SUPPLEMENTARY MATERIAL

In search for multi-target ligands as potential agents for diabetes mellitus and its complications: A structure-activity relationship study on inhibitors of aldose reductase and protein tyrosine phosphatase 1B.

Rosaria Ottanà, ${ }^{\text {a }}$ Paolo Paoli, ${ }^{\mathrm{b}}$ Mario Cappiello, ${ }^{\text {c }}$ Trung Ngoc Nguyen, ${ }^{\text {d }}$ Ilenia Adornato, ${ }^{\text {a }}$ Antonella Del Corso, ${ }^{\text {c }}$ Massimo Genovese, ${ }^{\text {b }}$ Ilaria Nesi, ${ }^{\text {b }}$ Roberta Moschini, ${ }^{\text {c }}$ Alexandra Naß, ${ }^{\text {d }}$ Gerhard Wolber, ${ }^{\text {d }}$ Rosanna Maccari ${ }^{\text {a }}{ }^{\text {* }}$

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, Polo Universitario Annunziata, 98168 Messina, Italy

Department of Biology, Biochemistry Unit, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy
Department of Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, University of Firenze, Viale Morgagni 50, 50134 Firenze, Italy

Molecular Design Lab, Institute of Pharmacy, Freie Universität Berlin, Königin-Luisestr. 2+4, 14195 Berlin, Germany.

Figures S1-S28. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of representative compounds 3a-f, 4a-f, 5d, 5e.
Figure S29. Reversibility assay.
Figures S30-S32. Kinetic characterization of compound $\mathbf{4 a}, \mathbf{4 e}, \mathbf{4 f}$ as AR inhibitors.
Figures S33-S35. Kinetic characterization of compound 4a, 4e, 4f as PTP1B inhibitors.
Table S1 - Calculated parameters of compounds 3a-f, 4a-f, 5a-e.

Figure S1 - ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{3 a}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Figure S2 - ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{3 b}$ (500 MHz , DMSO- d_{6})

Figure S3- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{3 c}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$

Figure S4- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{3 d}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Figure S5- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{3 e}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Figure S6- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{3 f}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Figure S7- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{4 a}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Figure S8 - ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{4 b}$ ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$)

Figure S9 - ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{4 c}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Figure S10 - ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{4 d}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$

Figure S11 - ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{4 e}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$

Figure S12 - ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{4 f}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Figure S13- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{5 d}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Figure S14- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{5 e}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$

Figure S15- ${ }^{13} \mathrm{C}$-NMR spectrum of compound 3a (125.73 MHz , DMSO- d_{6})

Figure S16- ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{3 b}$ (125.73 MHz , DMSO- d_{6})

Figure S17- ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{3 c}\left(125.73 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Figure $\mathbf{S 1 8}{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{3 d}\left(125.73 \mathrm{MHz}\right.$, DMSO- d_{6})

Figure S19- ${ }^{13}$ C-NMR spectrum of compound $\mathbf{3 e}\left(125.73 \mathrm{MHz}\right.$, DMSO- d_{6})

Figure S20 - ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{3 f}\left(125.73 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Figure S21- ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{4 a}\left(125.73 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Figure S22 - ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{4 b}\left(125.73 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Figure S23 - ${ }^{13}$ C-NMR spectrum of compound $\mathbf{4 c}\left(125.73 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Figure S24- ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{4 d}$ (125.73 MHz , DMSO- d_{6})

Figure S25- ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{4 e}\left(125.73 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Figure S26 - ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{4 f}$ (125.73 MHz , DMSO- d_{6})

Figure $\mathbf{S 2 7}-{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{5 d}\left(125.73 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Figure S28- ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{5 e}\left(125.73 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

Figure S29. Reversibility assay. Aliquot of PTP1B was incubated in the presence of saturating concentrations of compounds $\mathbf{4 a}, \mathbf{4 e}$ and $\mathbf{4 f}$ for 1 hours at $37^{\circ} \mathrm{C}$. After this time, residual activity of enzyme was determined diluting aliquot of samples in the assay buffer. All values were normalized respect to that of control experiment. Data reported in the figure represent the mean value \pm S.E.M. $(\mathrm{n}=3)$.

Figure S30. Kinetic characterization of compound 4 a as AR inhibitor. Panel A refers to Linewewer-Burk plot obtained when the activity of the purified AR (8 mU) was measured at the indicated concentrations of L-idose as substrates, in the absence (\bullet) or in the presence of the following concentrations of compound $\mathbf{4 a}$: ($\mathbf{\Delta}) 1.25 \mu \mathrm{M},(\boldsymbol{\nabla}) 2.5 \mu \mathrm{M}$, ($\boldsymbol{*}) 5 \mu \mathrm{M}$, Panel B, and Panel C refer to the secondary plots of the ordinate intercept (${ }^{a p p} K_{M} /^{a p p} V_{m a x}$) and of the slopes ($1 /^{a p p} V_{\max }$) of the relative primary plot, as a function of the inhibitor concentration. Bars (when not visible are within the symbol size) represent the standard deviations of the mean from at least three independent measurements.

Figure S31. Kinetic characterization of compound 4 e as $\mathbf{A R}$ inhibitor. Panel A refers to Linewewer-Burk plot obtained when the activity of the purified AR (8 mU) was measured at the indicated concentrations of L-idose as substrates, in the absence (\bullet) or in the presence of the following concentrations of compound 4 e : ($\mathbf{\Delta}) 1.25 \mu \mathrm{M},(\boldsymbol{\nabla}) 2.5 \mu \mathrm{M}$, ($\uparrow 5 \mu \mathrm{M}$. Panel B , and Panel C refer to the secondary plots of the ordinate intercept (${ }^{a p p} K_{M}{ }^{a p p} V_{\max }$) and of the slopes $\left(1{ }^{\text {app }} V_{\max }\right)$ of the relative primary plot, as a function of the inhibitor concentration. Bars (when not visible are within the symbol size) represent the standard deviations of the mean from at least three independent measurements.

Figure S32. Kinetic characterization of compound 4 f as $\mathbf{A R}$ inhibitor. Panel A refers to Linewewer-Burk plot obtained when the activity of the purified AR (8 mU) was measured at the indicated concentrations of L-idose as substrates, in the absence (\bullet) or in the presence of the following concentrations of compound $\mathbf{4 f}:(\mathbf{\Delta}) 1.25 \mu \mathrm{M},(\boldsymbol{\nabla}) 2.5 \mu \mathrm{M},(\star) 5 \mu \mathrm{M}$, Panel B, and Panel C refer to the secondary plots of the ordinate intercept $\left({ }^{a p p} K_{M}{ }^{a p p} V_{\max }\right)$ and of the slopes ($1 /^{a p p} V_{\max }$) of the relative primary plot, as a function of the inhibitor concentration. Bars (when not visible are within the symbol size) represent the standard deviations of the mean from at least three independent measurements.

Figure S33. Kinetic characterization of compound 4a as PTP1B inhibitor. (A), LineweaverBurk plot obtained when the activity of PTP1B was measured at the indicated concentrations of pNPP in the absence ($\boldsymbol{\square}$) or in the presence of compound $\mathbf{4 a}$. The concentrations of compound $\mathbf{4 a}$ used were : $O, 16 \mu \mathrm{M} ; \mathbf{\Delta}, 20 \mu \mathrm{M} ; \nabla, 24 \mu \mathrm{M}$. Each test was carried out in triplicate. Data showed in the graph represent the mean values \pm S.E.M $(\mathrm{n}=3)$. Secondary plots of the slopes (${ }^{\text {app }} \mathrm{K}_{\mathrm{m}}$, $\left.{ }^{\text {app }} \mathrm{V}_{\max }\right)(\mathrm{B})$, and ($1 /{ }^{\text {app }} V_{\max }$) (C), relative primary plot, as a function of the inhibitor concentration

Figure S34. Kinetic characterization of compound 4e as PTP1B inhibitor. (A), LineweaverBurk plot obtained when the activity of PTP1B was measured at the indicated concentrations of pNPP in the absence ($\boldsymbol{\square}$) or in the presence of compound $\mathbf{4 e}$. The concentrations of compound $\mathbf{4 e}$ used were : $\bigcirc, 8 \mu \mathrm{M} ; \mathbf{\Lambda}, 16 \mu \mathrm{M} ; \nabla, 24 \mu \mathrm{M}$. Each test was carried out in triplicate. Data showed in the graph represent the mean values \pm S.E.M $(\mathrm{n}=3)$. Secondary plots of the slopes $\left({ }^{\text {app }} \mathrm{K}_{\mathrm{m}},{ }^{\text {app }} \mathrm{V}_{\max }\right)$ (B), and ($1 /{ }^{\text {app }} V_{\max }$) (C), relative primary plot, as a function of the inhibitor concentration.

A

B

[4f] $\mu \mathrm{M}$

Figure S35. Kinetic characterization of compound 4f as PTP1B inhibitor. (A), LineweaverBurk plot obtained when the activity of PTP1B was measured at the indicated concentrations of pNPP in the absence ($\mathbf{\square}$) or in the presence of compound $\mathbf{4 f}$. The concentrations of compound $\mathbf{4 f}$ used were : $O, 5 \mu \mathrm{M} ; \mathbf{\Delta}, 7 \mu \mathrm{M} ; \nabla, 9 \mu \mathrm{M}$. Each test was carried out in triplicate. Data showed in the graph represent the mean values \pm S.E.M $(\mathrm{n}=3)$. Secondary plots of the slopes $\left({ }^{\mathrm{app}} \mathrm{K}_{\mathrm{m}},{ }^{\text {app }} \mathrm{V}_{\mathrm{max}}\right)$ (B), and ($1 /{ }^{\text {app }} V_{\max }$) (C), relative primary plot, as a function of the inhibitor concentration.

Table S1 - Calculated parameters of compounds 3a-f, 4a-f, 5a-e ${ }^{\text {a }}$

Compd	MW	logP	n. H donor groups	n. H acceptor groups	n. rotable bonds	TPSA $\left(\mathbf{A}^{\mathbf{2}}\right)$
3a	369.39	2.83	1	5	6	109.21
3b	369.39	2.82	1	5	6	109.21
3c	383.42	2.84	1	5	7	109.21
3d	383.42	2.84	1	5	7	109.21
3e	397.44	3.06	1	5	8	109.21
3f	397.44	3.13	1	5	8	109.21
4a	385.46	3.46	1	4	6	124.23
4b	385.46	3.42	1	4	6	124.23
4c	399.48	3.36	1	4	7	124.23
4d	399.48	3.42	1	4	7	124.23
4e	413.51	3.61	1	4	8	124.23
$\mathbf{4 f}$	413.51	3.74	1	4	8	124.23
5a	381.40	3.05	1	5	6	109.21
5b	381.40	3.08	1	5	6	109.21
$\mathbf{5 c}$	365.40	3.13	1	4	5	99.98
5d	339.37	2.72	1	4	4	99.98
5e	339.37	2.71	1	4	4	99.98

${ }^{\text {a }}$ http://www.swissadme.ch/index.php.

