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Abstract: (1) Background: Metal dithiocarbamate compounds have long been the subject of research
due to their ease of formation, excellent properties and potential applications. However, manganese
complexes with dithiocarbamates, to our knowledge, have never been used for medical imaging
applications. With the aim of developing a new class of mononuclear manganese(II)-based agents
for molecular imaging applications, we performed a specific investigation into the synthesis of
mononuclear bis-substituted Mn(II) complexes with dithiocarbamate ligands. (2) Methods: Syn-
thesis in either open or inert atmosphere at different Mn(II) to diethyldithiocarbamate molar ratios
were performed and the products characterized by IR, EA, ESI-MS and XRD analysis. (3) Results:
We found that only under oxygen-free atmospheric conditions the Mn(II) complex MnL2, where
L = diethyldithiocarbamate ligand, is obtained, which was further observed to react with dioxygen
in the solid state to form the intermediate superoxo Mn(III) complex [MnL2(η2-O2)]. The existence
of the superoxo complex was revealed by mass spectroscopy, and this species was interpreted as
an intermediate step in the reaction that led the bis-substituted Mn(II) complex, MnL2, to trans-
form into the tris-substituted Mn(III) complex, MnL3. A similar result was found with the ligand
L’ (= bis(N-ethoxyethyl)dithiocarbamate). (4) Conclusions: We found that in open atmosphere and
in aqueous solution, only manganese(III) diethyldithiocarbamate complexes can be prepared. We
report here a new example of a small-molecule Mn(II) complex that efficiently activates dioxygen in
the solid state through the formation of an intermediate superoxide adduct.

Keywords: manganese complexes; diethyldithiocarbamate; manganese(III) complexes; dioxygen
activator

1. Introduction

Dithiocarbamates (-S2CNR2, R = general organic functional group) are highly versatile
chelating ligands, forming stable complexes with both transition and main group elements.
Transition metal complexes with this class of ligands have long been the object of research
due to their easy formation, excellent properties and potential applications [1,2]. In terms
of group VII transition metals, it is worth noting that, while mononuclear technetium-
99m and rhenium-188 dithiocarbamate radio-compounds are used in the field of nuclear
medicine as imaging and therapeutic agents, respectively [3,4], manganese complexes with
dithiocarbamates, to our knowledge, have never been used for medical applications. A
possible reason could be the chemical nature of these complexes, prepared from Mn(II)
salts that still remain a matter of debate.

Molecules 2021, 26, 5954. https://doi.org/10.3390/molecules26195954 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-4059-4814
https://orcid.org/0000-0002-6382-1944
https://orcid.org/0000-0002-1490-0718
https://orcid.org/0000-0002-4269-697X
https://orcid.org/0000-0003-0437-5670
https://orcid.org/0000-0002-6443-7039
https://orcid.org/0000-0001-6567-6245
https://doi.org/10.3390/molecules26195954
https://doi.org/10.3390/molecules26195954
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26195954
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26195954?type=check_update&version=1


Molecules 2021, 26, 5954 2 of 12

This work is part of the project METRICS (acronym for Multimodal pET/mRi Imaging
with Cyclotron-produced 51/52Mn iSotopes), which aims to develop the technology needed
to obtain a cyclotron-driven production of 52/51Mn PET radionuclides and to achieve a
perfect molecular matching by taking advantage of both paramagnetic and radioactive
properties shown by manganese isotopes in order to enable PET/MRI hybrid imaging.
In this framework, we started an investigation into the class of dithiocarbamate ligands
with the purpose of developing a new class of mononuclear manganese(II)-based agents
for medical applications. In particular, we performed specific studies on the synthesis of
mononuclear bis-substituted Mn(II) complexes with dithiocarbamate ligands. It is known
that several studies on manganese diethyldithiocarbamate complexes prepared from Mn(II)
salts have been performed and reported in the literature; however, the chemical nature
of these compounds and their stability in open atmosphere still remain a matter of de-
bate. Some studies demonstrated, in particular, that the reactivity between the Mn(II)
ion with the diethyldithiocarbamate ligand in aqueous solution to form manganese bis-
dithiocarbamate complexes seems to be particularly related to the presence or absence
of dioxygen, while not completely clarifying the species that are formed in different re-
action conditions [5–12]. With the purpose of determining the nature of these species,
we reported in this work the synthesis and the characterization of Mn(III) and Mn(II)
dithiocarbamate complexes that are formed in open or oxygen-free atmospheric conditions
using different metal–ligand molar ratios. In particular, we found that the mononuclear
complex [Mn(II)(S2CNEt2)2] (abbreviated MnL2, where L = diethyldithiocarbamate anion,
[S2CNEt2]− (IUPAC name: diethylcarbamodithioate)) could only be prepared under strictly
nitrogen-controlled conditions; and, surprisingly, we discovered that this species is an
efficient O2-activating complex, although this relevant property has gone largely unno-
ticed. Similar results were found with the ligand L’ (= bis(N-ethoxyethyl)dithiocarbamate
(IUPAC name: L bis(2-ethoxyethyl)carbamodithioate)). The study led to the isolation
and spectroscopic characterization of intermediate Mn–superoxo complexes that were not
detected previously.

2. Results and Discussion
2.1. Synthesis and Characterization of MnL2 (1), (L = Diethyldithiocarbamate)

The synthesis of 1 was performed under inert conditions by reacting the Mn(II)Cl2•4H2O
complex with two equivalents of the sodium salts of the dithiocarbamate ligand L
(Na[(CH3CH2)2-N-C(=S)S]•3H2O), after purging of all the reaction containers and water
solvent by nitrogen bubbling and by the Schlenk technique. It is important to note that
dropwise addition of the solution of MnCl2 is necessary to prevent the possible formation
of bridged polymetallic species. The reaction immediately led to the formation of a yellow
precipitate, isolated in good yield. Always keeping the environment under nitrogen flow,
the yellow precipitate was filtered and washed with degassed water. When kept under
strictly anhydrous conditions under an inert nitrogen atmosphere, the yellow solid product
was indefinitely stable.

The compound 1 is soluble in dichloromethane, chloroform and acetonitrile. The
infrared spectra of the ligand L exhibit characteristic bands at 1476 cm−1, assigned to
ν(C–N) (thioureide) stretching vibrations. These bands are shifted to a higher frequency
in the product 1 (1497 cm−1), presumably due to the increase in C–N double bond char-
acter as a consequence of the effective involvement of the nitrogen lone pair in resonance
upon coordination of the diethylthiocarbamate ligand to the manganese ion [12] (Supple-
mentary Figure S1). This indicates that the C–N bond order lies between (C–N) single
(1250–1350 cm−1) and (C=N) double bond (1640–1690 cm−1) [13]. Similarly, a shift is
observed in the single band due to ν(C–S) stretching vibration from 986 cm−1, in the
ligand, to 990 cm−1 upon coordination. At these frequencies, the presence of a single peak
indicates that the ligand bonds to the metal center in a symmetrical bidentate chelating
mode [14,15]. The absence of the absorption band in the region 3400–3650 cm−1, due to
the stretching frequency of the functional group –OH, excludes the coordination of water
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molecules or hydroxyl groups to the metal. This band is clearly visible in the IR spectrum
of Na[(CH3CH2)2-N-C(=S)S]•3H2O.

The [ESI(+)-MS] analysis of samples collected immediately after preparation (Supple-
mentary Figure S2) indicated the presence of a main peak with m/z of 351.07 corresponding
to the species MnL2.

2.2. Stability Studies of MnL2 (1) after Exposure to Atmospheric Dioxygen

When the solid yellow product 1 comes into contact with air, it changes color, becoming
brown-yellow at first and then turning dark brown (Figure 1). This transformation can be
slowed down only by maintaining controlled atmospheric working conditions.
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Figure 1. Pictures of the synthesis of MnL2 under inert conditions: (a) the yellow precipitate that
forms under inert atmosphere; (b) the yellow precipitate after filtration and washing under inert
atmosphere; (c) color darkening when it comes into contact with air; (d) brown product after 60 min
contact with air.

The XRD diffraction pattern (Supplementary Figure S3) obtained immediately after the
formation of the newly brown sample showed the presence of the bis-substituted complex
MnL2 (1), previously characterized by Fackler and colleagues [10], and an unidentified
phase. The brown product was analyzed by ESI mass spectroscopy in positive ion mode
[ESI(+)-MS]. While the [ESI(+)-MS] spectra of samples collected immediately after the
opening of the air flow are dominated by the presence of a main peak at m/z = 351.1
corresponding to the bis-substituted [MnL2] complex (Supplementary Figure S2), the
[ESI(+)-MS] spectra of samples collected at later times reveal some remarkable features.
The spectrum (Supplementary Figure S4) is characterized by the presence of two main
peaks at m/z = 351.15 and m/z = 383.06. A smaller peak is observed at m/z = 499.50. The
peak at m/z = 383.06 is consistent with the formation of the Mn(III) superoxide adduct
[MnL2(η2-O2)] (compound 2) that can be generated from 1 by O2 one-electron oxidation
of the Mn(II) metallic center [7,16–20]. Attempts at peak assignment suggest also that the
peaks at m/z = 319.31 and 303.2 are consistent with the species [MnLH2O2(CH3CN)2]+

and [MnLH2O(CH3CN)2]+, respectively, generated in CH3CN after the loss of the ligand L
during mass analysis [17]. The peak found at m/z = 351.15 in the [ESI(+)-MS] spectrum
is postulated to correspond to the Mn(III) fragment [MnL2]+ generated by the leakage
of the superoxo ligand O2

−. Finally, the peak at m/z = 499.50 is easily interpreted as
corresponding to the production of the tris-substituted Mn(III) complex [MnL3].

Elemental analyses of the dark product, collected 24 h after exposure to atmospheric
oxygen, were in satisfactory agreement with theoretical values predicted for the formulation
[MnL2(η2-O2)], where the O2 ligand is supposedly coordinated in a side-on mode to
preserve the octahedral arrangement. The electronic spectrum (ES) of the dark product
(Figure S5), collected in the region 800–200 nm in chloroform, was also in satisfactory
agreement with the hypothesis of the octahedral arrangement. The ES is dominated by an
intense band in the 235–300 nm UV range attributed to intra-ligand transitions and a lower
intensity band at 355 nm probably due to ligand–metal transitions. In the Vis region, we
observed a weak band at 498 nm and a shoulder at 606 nm, which could only be analyzed
with the concentrated sample, attributed to d–d transitions compatible with the assumed
configuration of pseudo-octahedral complexes [21,22].
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This side-on binding type of the superoxide ligands was further supported by the
presence of new bands at 969.32 cm−1 and 818 cm−1 in the FT IR spectrum, absent in the
FT IR spectrum of 1 [16] (Supplementary Figure S6).

These observations can be nicely explained by assuming the simple reaction mech-
anism illustrated in Figure 2. In the first step, activation of atmospheric O2 by the solid
complex [MnL2] generates the superoxide intermediate [MnL2(η2-O2)] that is subsequently
slowly converted into the tris-substituted complex [MnL3] after release of oxygen. The
conversion of yellow [MnL2] to dark violet [ML3] occurred rapidly when the yellow com-
pound was dissolved in chloroform under open air or treated with Et2O and, in general,
with organic solvents.
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Figure 2. Hypothetical scheme of the conversion of [MnL2] into [MnL3].

The stability of the solid product 2, stored with free access of air, was monitored
over time by acquiring FT IR and XRD spectra of the sample. After 10 days, the color
of the sample became brown-ocher, and the FT IR (Supplementary Figure S7) spectrum
collected at this time shows a new band at 3439 cm−1, compatible with the decomposition
hypothesis of the product to hydroxo species. The XRD analysis of the same sample
(Supplementary Figure S8) shows the presence of the hausmannite species Mn3O4 and of
N,N-diethyl[(diethylcarbamothioyl)disulfanyl]carbothioamide (C10H20N2S4, disulfiram),
confirming the reaction of oxygen with the manganese complex 1 that decomposes over
time. It is noted that the signals corresponding to the compound MnL2 (1) in the XRD
pattern completely disappeared.

2.3. Synthesis and Characterization of [MnL3] (3), (L = Diethyldithiocarbamate)

In Figure 3, the different routes investigated for the formation of the [MnL3] (3)
compound are schematized.

The reaction of MnCl2 with three equivalents of L, in aqueous solution under open
atmosphere, led rapidly to the formation of a dark violet solution. After extraction with
chloroform and evaporation of the solvent, a dark violet residue was obtained and washed
with water and ethanol. Characterization of the violet solid revealed that it corresponded
to the tris-substituted Mn(III) complex MnL3 (3) [23]. The ESI(+)-MS spectrum was charac-
terized by the presence of a main peak at m/z = 499.40 (Supplementary Figure S9).

The electronic spectrum of 3 (Supplementary Figure S10), collected in the region
800–200 nm in chloroform, is dominated by intense bands in the 235–300 nm UV range
attributed to intra-ligand transitions and by a lower intensity band at 353 nm probably due
to ligand–metal transitions. The Vis region shows a weak band at 464 nm, which could
only be determined by analyzing a concentrated sample, attributed to d–d transitions
compatible with a d4 configuration of octahedral complexes of Mn(III) as reported in
the literature [21,24–26]. The cyclic voltammetry carried out in a dichloromethane-based
electrolyte, in agreement with AR Hendrickson et al. [27], showed a quasi-reversible
redox process (ratio of anodic and cathodic peak currents Ip-ox/Ip-red = 1.1; separation
peaks ∆E = 140 mV) centered at +0.25 V vs. NHE relative to the pair Mn(III)/Mn(IV)
(Supplementary Figure S11).
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The tri-substituted MnL3 complex could also be obtained by the reaction of the com-
plex [Mn(II)(PTA)(Cl)2(H2O)2] with the ligand L at room temperature in open atmosphere.
In particular, a clear, colorless solution containing the Mn(II) compound was slowly added
to an aqueous solution containing 3 equivalents of the ligand L. EA, IR and MS analysis
conducted on the product (spectra not reported here) are superimposable on the analysis
conducted on the product obtained starting from MnCl2, confirming that also this reaction
leads to the formation of the [Mn(III)(L)3] species.

With the aim of confirming the formation of 3 obtained from the reaction of the
Mn(II) ion with the ligand L, further investigation was carried out by reacting the Mn(III)
compound Mn(III)acetylacetonate [Mn(acac)3] with L at 70 ◦C. The reaction was carried out
at high temperature in order to favor the exchange reaction of the ligands. The dark violet
reaction precipitate was then separated from the environment of reaction and washed with
EtOH and H2O. EA and IR analysis conducted on the product confirmed the formation
of the tri-substituted MnL3 species. The analysis of a solution containing the complex
by ESI(+)-MS showed again the molecular ion of the oxidized complex with m/z of 499,
corresponding to the species [Mn(L)3]+.

2.4. Synthesis and Characterization of [Mn(II)((S2CN(CH2CH2OEt)2)2] (4),
L’ = bis(N-Ethoxyethyl)Dithiocarbamate and Stability Studies after Exposure to
Atmospheric Dioxygen

Similar studies performed on the complex [Mn(II)((S2CN(CH2CH2OEt)2)2] (4), abbrevi-
ated MnL’2 (where L’ = bis(N-ethoxyethyl)dithiocarbamate anion, [S2CN(CH2CH2OEt)2]−),
confirm the reaction of the Mn(II) dithiocarbamate complex with atmospheric dioxygen.
Compound 4 was prepared by addition of the compound MnCl2·4H2O to an aqueous
solution containing two equivalents of the sodium salt of ligand L’ (NaL’), after careful
purging of all the reaction containers and water solvent by nitrogen bubbling and by the
Schlenk technique. The reaction immediately led to the formation of a yellow precipitate,
separated in good yield in oxygen-free conditions. Always keeping the environment under
nitrogen flow, the yellow precipitate was filtered and washed with degassed water. The
infrared spectrum of the compound 4 (Supplementary Figure S12) shows characteristic
bands due to the ν(C–N) stretching vibration at 1473 cm−1 and a single band due to ν(C–S)
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stretching vibration at 997 cm−1, which indicates that the ligand bonds to the metal center
in a symmetrical bidentate chelating mode [5,14,15].

After exposure of the product 4 to atmospheric dioxygen, the yellow powder started
to darken and progressively turned into a dark brown solid, similar to what was observed
with the product 1. Analyses of the dark brown solid product are consistent with the
formation of the Mn(III) superoxide adduct [MnL’2(η2-O2)] (5) that can be generated from
4 by O2 one-electron oxidation of the Mn(II) metallic center [17–22]. Elemental analyses
of the dark brown product, collected 24 h after exposure to atmospheric oxygen, were in
satisfactory agreement with theoretical values predicted for the formulation [MnL’2(η2-O2)],
where the O2 ligand is supposedly coordinated in a side-on mode to preserve the octahedral
arrangement. This side-on binding type of the superoxide ligands is further supported by
the presence of a new band at 976.62 cm−1 in the FT IR spectrum of the dark brown product
(Supplementary Figure S13). The peak found at m/z = 323.59 in the [ESI(+)-MS] spectrum
(SM, Figure S14) was postulated to correspond to the Mn(III) fragment [MnL’O2]+ generated
by the leakage of one L’ ligand of the [MnL’2(η2-O2)] compound. Finally, the presence
of a smaller peak at m/z = 763.63 was interpreted as corresponding to the production of
the tris-substituted Mn(III) complex MnL’3. When the dark brown product was treated
with 5 mL of ether, an insoluble yellow-ocher precipitate was separated from the organic
brown solution. The FT IR spectrum of the yellow-ocher powder is consistent (SM, Figure
S15) with the FT IR spectrum of hausmannite. After solvent evaporation of the brown
organic solution, a dark violet residue was obtained and washed with water and ethanol.
Characterization of the violet solid revealed that it corresponded to the tris-substituted
Mn(III) complex MnL’3 (6) (Supplementary Figure S16).

We also observed that when the dark brown product was stored with free access of
air, the solid changed from dark brown to ocher.

2.5. Magnetic Susceptibility

Effective magnetic moments (µeff) of 2, 3, 5 and 6 were obtained using the Evans NMR
method, with the complexes dissolved in a mixture of CDCl3 and CHCl3 [28].

The effective magnetic moment was calculated from the Equation (2) in Bohr magneton
units (µB) by noting the chemical shift difference of CHCl3 in the presence and absence of
the Mn complex (Supplementary Figure S17). Room temperature magnetic moments of 2,
3, 5 and 6 (Table 1) lie within the range of 4.3 to 4.5 µB, in agreement with the calculated
value of 4.90 µB for a d4 high spin ion and characteristic of high spin octahedral Mn(III)
complexes [29]. The obtained values are in accordance with the [Mn(acac)3] experimental
value determined by the same NMR procedure for comparison.

Table 1. Effective magnetic susceptibility of the Mn complexes measured using the Evans NMR
method (n = 3, SD = standard deviation).

Compound µeff ± SD

2 4.31 ± 0.03
3 4.28 ± 0.02
5 4.47 ± 0.14
6 4.17 ± 0.05

[Mn(III)(acac)3] 4.62 ± 0.02

The effective magnetic moment determinations of 1 and 4 were not reliable, due to the
rapid transformation of the yellow compounds into dark brown in CDCl3 and CHCl3, and,
for this reason, are not reported.

2.6. Remarks

When an aqueous solution of the compound MnCl2·4H2O was added dropwise to
another aqueous solution containing two equivalents of the sodium salt of ligand L and
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L’ in water, and under strictly nitrogen-controlled conditions, the yellow bis-substituted
complexes (1 and 4) were suddenly formed in high yield.

When the complexes 1 and 4 came into contact with air, the yellow powder started
to darken and progressively turned into a dark brown solid. Analyses of the products
are consistent with the formation of the Mn(III) superoxide adduct (2 and 5) that can be
generated from 1 and 4 by O2 one-electron oxidation of the Mn(II) metallic center [7,16–20].
The effective magnetic moment results are in agreement with a d4 high spin configuration
characteristic of an octahedral Mn(III) environment. Elemental analyses of the dark prod-
ucts, collected 24 h after exposure to atmospheric oxygen, of 1 and 4 were in satisfactory
agreement with theoretical values predicted for the formulation [MnL2(η2-O2)], where
the O2 ligand is supposedly coordinated in a side-on mode to preserve the octahedral ar-
rangement. The course of the reaction between solid compound MnL2 (1) and atmospheric
dioxygen was monitored over time, and it was found that the ultimate product was always
the mixed Mn(II)/Mn(III) oxide hausmannite and disulfiram (C10H20N2S). Therefore, the
occurrence might be speculated of an oxo reduction mechanism that reduces Mn(III) to
Mn(II) and oxidates the diethylcarbamodithioate ligand to disulfiram.

The reaction of Mn(II) with three equivalents of the dithiocarbamate, in aqueous
solution and under open atmosphere, led rapidly to the formation of the dark violet tris-
substituted Mn(III) complexes MnL3 (3) and MnL’3 (6) (Figure 4). The conversion of yellow
[MnL2] to dark violet [MnL3] occurred rapidly when the yellow compound was treated
under open air with organic solvents.
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Figure 4. Proposed reaction schemes of Mn(II) and the ligands L and L’ in dioxygen-free atmo-
spheric conditions and in open atmosphere. Compounds 1,2,3: R = -CH2CH3 (L); compounds 4,5,6:
R = -CH2CH2OCH2CH3 (L’).

3. Materials and Methods

Na[(CH3CH2)2-N-C(=S)S]x3H2O and Na[S2CN(CH2CH2OEt)2] were obtained from
Aldrich Chimica and Alchemy, respectively. Manganese(III) acetylacetonate was obtained
from Sigma-Aldrich.

The heterocyclic phosphine 1,3,5-triaza-7-phosphaadamantane (PTA) and the com-
plex [Mn(II)(PTA)(Cl)2(H2O)2] were prepared according to the procedure reported in the
literature [30].

The UV–Vis spectra were recorded with a Cary Series UV–Vis Spectrophotometer
instrument (model G9823A) in the range 800–200 nm.

The EA analyses were performed by means of the EA FLASH 2000 Thermofisher. MS-
ESI analyses were recorded with a Waters ESI Micromass ZQ2000, dissolving the samples
in CH3CN.
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The infrared spectra (IR) were recorded with a FT-VERTEX 70 in the range
4000–400 cm−1 using anhydrous KBr.

Cyclic voltammetry was carried out using a standard three-electrode cell with a Auto-
lab PGSTAT 302/N potentiostat at a scanning rate of 50 mV s−1 with a pseudo-reference
Ag wire, a Pt wire as an auxiliary and glass carbon as the working electrode. A ferrocene
(Fc)/ferricinium (Fc

+) redox couple was used as the internal standard
(E0 = +0.400 V vs. NHE) [31]. A solution of 0.1 M TBACl in chloroform was used as
inert electrolyte.

XRD analyses were performed using the X-ray diffractometer D8 ADVANCE with
DAVINCI Design from Bruker AXS.

The effective magnetic moments (µeff) of the compounds 2, 3, 5 and 6 were determined
at 296.3 K using the Evans NMR method [29] and a 400 MHz Agilent Mercury NMR
spectrometer. Typically, 2 mg of the compound, dissolved in 0.6 mL of a mixture of
deuterated:proteo chloroform (50:1 v/v), were placed in a NMR tube along with a capillary
containing the same solvent mixture.

By recording the chemical shift difference of the solvent molecule in the presence and
absence of a paramagnetic species, the molar magnetic susceptibility (Xm) can be obtained
via Equation (1):

Xm =
3∆ f

4πFc
(1)

where ∆ f is the frequency difference in Hz between the shifted resonance and the pure
solvent resonance, F is the spectrometer radiofrequency in Hz, and c the concentration of
paramagnetic species (mol/mL).

The magnetic moment is then calculated using Equation (2):

µe f f =
√

8(Xm T) (2)

where T is the temperature in Kelvin.
The effective magnetic moment of the commercial Mn(III)acetylacetonate [Mn(III)(acac)3]

was also measured in the same mixture solution and used as Mn(III) complex standard for
the validation of the experimental method.

3.1. Synthesis and Characterization of MnL2 (1)

The compound 1 was prepared by dropwise addition of MnCl2•4H2O (1.26 mmol,
0.250 g) in 3 mL Milli-Q water to two equivalents of the sodium salt of the ligand L
(NaL•3H2O) (2.70 mmol, 0.607 g) previously dissolved in 7 mL of Milli-Q water. The
preparation was carried out under oxygen-free conditions. The immediate formation
of a yellow precipitate was observed which, after leaving the reaction for 30 min under
magnetic stirring, was filtered and washed with water, still in a controlled atmosphere. The
isolated precipitate (0.314 g), if kept in a controlled atmosphere, maintains a yellow color.
(Yield, 71%.) The compound 1 is soluble in acetonitrile, chloroform and acetone. ESI-MS:
[Mn(S2CNEt2)2], expected m/z for C10H20NS2Mn = 351.00; found m/z = 351.07 [M]+. FT
IR: ν(C-N): 1497.04 cm−1; ν(C-S): 990.26 cm−1.

3.2. Characterization of the of MnL2O2 (2)

After exposure of the yellow solid 1 to atmospheric dioxygen the yellow powder starts
to darken and progressively turned into a dark-brown solid.

Analysis calculated for [Mn(S2CNEt2)2O2], C15H30N3S6O2Mn (Mw, 383.48): C, 31.3%;
H, 5.3%; S, 33.4%; N, 7.3%. Found: C, 32.6%; H, 5.7%; S, 34.7%; N, 8.2%. ESI-MS:
[Mn(S2CNEt2)2O2], expected m/z = 382.98, found m/z = 383.06 [M]+. FT IR: ν(O-O)
969.32 cm−1.
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3.3. Synthesis and Characterization of MnL3 (3)

Method (a). The compound 3 was prepared by dropwise addition of MnCl2x4H2O
(2.5 mmol, 500.8 mg) in 5 mL Milli-Q water to three equivalents of the sodium salt of
the ligand L (NaL•3H2O) (7.5 mmol, 1.7 g) previously dissolved in 20 mL of Milli-Q
water. The preparation was carried out in the open atmosphere and the solution mixed
for 30 min. After extraction with 50 mL of chloroform and evaporation of the solvent, a
dark violet precipitate (999.5 mg) was obtained and washed with water, ethanol and ether.
The compound 3 is soluble in acetonitrile, chloroform and acetone. (Yield, 80%.) Analysis
calculated for [Mn(S2CNEt2)3], C15H30N3S6Mn (Mw, 499.75): C, 36.1%; H, 6.1%; S, 38.5%;
N, 8.4%. Found: C, 36.0%; H, 5.9%; S, 37.6%; N, 8.7%. ESI-MS: [Mn(S2CNEt2)3], expected
m/z = 499.01; found m/z = 499.40 [M]+.

Method (b). 0.19 g of [Mn(PTA)2(Cl)2(H2O)2] (0.39 mmol), previously dissolved in
5 mL of Milli-Q water, was added to 10 mL of an aqueous solution containing 0.41 g of
NaL•3H2O (1.81 mmol). A dark violet precipitate was rapidly formed. The precipitate
was filtered under reduced pressure and washed with water and diethyl ether. (Yield,
75% (0.146 g).) Analysis calculated for [Mn(S2CNEt2)3], C15H30N3S6Mn (Mw, 499.75): C,
36.1%; H, 6.1%; S, 38.5%; N, 8.4%. Found: C, 36.0%; H, 5.8; %S, 37.3%; N, 8.9%. ESI-MS:
[Mn(S2CNEt2)3], expected m/z = 499.01; found m/z = 498.60 [M]+.

Method (c). A dark solution containing 0.2 g (0.60 mmol) of Mn(III)acetylacetonate
[Mn(acac)3] in 10 mL of EtOH was slowly added to 20 mL of an aqueous solution containing
0.6g of NaL•3H2O (2.80 mmol). The resulting solution was heated at 70 ◦C for 60 min and
the resulting dark violet residue (0.225 g) was then transferred to a test tube and treated
with water (5 mL), ethanol (5 mL) and diethyl ether. (Yield > 75%.) Analysis calculated
for [Mn(S2CNEt2)3], C15H30N3S6Mn (Mw, 499.75): C, 36.1%; H, 6.1%; S, 38.5%; N, 8.4%.
Found: C, 35.9%; H, 6.0%; S, 38.6%; N, 8.9%.

3.4. Synthesis and Characterization of MnL2′ (4)

The compound 4 was prepared by dropwise addition of MnCl2x4H2O (0.40 mmol,
0.080 g) in 5 mL Milli-Q water to two equivalents of the sodium salt of the ligand L’
(0.80 mmol, 0.240 g) previously dissolved in 5 mL of Milli-Q water. The preparation was
carried out under oxygen-free conditions. The immediate formation of a yellow precipitate
was observed which, after leaving the reaction for 30 min under magnetic stirring, was
filtered and washed with water, still in a controlled atmosphere. (Yield, 70% (0.148 mg).)

FT IR: ν(C–N): 1473.62 cm−1; ν(C–S): 996.88 cm−1. ESI-MS: [Mn(S2CN(CH2CH2OEt)2)2],
expected m/z for C18H36N2O4S2Mn = 527.09; found m/z = 527.24 [M]+.

3.5. Characterization of MnL2′O2 (5)

After exposure of the yellow solid 4 to atmospheric dioxygen, the yellow powder
started to darken and progressively turned into a dark brown solid.

Analysis calculated for [Mn(S2CN(CH2CH2OEt)2)2O2], C18H36N2O6S6Mn (Mw, 559.69):
C, 38.6%; H, 6.5%; S, 22.9%; N, 5.0%. Found: C, 38.6%; H, 6.5%; S, 22.9%; N, 6.0%.

FT IR: ν(C–S) 995.80 cm−1; ν(C–N) 1484.39 cm−1; ν(O–O) 976.62 cm−1.

3.6. Synthesis and Characterization of MnL’3 (6)

The compound 6 was prepared by dropwise addition of MnCl2x4H2O (0.40 mmol,
0.080 g) in 5 mL Milli-Q water to three equivalents of the sodium salt of the ligand L’
(1.20 mmol, 0.360 g) previously dissolved in 5 mL of Milli-Q water in open atmosphere.
The immediate formation of a dark violet precipitate was observed which, after leaving the
reaction for 60 min under magnetic stirring, was filtered and washed with water and ether.
The compound 6 is soluble in acetonitrile, chloroform and acetone. (Yield, 63% (0.193 g)).
Analysis calculated for C27H54MnN3O6S6 764.06 (Mw, 764.06): C, 42.4%; H, 7.1%; S, 25.2%;
N, 5.5%. Found: C, 42.1%; H, 7.0%; S, 25.2%; N, 5.5%. ESI-MS: [Mn(S2CN(CH2CH2OEt)2)3],
expected m/z = 763.17; found m/z = 763.59 [M]+. FT IR: ν(C–S) 993.60 cm−1; ν(C–N)
1485.97 cm−1 (Supplementary Figure S18).
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4. Conclusions

In our study, we found that the [Mn(II)(S2CNEt2)2] complex can be prepared and is
stable only under strictly nitrogen-controlled conditions; and, surprisingly, we found that
when the yellow solid [Mn(S2CNEt2)2] compound came into contact with air, the superox-
ide adduct [Mn(III)(S2CNEt2)2(O2)] could be generated, which we assume converts to the
tris-substituted complex [Mn(III)(S2CNEt)3] over time. In their original work, Ciampolini
et al. already noted that MnL2 instantaneously reacted in the presence of trace amounts of
dioxygen [9]. According to our knowledge, these results demonstrate for the first time the
involvement of dioxygen in the conversion of the yellow bis-substituted Mn(II) complex to
the dark violet tris-Mn(III)complex, which is accelerated in the presence of organic solvents.

The same reactivity with atmospheric dioxygen was observed with the [Mn(II)(S2CN
(CH2CH2OEt)2)2] complex. The course of the reaction between solid compounds MnL2 (1)
and MnL’2 (4) and atmospheric dioxygen was monitored over time, and it was found that
the ultimate product was always the mixed Mn(II)/Mn(III) oxide hausmannite.

In conclusion, we reported here a new example of small-molecule Mn(II) complexes
that efficiently activate dioxygen in the solid state through the formation of an intermediate
superoxide adduct. It is known that the activation of dioxygen plays a crucial role in a
multitude of chemical and biological processes. Binding of dioxygen to transition metal ions
is an essential step in the activation process, and synthetic biomimetic model complexes
have been developed with the purpose of revealing the inner mechanism of dioxygen
activation in biological systems.

The potential applications of this intermediate in chemical synthesis and metalloenzy-
matic reactions remain to be elucidated.

Supplementary Materials: The following are available online, Figure S1: IR spectrum of the product
1, Figure S2: ESI(+)-MS spectra of the product 1, Figure S3: XRD pattern of the newly form brown
product after exposure of the product 1 to air, Figure S4: ESI(+)-MS spectrum of the dark product
collected 24 hours after exposure of 1 to atmospheric oxygen, Figure S5: UV-Vis spectra of the dark
product collected 24 hours after exposure of 1 to atmospheric oxygen, Figure S6: FT-IR spectrum
of the dark product collected 24 hours after exposure of 1 to atmospheric dioxygen, Figure S7: FT-
IR spectrum of the brown-ochre sample collected after 10 days of exposition of 2 to atmospheric
dioxygen, Figure S8: XRD pattern of brown-ochre sample collected after 10 days of exposition of 2
to atmospheric dioxygen, Figure S9: ESI(+)-MS spectra of the product 3, Figure S10: The electronic
spectrum of 3, Figure S11: Cyclic voltammetry of the complex 3 in 0.1 M TBACl/DCM, Figure S12:
FT-IR spectrum of the product 4, Figure S13: FT-IR spectrum of dark-brown solid product after
exposition of the product 4 to atmospheric dioxygen, Figure S14: ESI(+)-MS spectrum of dark-brown
solid product after exposition of the product 4 to atmospheric dioxygen, Figure S15: FT-IR spectrum
of the yellow-ocher powder separated after treatment with ether of the product 5, Figure S16: FT-IR
spectrum of the dark-violet powder separated after treatment with ether of the product 5, Figure S17:
Example of 1H NMR spectrum obtained for the determination of effective magnetic moment of 5
using the Evans method, Figure S18: FT-IR spectrum of the product 6.
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