. For Co@PCN-TPU (Figure 5d),
the aggregates dispersed in the TPU matrix were larger than those in PCN-TPU. This may
lead to poor flame retardancy test performance. SEM images of the fracture surface of
PCN-TPU and Co@PCN-TPU at different rotating speeds were also investigated (Figures
S1 and S2). It can be concluded that changing the rotational speed has a limited effect on
improving the dispersion of flame-retardant additives. CN particles were well-dispersed,
as shown by analysis of the fracture surface of TPU and its nanocomposites. However,
the condensed-phase flame retardancy mechanism of CN did not promote the formation
of residues and the flame retardancy effect was still much lower than that of PCN and
Co@PCN.
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2.3. Thermal Stability and Fire Resistance of TPU and Its Composites

The thermal decomposition of the TPU composites in nitrogen is shown in Figure 6,
and the corresponding parameters are listed in Table 3. All nanocomposites exhibited
similar degradation behavior to that of pure TPU (Figure 6). T−5 of CN-TPU decreased
slightly after the introduction of CN, while T−5 of PCN-TPU was 19 ◦C lower than that
of pure TPU, which may be attributed to the presence of a small amount of oxidized P in
PCN. The initial decomposition temperature of Co@PCN-TPU was 4 ◦C higher than that of
pure TPU, which was due to the higher thermal stability of Co@PCN. T−50 of CN-TPU and
PCN-TPU were basically the same as that of pure TPU, while T−50 of Co@PCN-TPU was
10 ◦C higher than that of pure TPU. The residues of CN-TPU, PCN-TPU, and Co@PCN-
TPU at 700 ◦C were 5.2, 9.5, and 10.7%, respectively, which were 4.4% higher than pure
TPU. This phenomenon demonstrated that the introduction of phosphorus increased the
residues, which was attributed to the effect of P–N bonds [12]. The overall influence of PCN
and Co@PCN was that the incorporated additives did not influence the decomposition
of polyurethane bonds but slightly increased the residue percentage formed during the
decomposition of polyols (the second decomposition step in Figure 5b).
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Table 3. The related data of TPU and its composites in nitrogen atmosphere.

Sample T−5 T−50 T−max Residues at 700 ◦C (wt%)

Pure TPU 306 392 407 4.4
CN-TPU 300 391 399 5.2

PCN-TPU 287 393 404 9.5
Co@PCN-TPU 310 402 410 10.7

The flame retardancy of TPU and its nanocomposites under nitrogen atmosphere
was evaluated by microcalorimetry (MCC). As shown in Figure 7 and Table 4, the peak
heat release rate (pHRR) and total heat release (THR) of pure TPU during combustion
were 407.8 kW/m2 and 86.34 MJ/m2, respectively. The pHRR for PCN-TPU was 33.8%
lower while the pHRR of Co@PCN-TPU decreased by 16.4% compared with pure TPU.
It can be seen that CN has a good thermal inhibition effect in a nitrogen atmosphere.
Figure 7b shows that the incorporation of PCN and Co@PCN further reduced the THR
of the nanocomposites. It demonstrated that the introduction of phosphorus or cobalt is
beneficial to further reduce the THR of nanocomposites under nitrogen atmosphere.
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Table 4. Combustion parameters of TPU and its nanocomposites obtained from MCC and CCT.

Sample pHRR 1

(W/g)
pHRR 2

(W/g)
THR

(MJ/m2) pSPR (m2/s) Residues (%)

Pure TPU 407.8 509.4 86.34 0.0847 10.18
CN-TPU 373.2 561.4 82.31 0.0985 7.25

PCN-TPU 269.9 262.2 74.01 0.0631 17.04
Co@PCN-TPU 341.0 305.4 76.68 0.0662 14.08

1 pHRR corresponded to the peak heat release rate measured by MCC. 2 pHRR corresponded to the peak heat
release rate measured by CCT.

The HRR and THR curves obtained from cone calorimetry tests (CCT) of pure TPU
and its nanocomposites are shown in Figure 8. The pHRR of pure TPU was 509.4 kW/m2

while that of CN-TPU was 561.4 kW/m2, which was the highest of all samples (Figure 8a).
It demonstrated that the addition of untreated CN alone did not help reduce the pHRR of
thermoplastic polyurethane. After the introduction of PCN and Co@PCN into the polymer,
the pHRR decreased by 48.5% and 40.1% for PCN-TPU and Co@PCN-TPU, respectively,
rivaled by pure TPU. PCN and Co@PCN changed the pyrolysis process of TPU, forming
more char layers, which was mainly attributed to the formation of P–N bonds and P=N
bonds in triazine rings, which promoted the retention of P in the condensed phase and
produced more high-quality residues.
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The results in Figure 8b show that PCN-TPU and Co@PCN-TPU degraded slightly ear-
lier than pure TPU samples. The THR of pure TPU, CN-TPU, PCN-TPU, and Co@PCN-TPU
were 86.34 MJ/m2, 82.31 MJ/m2, 74.01 MJ/m2, and 76.68 MJ/m2, respectively (Table 4).
PCN and Co@PCN encouraged the production of more residues and reduced the mass
loss, thus reducing the value of total heat release. The CCT results showed that the
flame-retardant efficiency of PCN was better than that of Co@PCN.

The smoke-production rate (SPR) curves of pure TPU and its composites are shown
in Figure 8c. The pSPR was greatly reduced after the introduction of PCN and Co@PCN,
indicating that smoke toxicity of TPU decreased. Under the same filling contents, PCN-TPU
presented the lowest pSPR and showed the best smoke-suppression performance of all
samples. This was attributed to the charring ability of the condensed phase of modified
polyheptanazine, which reduced heat release and smoke production.
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Figure 8d gives the mass loss curves of nanocomposites as a function of time. The
lower mass loss was ascribed to the formation of a high-quality char on the nanocomposite
surface and its structure improvement [52]. Only 10.18% of pure TPU remained after the
CCT test. The PCN-TPU plot shows a high residue value of 17.04%, which indicates that
P-doped polyheptanazine was cross-linked. Moreover, the char residues formed on the
surface can prevent heat and mass transfer, further reducing mass loss and improving
fire safety.

It has been reported that the char residues of cyclo-P–N bond composites include
P–O–P bonds and P–O–C bonds [53,54]. Combined with the TG data, it can be inferred that
the increase of residues during cone calorimetry tests may be attributed to the production
of phosphoric acid or polyphosphate during pyrolysis, which promotes the formation of
heat-resistant carbonaceous compounds.

The curves of CO and CO2 evolution as a function of time obtained from CCT are
shown in Figure 8e,f, and the total amount of CO and CO2, and the corresponding CO2/CO
ratio of TPU and its nanocomposites after complete combustion are listed in Table 5. CO
and CO2 are the main components of fire gas. A high concentration of CO will lead to
carbon monoxide poisoning due to obstruction of escape in a fire. The lower values of
CO2/CO ratio indicated that the low efficiency of combustion and the conversion of CO to
CO2 are inhibited [55]. As shown in Table 5, the yields of CO of PCN-TPU and Co@PCN-
TPU were higher than that of pure TPU, but PCN-TPU and Co@PCN-TPU had lower
yields of CO2 compared to pure TPU, leading to a decrease in CO2/CO ratios (29.7 and
27.8 vs. 44.9). This may be due to the reaction between a small amount of oxidized P with
the polymer matrix, which prevents further oxidation of CO release from PCN-TPU and
Co@PCN-TPU in the first combustion process into CO2, whereas that reaction could not
occur in the combustion process of pure TPU.

Table 5. CO2 and CO data, and UL-94 test results of TPU and its nanocomposites.

Sample CO2 (kg/kg) CO (kg/kg) CO2/CO UL-94

Pure TPU 61.0 1.36 44.9 V-2
CN-TPU 56.9 1.53 37.2 V-2

PCN-TPU 48.4 1.63 29.7 V-2
Co@PCN-TPU 51.4 1.85 27.8 V-2

TPU and its nanocomposites passed the UL-94 V-2 rating with melt dripping in the
vertical burning test. Furthermore, the dripping object ignited the absorbent cotton. t1 + t2
(Total burning time is used to evaluate the UL-94 rating.) in the UL-94 test decreased as the
flame retardants were incorporated. t1 + t2 of pure TPU is 3 s while those of PCN-TPU and
Co@PCN-TPU are shorter.

To highlight the improved fire performance of phosphorus-doped polyheptanazine
in the TPU matrix, the performance of PCN-TPU was compared with the reported results
of other flame-retardant TPU nanocomposites (Table 6). It can be inferred that PCN
encourages the formation of char residues, resulting in decreased pHRR values. Table 6
also shows that PCN has a definite smoke-suppression effect. In this work, the introduction
of PCN to TPU remarkably reduced the PHRR (48.5%), which was better than most reported
results. Yang et al. [56] fabricated cetyltrimethylammonium bromide (CTAB)-modified
Ti3C2 (MXene) ultra-thin nanosheets (CTAB-Ti3C2). Despite excellent flame retardance
properties (−51.2% in pHRR), the use of MXene flame retardants has been greatly limited
because their preparation methods are expensive and difficult to industrialize. The raw
materials used in this paper are urea and diammonium hydrogen phosphate, which are
produced industrially, making them easy to acquire. In addition, the preparation method
of PCN is simple.
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Table 6. Thermal and burning parameters of TPU flame-retardant composites reported in previous
work and this work.

Recipes Residues (wt%) 1 pHRR pSRR Year and Ref.

2 wt% CTAB-Ti3C2 1.3→6.1 −51.2% −57.1% 2019 [56]
3 wt% CPBN 4.1→10.2 −35.6% - 2019 [57]

2 wt% CeO2/rGO 7.3→9.7 −41.1% −50.0% 2019 [58]
2 wt% CSACS-C 0.3→2.0 −35.9% - 2019 [59]

2 wt% Co3O4-GNS 2.8→8.5 −16.4% - 2016 [32]
1.5 wt% rGO-Salen-Ni 5.5→9.0 −43.1% - 2018 [60]

3 wt% HC-Mo 3.4→6.6 −38.3% −32.1% 2018 [61]
3 wt% PCN (This work) 4.4→9.5 −48.5% −25.5% This work

1 Residues corresponded to the change of residual quantity.

2.4. Evolution of Pyrolysis Gas

Simultaneous thermal analysis coupled with Fourier-transform infrared spectrometry
(TG-IR) was used to detect the effect of those particles on the pyrolysis behavior of pure
TPU, CN-TPU, PCN-TPU, and Co@PCN-TPU (Figure 9). TPU nanocomposites showed
similar main spectra bands to that of pure TPU, and those bands were attributed to func-
tional groups or components with characteristic band positions (Figure 10), including CO2
(2358 cm−1), aromatic compounds (1508 and 1460 cm−1), esters (1145 cm−1), hydrocarbons
(2977 and 2880 cm−1), carbonyl compounds (1751 cm−1), and HCN (714 cm−1) [57,62,63].
The results showed that pure TPU and CN-TPU exhibited similar thermal decomposition
processes while PCN-TPU decomposed slightly earlier. This demonstrated that incorporat-
ing these flame-retardant particles into TPU may not change the primary decomposition
process.
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Figure 10a shows that the decomposition of PCN-TPU released abundant CO2 during
the first stage, which was related to the slightly earlier decomposition due to the addition
of PCN during TGA (Figure 6) and MCC (Figure 7). This can enhance the gas-phase
flame-retardant mechanism of the nanocomposites. The inhibition of PCN-TPU was better
than that of Co@ PCN-TPU in the remaining characteristic band analysis. This can be
attributed to the better char-formation ability of PCN in the matrix. Figure 10b shows
the evolution trend of aromatic compounds. The addition of three fillers increased the
intensity of the first stage and decreased the intensity of the second stage, which did
not prolong the ignition time of the nanocomposite during CCT. This is different from
the previous literature that stated Co compounds can inhibit the formation of aromatic
compounds [31]. In addition, PCN-TPU showed a different phenomenon from other
samples in the hydrocarbon curve in Figure 10d. A few hydrocarbons were released during
the first stage, which may be attributed to the reaction of a small amount of oxidized P
with the polymer matrix, corresponding to premature decomposition of PCN-TPU in TGA.
Figure 10f shows that PCN changed the decomposition pathway, thus avoiding HCN
produced by polyheptanazine decomposition. This stage corresponds to the 500–600 ◦C
decomposition stage in TGA.

3. Materials and Methods
3.1. Materials

TPU (S80A, BASF SE) with a density of 1.21 g/cm3, urea (99%, J&K Scientific, Ltd.,
Beijing, China), diammonium hydrogen phosphate (99%, Shanghai Macklin Biochemical
Co., Ltd., Shanghai, China), Cobalt (II) acetate tetrahydrate (99.5%, Shanghai Macklin
Biochemical Co., Ltd.), and ethanol (≥99.7%, Shanghai Titan Scientific Co., Ltd., Shanghai,
China) were used as received without further purification.

3.2. Preparation of Phosphorus-Doped Polyheptazine Nanomaterials (PCN)

A preparation scheme of PCN and Co@PCN is shown in Scheme 1. PCN were
synthesized by the thermal-condensation method using diammonium hydrogen phosphate
as the P source and urea as the polyheptazine precursor. In detail, 40 g of urea and 2.4 g
of diammonium hydrogen phosphate were thoroughly mixed, and the resulting mixture
was placed in an open porcelain crucible. The crucible was placed in a muffle furnace
(KSL-1200X, Hefei Ke Jing Materials Technology Co., Ltd., Hefei, China) and calcined at
550 ◦C for 2 h with a heating rate of 5 ◦C min−1. The obtained yellow product was crushed
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with a grinder into fine grains for further use. In the absence of diammonium hydrogen
phosphate, CN was synthesized by urea using the same steps.
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3.3. Preparation of Co@PCN Nanomaterials

Cobalt (II) acetate tetrahydrate (0.9 g) and 3.6 g of PCN were dispersed in ethanol,
and then, ethanol was evaporated at 50 ◦C under magnetic stirring. After drying at 60 ◦C
for 12 h, the mixture was heated at a rate of 5 ◦C min−1 in a muffle furnace from room
temperature to 500 ◦C and maintained for 3 h. Finally, a wathet blue product was obtained.

3.4. Preparation of Flame-Retarding TPU

Pristine TPU and its composites were fabricated by a melt blending method. Typi-
cally, 1.5 g of Co@PCN was blended with 48.5 g of TPU at 180 ◦C in a torque rheometer
(RHEOCORD 300P, Germany) for 15 min with a rotor speed of 80 rpm. Next, the sample
containing 3.0 wt% Co@PCN was hot-pressed via a flat vulcanizing machine at 185 ◦C to
obtain sheets with suitable sizes, which were named TPU/Co@PCN. Other samples with
3.0 wt% CN and 3.0 wt% PCN were labeled CN-TPU and PCN-TPU, respectively. The
control sample of pure TPU was also prepared by the same process.

3.5. Characterization Procedures

Fourier-transform infrared (FT-IR) spectra were obtained on an FTIR spectrometer
(EQUINOX 55, Bruker, Ettlingen, Germany) with scanning from 4000 cm−1 to 400 cm−1.

X-ray diffraction (XRD) patterns were measured by using an X-ray diffractometer
(Empyrean, Malvern PANalytical, Almelo, The Netherlands) equipped with CuKα radiation.

Simultaneous thermogravimetric analysis coupled with differential scanning calorime-
ter (TG-DSC) was carried out on a simultaneous thermal analyzer (STA449F3/Nicolet6700).

Transmission electron microscopy (TEM) images and energy-dispersive spectroscopy
(EDS) analyses were obtained using a FEI Tecnai G2 Spirit instrument with an acceleration
voltage of 200 kV.

The binding energies of C, N, O, P, and Co in the samples were determined by X-ray
photoelectron spectroscopy (XPS) on a Thermo Fisher Scientific system equipped with Al
Kα radiation (hν = 1486.8 eV).

Thermogravimetric analysis (TGA) was carried out on a NETZSCH TG209F1 Libra
thermogravimetric analyzer.

The morphology of the prepared composites was investigated by scanning electron
microscopy (SEM). The samples were mounted onto an aluminum stub, sputter-coated
with gold, and imaged by SEM (Hitachi S-4800 field-emission microscope, Tokyo, Japan) at
an accelerating voltage of 10 kV. The fracture surface of the flame-retardant samples was
prepared by quenching in liquid nitrogen.

Small-scale combustion performance was investigated by a Govmark MCC-2 mi-
crocalorimeter (New York, NY, USA). Specifically, 5 mg of samples were heated to 750 ◦C
with a ramp rate of 1 ◦C/s in a nitrogen stream flowing at 80 mL/min. The pyrolysis
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products were mixed with oxygen (20 mL/min) and then burned in a combustion furnace
at 900 ◦C.

Cone calorimetry tests (CCT) were carried out by an FTT0007 cone calorimeter with
100 × 100 × 3.5 mm3. The radiation heat flux was 35 kW/m3.

UL-94 vertical flame test was measured on a UL94-X type instrument (UL94 Flame
Chamber, Motis). The specimens used for the test were of the dimensions 100 × 13 × 3.6 mm3.

Simultaneous thermal analysis was interfaced with Fourier-transform infrared spec-
trometry (TG-IR). The thermal analysis was performed from 30 to 800 ◦C with a heating
rate of 10 ◦C min−1 under a nitrogen atmosphere.

4. Conclusions

In this work, PCN and Co@PCN, two functionalized polyheptanazines with enhanced
charring, were prepared via thermal condensation and used as flame-retardant fillers for
TPU. The results demonstrated that P replaced C in the s-triazine units to form P–N and
P=N bonds. After ultrasonic treatment of Co@PCN, STEM images showed that Co still had
a similar distribution pattern to that of N, indicating that Co was successfully anchored on
the surface of doped polyheptanazine. Cone calorimetry tests showed that PCN-TPU and
Co@PCN-TPU remarkably decreased the pHRR, THR, and pSPR compared with pure TPU.
In particular, using only 3.0 wt% filling, the pHRR was decreased by 48.5% and 40.1%,
respectively. The enhanced flame retardancy was mainly attributed to the formation of
P–N and P=N bonds in triazine rings, which promoted the retention of P in the condensed
phase and produced more high-quality residues. The PCN flame retardant suppressed the
production of combustible and toxic gases to a certain extent. However, the additional Co
anchored on the surface of doped polyheptanazine has no significant effect on the flame
retardancy of polymer composites. Furthermore, Co@PCN did not suppress the production
of toxic gases such as CO. The effect of in situ introduction of P and CO on the charring of
polyheptylazine was studied. The results demonstrated that the flame-retardant effect of
in situ introduction of P is better than that of Co. This work may provide a design route to
solve the problem whereby nitrogen-containing flame retardants lack a condensed-phase
charring effect.

Supplementary Materials: Figure S1: SEM images of fracture surface of (a,b) PCN-TPU under a
rotor speed of 60 rpm and (c,d) PCN-TPU under a rotor speed of 100 rpm. Scale bar: 15 µm, Figure S2:
SEM images of fracture surface of (a,b) Co@PCN-TPU under a rotor speed of 60 rpm and (c,d)
Co@PCN-TPU under a rotor speed of 100 rpm. Scale bar: (a,c) 15 µm and (b,d) 30 µm.
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