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Abstract: Herein, we report a Kumada cross-coupling reaction of benzylic sulfonamides. The scope
of the transformation includes acyclic and cyclic sulfonamide precursors that cleanly produce highly
substituted acyclic fragments. Preliminary data are consistent with a stereospecific mechanism that
allows for a diastereoselective reaction.
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1. Introduction

Transition-metal catalyzed cross-coupling (XC) reactions have transformed modern
synthetic organic chemistry by creating an arsenal of carbon–carbon bond forming re-
actions [1–6]. Nickel is a cost-effective metal that is capable of activating challenging
electrophiles such as amine derivatives [7–10]. Intense research efforts have been employed
in the development of nickel-catalyzed XC reactions of sluggish electrophiles [11–13].
However, the XC reaction of alkyl amine derivatives has remained a significant chal-
lenge [14–18]. Historically, in order to facilitate nickel-catalyzed reactions, activation of
these carbon–nitrogen bonds has been achieved via incorporation into strained aziridine
rings or transformation to ammonium salts [19].

Ring-strain-promoted XC of aziridines has been accomplished [20]. Early stoichiomet-
ric work by Hillhouse established that aziridines undergo facile oxidative addition with
nickel complexes [21]. Catalytic Negishi reactions of sulfonylaziridines have subsequently
been established. The Doyle laboratory reported a regioselective Negishi XC reaction
of styrenyl aziridines with alkylzinc reagents with substitution at the benzylic position
(Scheme 1a) [22,23]. Key to their success was the use of an electron deficient fumarate
ligand. Shortly thereafter, the Doyle and Jamison groups independently described a re-
gioselective Negishi XC reaction of alkyl aziridines with alkylzinc reagents to forge the
desired carbon–carbon bond (Scheme 1b,c) [24,25]. The differing regioselectivity of these
reactions can be explained by comparing the oxidative addition events of the C–N bonds.
Styrenyl aziridines preferentially undergo oxidative addition at the benzylic center to
afford a η3-benzylnickel complex. In contrast, alkyl aziridines, which do not contain an
aromatic ring to direct the nickel complex, preferentially undergo oxidative addition at the
less hindered position [21]. These reports demonstrate the ability to activate the C–N bond
in strained rings.

Development of XC reactions of acyclic benzylamine derivatives has relied upon
formation of highly reactive electrophiles (i.e., charged ammonium salts) [26,27]. For
example, the Watson laboratory demonstrated that benzylic trimethylammonium salts
are competent electrophiles in Suzuki-Miyaura XC reactions with aryl and vinylboronic
acids (Scheme 2a) [28,29]. Similarly, the Wang laboratory disclosed the XC reaction of
benzylic trimethylammonium salts with organoaluminum reagents to forge the desired
carbon–carbon bond (Scheme 2b) [30].
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The use of Katritzky salts to activate amines has proven to be sufficient for activation 
of benzylic and alkyl amines for Suzuki-Miyaura and Negishi XC reactions. Previously, it 
has been observed that Katritzky salts participate in SN2, radical, and Minisci-type reac-
tions, and in recent years, many transition-metal catalyzed reactions have been developed 
[31–40]. The Watson laboratory hypothesized that these air and moisture stable salts 
would be suitable electrophiles in a XC reaction [41]. To test their hypothesis, primary 
amines were converted to Katritzky salts via a condensation reaction with 2,4,6-tri-
phenylpyrylium tetrafluoroborate and the corresponding salts were subjected to Suzuki- 
Miyaura XC reactions with aryl boronic acids. The desired cross-coupled products were 
obtained in good yields (Scheme 3a) [42]. This strategy was amenable to the coupling of 
primary benzylic Katritzky salts as well (Scheme 3b) [43]. Additionally, vinyl boranes and 
alkylborane reagents, generated in situ by hydroboration of alkenes, participated in XC 
with Katritzky salts (Scheme 3c,d) [44,45]. This strategy has been extended beyond Su-
zuki-Miyaura reactions to include Negishi XC reactions with alkylzinc reagents (Scheme 
3e) [46].  
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Scheme 2. XC Reactions of Trimethylammonium salts. Nap = Naphthyl.

The use of Katritzky salts to activate amines has proven to be sufficient for activation of
benzylic and alkyl amines for Suzuki-Miyaura and Negishi XC reactions. Previously, it has
been observed that Katritzky salts participate in SN2, radical, and Minisci-type reactions,
and in recent years, many transition-metal catalyzed reactions have been developed [31–40].
The Watson laboratory hypothesized that these air and moisture stable salts would be
suitable electrophiles in a XC reaction [41]. To test their hypothesis, primary amines were
converted to Katritzky salts via a condensation reaction with 2,4,6-triphenylpyrylium
tetrafluoroborate and the corresponding salts were subjected to Suzuki- Miyaura XC reac-
tions with aryl boronic acids. The desired cross-coupled products were obtained in good
yields (Scheme 3a) [42]. This strategy was amenable to the coupling of primary benzylic Ka-
tritzky salts as well (Scheme 3b) [43]. Additionally, vinyl boranes and alkylborane reagents,
generated in situ by hydroboration of alkenes, participated in XC with Katritzky salts
(Scheme 3c,d) [44,45]. This strategy has been extended beyond Suzuki-Miyaura reactions
to include Negishi XC reactions with alkylzinc reagents (Scheme 3e) [46].

These methods establish strain- and charge-based strategies to activate amines for
use as the electrophilic partner in XC reactions; however, the requirement for aziridines or
functionalization as highly reactive ammonium salts remains a major limitation in broad
application of these methods. In this manuscript, we report the first nickel-catalyzed
Kumada XC reaction of simple benzylic sulfonamides with methylmagnesium iodide
(Scheme 4). Previously, the Jarvo laboratory disclosed the Kumada XC reaction of benzylic
ethers which proceeded in excellent yields, and enantio- and diastereoselectivity [12,47,48].
Building on this work, we aimed to develop an analogous reaction that employed benzylic
sulfonamides. Ethers and sulfonamides have similar leaving group abilities, as the conju-
gate bases have similar pKa’s, and we hypothesized sulfonamides would behave similarly
to ethers in a XC reaction [49,50]. In addition, these moieties are appealing because they are
common functional groups in synthesis. Furthermore, we demonstrate that sulfonamides
undergo stereospecific XC reactions, in contrast to the stereoablative reactivity typically
observed with styrenyl aziridines and Katritzky salts [22,36–40,51–54]. This stereospecific
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manifold allows for rapid diastereoselective construction of acyclic fragments bearing
1,3-substitution [55,56].
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2. Results and Discussion

We began our investigation into the Kumada XC reaction with benzylic sulfonamide
1, which was synthesized in three steps from the commercially available aldehyde (See
Experimental Section for substrate synthesis). Previously, Kumada XC reactions of benzylic
ethers employed Ni(cod)2 and racemic BINAP as the optimal reaction conditions [12,47,48].
Under these conditions, we were excited to observe 25% yield of the desired cross-coupled
product 2 (Table 1, entry 1). Increasing the catalyst loading to 15 mol % improved the yield
of the reaction (entry 2). However, it also increased the yield of the undesired styrene
product 3 arising from β-hydride elimination. In an effort to improve the ratio between
desired product 2 and styrene product 3, we investigated a series of bidentate phosphine,
NHC, and pyridine ligands. DPEPhos improved the yield of 2 and decreased the amount
of styrene 3 (entry 3). However, all other ligands evaluated did not improve the yield of 2
(entries 4–7).
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Table 1. Optimization of Kumada XC Reaction of Benzylic Sulfonamides.
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3 Ni(cod)2 DPEPhos 42 20 0
4 Ni(cod)2 XantPhos 0 <5 37
5 Ni(cod)2 dppe 0 <5 65
6 Ni(cod)2 SiMes·BF4 12 0 86
7 Ni(cod)2 BPhen 0 0 61
8 (R-BINAP)NiCl2 – 54 40 0

1 Yield of 2 and 3 and Recovered Starting Material (RSM) determined by 1H NMR based on comparison to PhTMS
as internal standard. 2 5 mol % Ni(cod)2.

We next investigated an alternative precatalyst. Previously, the Jarvo laboratory re-
ported the cross-electrophile coupling (XEC) reaction of benzylic and allylic sulfonamides
which employed a BINAP-ligated nickel (II) precatalyst [50,57,58]. Utilizing these con-
ditions, with 15 mol % of catalyst, we were delighted to observe the desired product in
54% yield and 40% yield of styrene 3 (entry 8). We elected to proceed with the nickel (II)
precatalyst as it provided the desired product in the highest yield.

With optimized conditions in hand, we evaluated the scope of the Kumada XC reaction
(Scheme 5). Naphthyl substrates were well tolerated under the standard reaction conditions
and product 4 was observed in 84% yield. Notably, products such as 5 and 6 with branching
at the β-position provided good yields of cross-coupled products with lesser amounts of
styrenes formed from β-hydride elimination (20–30%) when compared to product 2. We
hypothesized that this increase in steric bulk destabilized the conformation necessary for
β-hydride elimination to proceed.

Molecules 2021, 26, x FOR PEER REVIEW 5 of 25 
 

 

 
Scheme 5. Scope of the Kumada XC Reaction of Acyclic Sulfonamides. 1 Yield determined by 1H 
NMR based on comparison to PhTMS as internal standard. 2 Isolated yield. 

We also sought to evaluate a series of arylpiperidines, with the expectation that a 
stereospecific XC reaction at the benzylic position would provide synthetic access to 
highly substituted acyclic fragments. Furthermore, products would bear a pendant sul-
fonamide moiety, available for subsequent functionalization [50]. Rapid synthesis of the 
requisite cyclic sulfonamides was achieved by hetero Diels-Alder (HDA) cycloadditions 
or aza-Prins reactions [59–61]. For substrates with alkyl substituents in the 4-position, 
[4+2] HDA reactions provided the requisite starting materials (Scheme 6a). For substrates 
bearing ether groups in the 4-position, an aza-Prins reaction provided the requisite 2-aryl-
4-hydroxylpiperidine that could be subsequently methylated or benzylated. (Scheme 6b).  

 
Scheme 6. Arylpiperidine Synthesis via (a) Hetero Diels-Alder (HDA) Reaction and (b) Aza-Prins 
Reaction. 

With rapid and diastereoselective access to the desired piperidines, we examined 
these cyclic substrates in ring-opening Kumada XC reactions (Scheme 7). Phenyl and me-
thyl substituents (products 7 and 8) were well tolerated and minimal amounts (<5%) of β-
hydride elimination were observed. Methylated and benzylated ethers were well toler-
ated and provided the desired products in good yields (9, 10, and 11) [62]. It is important 
to note that the diastereomeric ratio observed in the products is consistent with the dia-
stereomeric ratio of the starting material (See Materials and Methods Section). Therefore, 
preliminary data support a stereospecific Kumada XC reaction. 

Scheme 5. Scope of the Kumada XC Reaction of Acyclic Sulfonamides. 1 Yield determined by 1H
NMR based on comparison to PhTMS as internal standard. 2 Isolated yield.

We also sought to evaluate a series of arylpiperidines, with the expectation that a
stereospecific XC reaction at the benzylic position would provide synthetic access to highly
substituted acyclic fragments. Furthermore, products would bear a pendant sulfonamide
moiety, available for subsequent functionalization [50]. Rapid synthesis of the requisite
cyclic sulfonamides was achieved by hetero Diels-Alder (HDA) cycloadditions or aza-
Prins reactions [59–61]. For substrates with alkyl substituents in the 4-position, [4+2]
HDA reactions provided the requisite starting materials (Scheme 6a). For substrates
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bearing ether groups in the 4-position, an aza-Prins reaction provided the requisite 2-aryl-
4-hydroxylpiperidine that could be subsequently methylated or benzylated. (Scheme 6b).
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Scheme 6. Arylpiperidine Synthesis via (a) Hetero Diels-Alder (HDA) Reaction and (b) Aza-Prins
Reaction.

With rapid and diastereoselective access to the desired piperidines, we examined these
cyclic substrates in ring-opening Kumada XC reactions (Scheme 7). Phenyl and methyl
substituents (products 7 and 8) were well tolerated and minimal amounts (<5%) of β-
hydride elimination were observed. Methylated and benzylated ethers were well tolerated
and provided the desired products in good yields (9, 10, and 11) [62]. It is important to note
that the diastereomeric ratio observed in the products is consistent with the diastereomeric
ratio of the starting material (See Materials and Methods Section). Therefore, preliminary
data support a stereospecific Kumada XC reaction.
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To further develop the potential scope of this reaction, we sought to establish a
ring-opening of a sulfonyl piperidine with an aryl Grignard reagent (Scheme 8). Such trans-
formations would provide synthetic access to diarylalkanes bearing pendant sulfonamides,
including rapid assembly of stereochemically-rich analogs of ATPase inhibitor 14 [63–67].
We have previously observed that in Kumada XC reactions of benzylic ethers employing
aryl Grignard reagents, the optimal nickel catalyst is ligated by dppe [68]. We were pleased
to see that this trend applied to benzylic sulfonamides: employing the commercially avail-
able precatalyst, (dppe)NiCl2, the XC reaction proceeded smoothly to provide the desired
product 13 in 58% isolated yield [69].
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We propose the following catalytic cycle for the Kumada XC reaction based on related
mechanisms for the Kumada XC reaction of benzylic ethers and the XEC reaction of
benzylic sulfonamides (Scheme 9) [50,70]. First, reduction of the nickel(II) precatalyst
with the Grignard reagent provides the active Ni(0) catalyst 15. Next, oxidative addition
of the benzylic sulfonamide affords the Ni(II) intermediate 16. Based on the calculated
reaction coordinate diagram and transition state energies for related transformations, we
hypothesize that rate-determining oxidative addition occurs with inversion of the benzylic
carbon [12,47,48,70]. This step is facilitated by Lewis acidic magnesium salts that activate
the sulfonamide moiety. Transmetallation with the Grignard reagent provides alkylnickel
complex 17. Subsequent reductive elimination, which occurs with retention at the benzylic
center, affords the desired product and turns over the catalyst. Alternatively, intermediate
16 can undergo β-hydride elimination to afford the observed styrene by-product.
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3. Materials and Methods
3.1. General Procedures

All reactions were carried out under an atmosphere of N2, or Ar when noted. All
glassware was oven- or flame-dried prior to use. Tetrahydrofuran (THF), diethyl ether
(Et2O), dichloromethane (CH2Cl2), and toluene (PhMe) were degassed with Ar and then
passed through two 4 × 36 inch columns of anhydrous neutral A-2 alumina (8 × 14 mesh;
LaRoche Chemicals; activated under a flow of argon at 350 ◦C for 12 h) to remove H2O [71].
All other solvents utilized were purchased anhydrous commercially, or purified as de-
scribed. 1H NMR spectra were recorded on Bruker DRX-400 (400 MHz 1H, 100 MHz 13C,
376.5 MHz 19F), GN-500 (500 MHz 1H, 125.4 MHz 13C), or CRYO-500 (500 MHz 1H,
125.8 MHz 13C) spectrometers. Proton chemical shifts are reported in ppm (δ) relative
to internal tetramethylsilane (TMS, δ 0.00). Data are reported as follows: chemical shift
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(multiplicity [singlet (s), broad singlet (br s), doublet (d), doublet of doublet (dd), doublet
of doublet of doublets (ddd), doublet of doublet of doublet of doublets (dddd), doublet
of triplet (dt), doublet of doublet of triplet (ddt), doublet of triplet of doublet (dtd), triplet
(t), broad triplet (br t), triplet of doublet (td), triplet of doublet of doublet (tdd), triplet of
triplet (tt), quartet (q), quartet of doublet (qd), quartet of doublet of doublets (qdd), quintet
(quint), apparent quintet (appar quint), sextet, apparent sextet (appar sextet), multiplet
(m)]. coupling constants [Hz], integration). Carbon chemical shifts are reported in ppm
(δ) relative to TMS with the respective solvent resonance as the internal standard (CDCl3,
δ 77.16 ppm). Unless otherwise indicated, NMR data were collected at 25 ◦C. Infrared
(IR) spectra were obtained on a Thermo Scientific Nicolet iS5 spectrometer with an iD5
ATR tip (neat) and are reported in terms of frequency of absorption (cm−1). Analytical
thin-layer chromatography (TLC) was performed using Silica Gel 60 F254 precoated plates
(0.25 mm thickness). Visualization was accomplished by irradiation with a UV lamp and/or
staining with KMnO4 or CAM. Flash chromatography was performed using SiliaFlash
F60 (40–63 µm, 60 Å) from SiliCycle. Automated chromatography was carried out on a
Teledyne Isco CombiFlash Rf Plus. Melting points (m.p.) were obtained using a Mel-Temp
melting point apparatus and are uncorrected. High resolution mass spectrometry was
performed by the University of California, Irvine Mass Spectrometry Center. See the 1H,
13C, COSY and NOE NMR detailed data in the Supplementary Materials.

Bis(1,5-cyclooctadiene)nickel was purchased from Strem, stored in a glove box freezer
(–20 ◦C) under an atmosphere of N2 and used as received. All ligands were purchased
from Strem or Sigma Aldrich and were stored in a glovebox and used as received. The
methylmagnesium iodide was titrated with iodine prior to use [72]. All other chemicals
were purchased commercially and used as received, unless otherwise noted.

3.2. Experimental
3.2.1. General Kumada Cross-Coupling Reaction Procedures
Method A: Kumada Cross-Coupling Reaction

In a glovebox, a flame-dried 7 mL vial equipped with a stir bar was charged with
sulfonamide substrate (1.0 equiv), nickel precatalyst (15 mol %) and PhMe (0.10–0.20 M
in substrate). The Grignard reagent (2.0 equiv) was then added dropwise via a syringe.
After 24 h, the reaction was removed from the glovebox, quenched with methanol, fil-
tered through a plug of silica gel eluting with 100% Et2O and concentrated in vacuo.
Phenyltrimethylsilane (PhTMS; 8.6 µL, 0.050 mmol) was added and the yield was deter-
mined by 1H NMR based on comparison to PhTMS as internal standard before purification
by column chromatography.

For reactions in which 1.0 equiv of MgI2 is added, the vial is wrapped in aluminum
foil for the duration of the reaction due to the light sensitivity of MgI2.

(1) Preparation of Grignard Reagent Under a N2 atmosphere, a three-necked flask
equipped with a stir bar, reflux condenser, and Schlenk filtration apparatus was
charged with magnesium turnings (1.1 g, 45 mmol). The flask and magnesium turn-
ings were then flame-dried under vacuum and the flask was back-filled with N2.
Anhydrous Et2O (7.0 mL) and a crystal of iodine (ca. 2.0 mg) were added to the flask.
Freshly distilled iodomethane (1.9 mL, 31 mmol) or 4-iodoanisole as a solution in Et2O
(4.7 g, 20. mmol, 6.7 M in Et2O) was slowly added over 30 min to maintain a gentle
reflux. The mixture was stirred for 2 h at room temperature then filtered through
the fritted Schlenk filter into a Schlenk flask under N2 atmosphere. The magnesium
turnings were washed with Et2O (2 × 1.0 mL) then the Schlenk flask was sealed,
removed, and placed under an N2 atmosphere. The resulting methylmagnesium
iodide was typically between 2.4 and 3.0 M as titrated by Knochel’s method [72] and
could be stored, sealed under N2 atmosphere or in a glovebox, for up to 4 weeks.

(2) Preparation of (R-BINAP)NiCl2 This method was adapted from a procedure re-
ported by Jamison [57]. To a flame-dried 50 mL round bottom flask equipped with a
stir bar was added NiCl2·6H2O (0.24 g, 1.0 mmol, 1.0 equiv). The flask was placed
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under vacuum and flame-dried until nearly all of the nickel compound had turned
from emerald green to yellow-orange. Some of the green hexahydrate is necessary
for the reaction to proceed. The flask was allowed to cool to room temperature then
(R-BINAP) (0.62 g, 1.0 mmol, 1.0 equiv) was added. The flask was then equipped with
a reflux condenser and was evacuated and backfilled with N2. Then the solids were
dissolved in MeCN (20 mL, 0.05 M) and the reaction mixture was allowed to reflux for
24 h. Upon completion, the reaction was cooled to room temperature and the black
crystalline precipitate was filtered under vacuum to yield a fine black powder (0.53 g,
0.71 mmol, 71% yield).

3.2.2. Characterization Data for Kumada Cross-Coupled Products
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2-(4-Phenylbutan-2-yl)benzo[b]thiophene (2) was prepared according to Method A. The
following amounts of reagents were used: sulfonamide 1 (87 mg, 0.20 mmol, 1.0 equiv), (R-
BINAP)NiCl2 (23 mg, 30. µmol, 15 mol %), PhMe (1.0 mL, 0.20 M), and methylmagnesium
iodide (0.16 mL, 0.40 mmol, 2.0 equiv, 2.5 M in Et2O). Before purification, a 1H NMR yield of
54% was obtained containing 40% styrene 3 based on comparison to PhTMS as an internal
standard. The residue was purified by flash chromatography (0–5% EtOAc/hexanes) to
yield a mixture of the title compound and styrene 3. To separate the major product and
the styrene, an Upjohn dihydroxylation was performed [60,61]. The following amounts
of reagents were used: substrate (30 mg, 0.12 mmol, 1.0 equiv), OsO4 (7.6 µL, 1.2 µmol,
1.0 mol %, 4% solution in H2O), N-methylmorpholine N-oxide (NMO) (16 mg, 0.13 mmol,
1.1 equiv), acetone (0.25 mL) and H2O (0.05 mL). The residue was purified by flash column
chromatography to afford the title compound as a colorless oil. (13 mg, 48 µmol, 24%
yield over two steps) with a small amount of styrene 3 (1.1 mg, 4.5 µmol, 2.2% yield).
TLC Rf = 0.8 (5% EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) δ 7.78 (d, J = 7.9 Hz, 1H),
7.68 (d, J = 7.9 Hz, 1H), 7.45–7.22 (m, 4H), 7.22–7.12 (m, 3H), 7.04 (s, 1H), 3.12 (sextet,
J = 7.0 Hz, 1H), 2.73–2.50 (m, 2H), 2.12–1.92 (m, 2H), 1.41 (d, J = 7.0 Hz, 3H); 13C NMR
(125.7 MHz, CDCl3) δ 152.5, 142.1, 140.0, 139.0, 128.5 (2C), 128.4 (2C), 125.8, 124.1, 123.5,
122.9, 122.3, 119.5, 40.5, 35.8, 33.6, 23.1; IR (neat) 2927, 1456, 904, 726 cm−1; HRMS (TOF MS
ES+) m/z: [M + Na]+ calcd. for C18H18SNa 289.1027, found 289.1024.
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2-(5-Phenylpentan-2-yl)naphthalene (4) was prepared according to Method A. The fol-
lowing amounts of reagents were used: sulfonamide 19 (22 mg, 50. µmol, 1.0 equiv),
(R-BINAP)NiCl2 (5.6 mg, 7.5. µmol, 15 mol %), PhMe (0.25 mL, 0.20 M), and methyl-
magnesium iodide (40. µL, 0.10 mmol, 2.0 equiv, 2.8 M in Et2O). Before purification, a
1H NMR yield of 84% was obtained containing 13% styrene 18 based on comparison to
PhTMS as an internal standard. The residue was purified by flash chromatography (100%
hexanes) to yield the title compound as yellow oil (10. mg, 36 µmol, 74% yield) containing
styrene 18 (1.3 mg, 5.0 µmol, 10%) and CH2Cl2 (0.8 mg, 9.4 µmol, 19%). TLC Rf = 0.8 (5%
EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) δ 7.81–7.74 (m, 3H), 7.60–7.55 (s, 1H), 7.42
(dddd, J = 16.3, 8.2, 6.8, 1.4 Hz, 2H), 7.33 (dd, J = 8.4, 1.8 Hz, 1H), 7.23 (d, J = 7.5 Hz, 2H),
7.17–7.09 (m, 3H), 2.88 (sextet, J = 7.0 Hz, 1H), 2.64–2.53 (m, 2H), 1.79–1.55 (m, 4H), 1.31 (d,
J = 6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 145.2, 142.7, 133.8, 132.3, 128.5 (2C), 128.4
(2C), 128.0, 127.7, 127.7, 125.9, 125.9, 125.8, 125.3, 125.2, 40.2, 38.0, 36.1, 29.7, 22.5; HRMS
(TOF MS Cl+) m/z: [M]+ calcd. for C21H22 274.1721, found 274.1710.
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iodide (70. µL, 0.20 mmol, 2.0 equiv, 2.9 M in Et2O). Before purification, a 1H NMR
yield of 69% was obtained with 22% styrene 22 based on comparison to PhTMS as an
internal standard. The residue was purified by flash column chromatography (0–20%
EtOAc/hexanes) to afford the title compound as a colorless oil (14 mg, 54 µmol, 54%
yield) with a small amount of styrene 22 (3.7 mg, 15 µmol, 15% yield). TLC Rf = 0.7 (100%
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N-(5-(benzo[b]thiophen-2-yl)-3-phenylhexyl)-4-methylbenzenesulfonamide (7) was prepared
according to Method A. The following amounts of reagents were used: piperidine 24 (38 mg,
80 µmol, 1.0 equiv), (R-BINAP)NiCl2 (9.0 mg, 12 µmol, 15 mol %), methylmagnesium iodide
(60. µL, 0.16 mmol, 2.0 equiv, 2.6 M in Et2O), and PhMe (0.5 mL). Before purification, a 1H
NMR yield of 64% was obtained. The residue was purified by column chromatography
(0–20% EtOAc/hexanes) to afford the title compound as pale yellow oil (23 mg, 49 µmol,
62% yield). The ratio of diastereomers was determined by integration of the resonances
attributed to amine hydrogen in the 1H NMR spectrum. The relative configuration of 7 was
assigned based on analogy to a compound that has been previously reported [12,47,48].
TLC Rf = 0.8 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3) δ 7.74 (d, J = 7.9 Hz, 1H),
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7.67–7.56 (m, 3H), 7.37–7.13 (m, 9H), 7.07–7.00 (m, 2H), 6.93 (s, 1H), 2.85 (q, J = 6.7 Hz,
1H), 2.83–2.69 (m, 2H), 2.70–2.59 (m, 1H), 2.40 (s, 3H), 2.07–1.95 (m, 1H), 1.93–1.77 (m, 2H),
1.76–1.64 (m, 1H), 1.30 (d, J = 6.8 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 152.7, 143.5, 143.4,
140.0, 138.9, 136.9, 129.9, 129.8 (2C), 128.9 (2C), 127.7, 127.6 (2C), 127.2 (2C), 126.8, 124.2,
123.6, 123.0, 122.3, 119.1, 45.8, 41.5, 40.9, 36.6, 33.4, 22.0, 21.7; HRMS (TOF MS ES+) m/z
[M + Na] calcd. for C27H29NO2S2Na 486.1537, found 486.1524.
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4-Methyl-N-(3-methyl-5-(naphthalen-2-yl)hexyl)benzenesulfonamide (8) was prepared ac-
cording to Method A. The following amounts of reagents were used: piperidine 25 (10. mg,
30. µmol, 1.0 equiv), (R-BINAP)NiCl2 (3.0 mg, 40. µmol, 15 mol %), methylmagnesium
iodide (10. µL, 60. µmol, 2.0 equiv, 2.9 M in Et2O), and PhMe (0.30 mL). Before purification,
a 1H NMR yield of 48% and 10:1 dr was obtained based on comparison to PhTMS as
an internal standard. The residue was purified by flash column chromatography (0–15%
EtOAc/hexanes) to afford the title compound as a colorless oil (5.4 mg, 14 µmol, 50% yield,
6:1 dr) with a small amount of styrene (0.6 mg, 0.2 µmol, 6%). The ratio of diastereomers
was determined by integration of the resonances attributed to amine hydrogen in the 1H
NMR spectrum. The relative configuration of the major 8 was assigned based on analogy
to ring opened compound 7. For clarity, the 1H NMR and 13C NMR data of the major and
minor diastereomers have been tabulated individually.
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Major Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.81–7.76 (m, 3H), 7.69 (d, J = 8.3
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J = 6.9 Hz, 3H), 1.08 (d, J = 6.7, 3H); 13C NMR (125.8, CDCl3) δ 145.1, 148.4, 133.7, 132.2,
129.7 (2C), 128.1, 127.6, 127.6, 127.1 (2C), 126.0, 125.7, 125.2, 125.0, 45.6, 41.5, 37.2, 36.5, 29.7,
29.1, 22.1, 21.5, 19.6.
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according to Method A. The following amounts of reagents were used: piperidine 26 (93 mg,
0.20 mmol, 1.0 equiv), (R-BINAP)NiCl2 (23 mg, 30. µmol, 15 mol%), methylmagnesium
iodide (0.14 mL, 0.40 mmol, 2.0 equiv, 2.9 M in Et2O), and PhMe (2.0 mL). The residue
was purified by flash column chromatography (0–15% EtOAc/hexanes) to afford the title
compound as a colorless oil (42 mg, 0.11 mmol, 53% yield, 5:1 dr). The ratio of diastereomers
was determined by integration of the resonances attributed to amine hydrogen in the 1H
NMR spectrum. The relative configuration of the major 9 was assigned based on analogy
to ring opened compound 7. For clarity, the 1H NMR and 13C NMR data of the major and
minor diastereomers have been tabulated individually.

TLC Rf = 0.5 (30% EtOAc/hexanes, stained with CAM); HRMS (TOF MS E+) m/z
[M + Na] calcd. for C23H27NO3SNa, 420.1609; found, 420.1604.
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Major Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.79–7.75 (m, 3H), 7.69 (d,
J = 8.15 Hz, 2H), 7.59 (s, 1H), 7.43 (appar quint, J = 7.44 Hz, 2H), 7.31 (d, J = 8.82 Hz,
1H), 7.23 (d, J = 8.17 Hz, 2H), 5.27 (t, J = 5.55 Hz, 1H), 3.74–3.70 (m, 1H), 3.12–3.06 (m,
1H), 3.01–2.93 (m, 2H), 2.37 (s, 3H), 1.89 (br s, 1H), 1.86–1.80 (m, 1H), 1.72–1.62 (m, 2H),
1.53–1.46 (m, 1H), 1.28 (d, J = 7.23 Hz, 3H); 13C NMR (125.8, CDCl3) δ 144.4, 143.3, 136.9,
133.7, 132.3, 129.7 (2C), 128.4, 127.7, 127.6, 127.1 (2C), 126.1, 125.5, 124.4, 125.0, 69.2, 45.9,
40.8, 37.0, 36.0, 22.2, 21.5.

Minor Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.79–7.75 (m, 3H), 7.65 (d,
J = 8.14 Hz, 2H), 7.59 (s, 1H), 7.43 (appar quint, J = 7.44 Hz, 2H), 7.29 (d, J = 8.91 Hz,
1H), 7.19 (d, J = 8.05 Hz, 2H), 5.19 (t, J = 5.57 Hz, 1H), 3.43–3.39 (m, 1H), 3.12–3.06 (m,
1H), 2.91–2.82 (m, 2H), 2.35 (s, 3H), 1.86–1.80 (m, 1H), 1.76 (br s, 1H), 1.72–1.62 (m, 2H),
1.53–1.46 (m, 1H), 1.29 (d, J = 6.40 Hz, 3H); 13C NMR (125.8, CDCl3) δ 143.7, 143.3, 136.8,
133.7, 132.3, 129.7 (2C), 128.4, 127.7, 127.6, 127.1 (2C), 126.1, 125.5, 124.4, 125.0, 68.7, 45.6,
40.8, 36.45, 36.42 23.2, 21.5.
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N-(3-methoxy-5-(naphthalen-2-yl)hexyl)-4-methylbenzenesulfonamide (10) was prepared
according to Method A. The following amounts of reagents were used: piperidine 12 (58 mg,
0.15 mmol, 1.0 equiv), (R-BINAP)NiCl2 (15 mg, 20. µmol, 15 mol %), methylmagnesium
iodide (0.11 mL, 0.30 mmol, 2.0 equiv, 2.8 M in Et2O), and PhMe (1.5 mL). The residue
was purified by flash column chromatography (0–25% EtOAc/hexanes) to afford the title
compound as a colorless oil (32 mg, 80. µmol, 52% yield, 5:1 dr). The ratio of diastereomers
was determined by integration of the resonances attributed to amine hydrogen in the 1H
NMR spectrum. The relative configuration of the major 10 was assigned based on analogy
to ring opened compound 7. For clarity, the 1H NMR and 13C NMR data of the major and
minor diastereomers have been tabulated individually.

TLC Rf = 0.4 (30% EtOAc/hexanes, stained with CAM); HRMS (TOF MS E+) m/z [M +
Na] calcd. for C24H29NO3SNa, 424.1766; found, 434.1775.

Major Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.81–7.76 (m, 3H), 7.68 (d,
J = 8.37 Hz, 2H), 7.55 (s, 1H), 7.47–7.40 (m, 2H), 7.29 (dd, J = 8.48, 1.70 Hz, 1H), 7.26–
7.24 (m, 1H), 7.21 (d, J = 7.97 Hz, 1H), 5.11 (t, J = 5.53 Hz, 1H), 3.15 (s, 3H), 3.08–2.91 (m,
3H), 2.86 (appar sextet, J = 7.37 Hz, 1H), 2.34 (s, 3H), 1.96 (ddd, J = 14.3, 8.50, 5.78 Hz, 1H),
1.82–1.76 (m, 1H), 1.58–1.50 (m, 2H), 1.28 (d, J = 6.98 Hz, 3H); 13C NMR (125.8, CDCl3) δ
144.1, 143.2, 136.8, 133.6, 132.3, 129.7 (2C), 128.3, 127.7, 127.6, 127.1 (2C), 126.1, 125.4, 125.24,
125.17 78.4, 56.3, 40.9, 40.5, 36.3, 32.0, 22.9, 21.5.

Minor Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.81–7.76 (m, 3H), 7.70 (d,
J = 8.60 Hz, 2H), 7.55 (s, 1H), 7.47–7.40 (m, 2H), 7.29 (dd, J = 8.48, 1.70 Hz, 1H), 7.26–
7.24 (m, 1H), 7.21 (d, J = 7.97 Hz, 1H), 5.03 (t, J = 5.52 Hz, 1H), 3.20 (s, 3H), 3.08–2.91 (m,
3H), 2.86 (appar sextet, J = 7.37 Hz, 1H), 2.38 (s, 3H), 1.96 (ddd, J = 14.3, 8.50, 5.78 Hz, 1H),
1.71–1.66 (m, 1H), 1.47–1.40 (m, 2H), 1.27 (d, J = 7.32 Hz, 3H) 13C NMR (125.8, CDCl3)
δ 144.2, 143.2, 136.9, 133.6, 132.3, 129.7 (2C), 128.3, 127.7, 127.6, 127.1 (2C), 126.1, 125.52,
125.46 125.4, 78.4, 56.3, 40.9, 40.5, 36.3, 32.0, 22.9, 21.5.
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magnesium iodide (0.23 mL, 0.68 mmol, 4.0 equiv, 2.9 M in Et2O), and PhMe (1.5 mL). The 
residue was purified by flash column chromatography (0–15% EtOAc/hexanes) to afford 
a mixture of the title compound and styrene. To separate the major product and the sty-
rene, a dihydroxylation was performed. The following amounts of reagents were used: 
AD-mix-β (52 mg, 1.4 g/mmol), t-BuOH (1.0 mL), and H2O (1.0 mL). The residue was pu-
rified by flash column chromatography to afford the title compound as a colorless oil. (7.0 
mg, 15 μmol, 8.6% yield over two steps, 5:1 dr). The ratio of diastereomers was determined 
by integration of the resonances attributed to amine hydrogen in the 1H NMR spectrum. 
The relative configuration of the major 11 was assigned based on analogy to ring opened 
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N-(5-(benzofuran-2-yl)-3-(benzyloxy)hexyl)-4-methylbenzenesulfonamide (11) was prepared
according to Method A. The following amounts of reagents were used: piperidine 27 (78 mg,
0.17 mmol, 1.0 equiv), (R-BINAP)NiCl2 (22 mg, 30. µmol, 15 mol %), methylmagnesium
iodide (0.23 mL, 0.68 mmol, 4.0 equiv, 2.9 M in Et2O), and PhMe (1.5 mL). The residue was
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purified by flash column chromatography (0–15% EtOAc/hexanes) to afford a mixture
of the title compound and styrene. To separate the major product and the styrene, a
dihydroxylation was performed. The following amounts of reagents were used: AD-mix-β
(52 mg, 1.4 g/mmol), t-BuOH (1.0 mL), and H2O (1.0 mL). The residue was purified by
flash column chromatography to afford the title compound as a colorless oil. (7.0 mg,
15 µmol, 8.6% yield over two steps, 5:1 dr). The ratio of diastereomers was determined
by integration of the resonances attributed to amine hydrogen in the 1H NMR spectrum.
The relative configuration of the major 11 was assigned based on analogy to ring opened
compound 7. When the reaction was performed with 2.0 equivalents of methylmagnesium
iodide, a 1H NMR yield of 41% was obtained based on comparison to PhTMS as an internal
standard before purification. For clarity, the 1H NMR and 13C NMR data of the major and
minor diastereomers have been tabulated individually.

TLC Rf = 0.5 (30% EtOAc/hexanes, stained with CAM); HRMS (TOF MS E+) m/z
[M + Na] calcd. for C28H31NO4SNa, 500.1872; found, 500.1861.

Major Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.64 (d, J = 7.9 Hz, 2H), 7.48 (d,
J = 7.4 Hz, 1H), 7.42 (d, J = 7.9 Hz, 1H), 7.27–7.16 (m, 8H), 6.33 (s, 1H), 4.79 (t, J = 6.0 Hz,
1H), 4.45 (d, J = 11.5 Hz, 1H), 4.31 (d, J = 11.4 Hz, 1H), 3.49–3.42 (m, 1H), 3.09–2.95 (m, 3H),
2.38 (s, 3H), 2.12 (appar quint, J = 6.9 Hz, 1H), 1.87–1.81 (m, 1H), 1.65–1.54 (m, 3H), 1.29 (d,
J = 6.9 Hz, 3H) 13C NMR (125.8, CDCl3) δ 162.6, 154.5, 143.3, 137.9, 136.9, 129.7 (2C), 128.5
(2C), 128.1 (2C), 127.9, 127.1 (2C), 123.4, 122.6, 120.5, 110.9, 101.1, 75.0, 70.7, 40.2, 39.1, 32.9,
30.3, 29.7, 21.5, 19.7.

Minor Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.80 (d, J = 7.9 Hz, 2H), 7.75 (d,
J = 7.7 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.27–7.16 (m, 8H), 6.25 (s, 1H), 4.79 (t, J = 6.0 Hz,
1H), 4.40 (s, 2H), 3.53–3.48 (m, 1H), 3.09–2.95 (m, 3H), 2.73 (appar quint, J = 6.5 Hz, 1H),
2.40 (s, 3H), 1.80–1.77 (m, 1H), 1.65–1.60 (m, 3H), 0.88 (d, J = 7.0 Hz, 3H); 13C NMR (125.8,
CDCl3) δ 162.6, 154.5, 143.3, 137.9, 136.9, 129.4 (2C), 128.7 (2C), 128.3 (2C), 127.9, 127.1 (2C),
123.4, 122.6, 120.5, 110.9, 101.4, 75.6, 71.4, 39.9, 39.1, 32.8, 30.5, 29.7, 21.5, 20.2.
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2.03 (m, 1H), 1.76–1.78 (m, 1H), 1.58–1.52 (m, 1H); 13C NMR (125.8, CDCl3) δ 158.2, 143.4, 
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3.2.4. General Procedures for Synthesis of Starting Materials 
Method B: Condensation Reaction 

N-3-methoxy-5-(4-methoxyphenyl)-5-(naphthalen-2-yl)pentyl)-4-methylbenzenesulfonamide
(13) was prepared according to Method A. The following amounts of reagents were used:
piperidine 12 (37 mg, 90 µmol, 1.0 equiv), Ni(dppe)Cl2 (7.0 mg, 10. µmol, 15 mol %),
(4-methoxyphenyl)magnesium iodide (0.11 mL, 0.18 mmol, 2.0 equiv, 1.7 M in Et2O), and
PhMe (0.90 mL). Before purification, a 1H NMR yield of 56% was obtained based on
comparison to PhTMS as an internal standard. The residue was purified by flash column
chromatography (0–20% EtOAc/hexanes) to afford the title compound as a yellow oil
(26 mg, 50. µmol, 58% yield, 3:1 dr). The ratio of diastereomers was determined by integra-
tion of the resonances attributed to methyl hydrogens of the tosyl group in the 1H NMR
spectrum. The relative configuration of the major 13 was assigned based on analogy to
ring opened compound 7. For clarity, the 1H NMR and 13C NMR data of the major and
minor diastereomers have been tabulated individually.

TLC Rf = 0.3 (30% EtOAc/hexanes, stained with CAM); HRMS (TOF MS E+) m/z
[M + H] calcd. for C30H34NO4S, 504.2209; found, 504.2206.

Major Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.76 (d, J = 7.3 Hz, 2H), 7.70–
7.69 (m, 3H), 7.61 (s, 1H), 7.43 (dt, J = 20.4, 7.3 Hz, 2H), 7.29–7.19 (m, 3H), 7.13 (d, J = 8.5 Hz,
2H), 6.81 (d, J = 8.6 Hz, 2H), 5.09–5.-5 (m, 1H), 4.12 (t, J = 7.8 Hz, 1H), 3.76 (s, 3H), 3.20 (s,
3H), 3.13–3.09 (m, 1H), 3.05–2.97 (m, 2H), 2.30 (s, 3H), 2.25 (appar sext, J = 7.3 Hz, 1H),
2.02–1.97 (m, 1H), 1.85–1.80 (m, 1H), 1.58–1.52 (m, 1H); 13C NMR (125.8, CDCl3) δ 158.2,
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143.4, 142.4, 136.8, 135.2, 133.6, 129.7 (2C), 129.0 (2C), 128.8, 128.3, 127.8, 127.7, 127.2 (2C),
126.5, 126.2, 125.6, 125.5, 114.1 (2C), 78.0, 56.7, 55.3, 46.5, 40.3, 39.1, 31.8, 21.5.

Minor Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.76 (d, J = 7.3 Hz, 2H), 7.73–
7.70 (m, 3H), 7.63 (s, 1H), 7.43 (dt, J = 20.4, 7.3 Hz, 2H), 7.29–7.19 (m, 3H), 7.14 (d, J = 7.7 Hz,
2H), 6.81 (d, J = 8.8 Hz, 2H), 5.09–5.-5 (m, 1H), 4.12 (t, J = 7.8 Hz, 1H), 3.76 (s, 3H), 3.19 (s,
3H), 3.13–3.09 (m, 1H), 3.05–2.97 (m, 2H), 2.35 (s, 3H), 2.25 (appar sext, J = 7.3 Hz, 1H),
2.06–2.03 (m, 1H), 1.76–1.78 (m, 1H), 1.58–1.52 (m, 1H); 13C NMR (125.8, CDCl3) δ 158.2,
143.4, 142.0, 136.9, 136.5, 133.6, 129.7 (2C), 129.0 (2C), 128.8, 128.4, 127.8, 127.7, 127.2 (2C),
126.5, 126.2, 125.9, 125.6, 114.1 (2C), 78.0, 56.7, 55.3, 46.5, 40.3, 39.1, 31.9, 21.6.

3.2.4. General Procedures for Synthesis of Starting Materials
Method B: Condensation Reaction
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dried two-neck flask equipped with a stir bar, condenser, septum and N2 inlet was 
charged with aldehyde (1.0 equiv), and p-toluenesulfonamide (1.0 equiv) and CH2Cl2 (330 
mL). Then Ti(OEt)4 (2.0 equiv) was added dropwise. The deep orange solution was 
brought to reflux (~45 °C) and allowed to stir for 48 h. The solution was cooled to room 
temperature and was quenched with H2O. The mixture was vacuum filtered and the fil-
trate was concentrated in vacuo. 
Method C: Methylation of Sulfonamide with Methyl Iodide 

 
This method was adapted from a procedure reported by Jarvo [12,47,48]. To a sus-

pension of NaH (1.3 equiv) in THF (0.10 M) was added a solution of sulfonamide (1.0 
equiv) in THF (0.15 M) at 0 °C. The mixture was warmed to rt and allow to stir for 1 h 
before the addition of iodomethane (1.1 equiv). The reaction was allowed to stir overnight 
at rt. The excess NaH was quenched with sat. NH4Cl and the solution was extracted with 
EtOAc (×3). The combined organic layers were washed with brine, dried over Na2SO4, 
concentrated in vacuo, and purified by flash column chromatography. 
Method D: Fe-Catalyzed Formal [4+2] Cycloaddition 

 
This method was adapted from a procedure reported by Matsubara [59]. To a flame-

dried round-bottom flask equipped with a stir bar was added imine (1.0 equiv), FeCl3 (5.0 
mol%), and PhMe (0.1 M). Once the solution was homogenous, diene (2.0 equiv) was 
added. The reaction mixture was allowed to stir at rt overnight. After completion, the 
reaction mixture was filtered through a short pad of silica, washed with excess ethyl ace-
tate, and concentrated in vacuo.  
Method E: Pd/C Reduction of Alkenes 

 
A flame-dried round-bottom flask with stir bar was charged with palladium on car-

bon (1.0 mg/3.5 mmol of substrate), flushed with N2, and capped with septum. Slowly, 
DCM was added, until Pd/C was fully submerged. Then MeOH (0.2 M in substrate), and 
alkene (1.0 equiv) were added. Vacuum was pulled on the flask until the solvent began to 
bubble, at which point the flask was backfilled with N2 (×3). An H2 balloon was added and 
the reaction mixture was allowed to stir vigorously until complete by 1H NMR. The bal-
loon was then removed, and the flask was purged with N2 for 30 min. The septum was 
removed, and the reaction mixture was filtered through Celite using MeOH (100 mL). The 
collected solvent was then concentrated in vacuo. 
Method F: TFA Mediated Aza-Prins Cyclization 

This method was adapted from a procedure reported by Ruano et al. [73]. A flame-dried
two-neck flask equipped with a stir bar, condenser, septum and N2 inlet was charged with
aldehyde (1.0 equiv), and p-toluenesulfonamide (1.0 equiv) and CH2Cl2 (330 mL). Then
Ti(OEt)4 (2.0 equiv) was added dropwise. The deep orange solution was brought to reflux
(~45 ◦C) and allowed to stir for 48 h. The solution was cooled to room temperature and was
quenched with H2O. The mixture was vacuum filtered and the filtrate was concentrated
in vacuo.

Method C: Methylation of Sulfonamide with Methyl Iodide
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mol%), and PhMe (0.1 M). Once the solution was homogenous, diene (2.0 equiv) was 
added. The reaction mixture was allowed to stir at rt overnight. After completion, the 
reaction mixture was filtered through a short pad of silica, washed with excess ethyl ace-
tate, and concentrated in vacuo.  
Method E: Pd/C Reduction of Alkenes 

 
A flame-dried round-bottom flask with stir bar was charged with palladium on car-

bon (1.0 mg/3.5 mmol of substrate), flushed with N2, and capped with septum. Slowly, 
DCM was added, until Pd/C was fully submerged. Then MeOH (0.2 M in substrate), and 
alkene (1.0 equiv) were added. Vacuum was pulled on the flask until the solvent began to 
bubble, at which point the flask was backfilled with N2 (×3). An H2 balloon was added and 
the reaction mixture was allowed to stir vigorously until complete by 1H NMR. The bal-
loon was then removed, and the flask was purged with N2 for 30 min. The septum was 
removed, and the reaction mixture was filtered through Celite using MeOH (100 mL). The 
collected solvent was then concentrated in vacuo. 
Method F: TFA Mediated Aza-Prins Cyclization 

This method was adapted from a procedure reported by Jarvo [12,47,48]. To a suspension
of NaH (1.3 equiv) in THF (0.10 M) was added a solution of sulfonamide (1.0 equiv) in THF
(0.15 M) at 0 ◦C. The mixture was warmed to rt and allow to stir for 1 h before the addition
of iodomethane (1.1 equiv). The reaction was allowed to stir overnight at rt. The excess
NaH was quenched with sat. NH4Cl and the solution was extracted with EtOAc (×3). The
combined organic layers were washed with brine, dried over Na2SO4, concentrated in
vacuo, and purified by flash column chromatography.

Method D: Fe-Catalyzed Formal [4+2] Cycloaddition
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bon (1.0 mg/3.5 mmol of substrate), flushed with N2, and capped with septum. Slowly, 
DCM was added, until Pd/C was fully submerged. Then MeOH (0.2 M in substrate), and 
alkene (1.0 equiv) were added. Vacuum was pulled on the flask until the solvent began to 
bubble, at which point the flask was backfilled with N2 (×3). An H2 balloon was added and 
the reaction mixture was allowed to stir vigorously until complete by 1H NMR. The bal-
loon was then removed, and the flask was purged with N2 for 30 min. The septum was 
removed, and the reaction mixture was filtered through Celite using MeOH (100 mL). The 
collected solvent was then concentrated in vacuo. 
Method F: TFA Mediated Aza-Prins Cyclization 

This method was adapted from a procedure reported by Matsubara [59]. To a flame-dried
round-bottom flask equipped with a stir bar was added imine (1.0 equiv), FeCl3 (5.0 mol%),
and PhMe (0.1 M). Once the solution was homogenous, diene (2.0 equiv) was added.
The reaction mixture was allowed to stir at rt overnight. After completion, the reaction
mixture was filtered through a short pad of silica, washed with excess ethyl acetate, and
concentrated in vacuo.

Method E: Pd/C Reduction of Alkenes
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dried round-bottom flask equipped with a stir bar was added imine (1.0 equiv), FeCl3 (5.0 
mol%), and PhMe (0.1 M). Once the solution was homogenous, diene (2.0 equiv) was 
added. The reaction mixture was allowed to stir at rt overnight. After completion, the 
reaction mixture was filtered through a short pad of silica, washed with excess ethyl ace-
tate, and concentrated in vacuo.  
Method E: Pd/C Reduction of Alkenes 

 
A flame-dried round-bottom flask with stir bar was charged with palladium on car-

bon (1.0 mg/3.5 mmol of substrate), flushed with N2, and capped with septum. Slowly, 
DCM was added, until Pd/C was fully submerged. Then MeOH (0.2 M in substrate), and 
alkene (1.0 equiv) were added. Vacuum was pulled on the flask until the solvent began to 
bubble, at which point the flask was backfilled with N2 (×3). An H2 balloon was added and 
the reaction mixture was allowed to stir vigorously until complete by 1H NMR. The bal-
loon was then removed, and the flask was purged with N2 for 30 min. The septum was 
removed, and the reaction mixture was filtered through Celite using MeOH (100 mL). The 
collected solvent was then concentrated in vacuo. 
Method F: TFA Mediated Aza-Prins Cyclization 
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A flame-dried round-bottom flask with stir bar was charged with palladium on carbon
(1.0 mg/3.5 mmol of substrate), flushed with N2, and capped with septum. Slowly, DCM
was added, until Pd/C was fully submerged. Then MeOH (0.2 M in substrate), and alkene
(1.0 equiv) were added. Vacuum was pulled on the flask until the solvent began to bubble,
at which point the flask was backfilled with N2 (×3). An H2 balloon was added and the
reaction mixture was allowed to stir vigorously until complete by 1H NMR. The balloon
was then removed, and the flask was purged with N2 for 30 min. The septum was removed,
and the reaction mixture was filtered through Celite using MeOH (100 mL). The collected
solvent was then concentrated in vacuo.

Method F: TFA Mediated Aza-Prins Cyclization
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1.0 equiv), Ti(OEt)4 (8.4 mL, 40. mmol, 2.0 equiv), and CH2Cl2 (330 mL). The residue
was purified by flash column chromatography (5–25% EtOAc/hexanes) to yield the title
compound as a pale yellow solid (5.0 g, 16 mmol, 80%). m.p. 148–150 ◦C; TLC Rf = 0.5
(25% EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) δ 9.23 (s, 1H), 8.02 (s, 1H), 7.90 (d,
J = 8.3, 3H), 7.86 (d, J = 8.2, 1H), 7.50 (td, J = 8.3, 1.2, 1H), 7.42 (td, J = 8.4, 1.2, 1H), 7.35 (d,
J = 8.4, 2H), 2.44 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 163.3, 144.8, 143.6, 138.9, 138.3, 137.3,
135.3, 130.0 (2C), 128.7, 128.2 (2C), 126.1, 125.5, 123.2, 21.8; IR (neat) 3259, 2921, 1566, 1305,
1292, 1152, 1087, 752 cm−1; HRMS (TOF MS ES+) m/z calcd. for C16H13NO2S2 [M + Na]+

338.0285, found 338.0283.
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7.46–7.39 (m, 1H), 7.36–7.31 (m, 2H), 7.26 (t, J = 8.3 Hz, 2H), 7.20 (d, J = 7.3 Hz, 2H), 5.34 (t,
J = 7.7 Hz, 1H), 2.72 (td, J = 7.5, 2.3 Hz, 2H), 2.68 (s, 3H), 2.44 (s, 3H), 2.16–2.06 (m, 1H), 1.88
(ddd, J = 15.6, 14.0, 7.6 Hz, 1H), 1.70 (quint, J = 9.0 Hz, 2H); 13C NMR (126 MHz, CDCl3) δ
143.1, 141.9, 135.9, 133.1, 132.9, 129.9, 129.6 (2C), 128.53 (2C), 128.46 (2C), 128.3, 128.1, 127.7,
127.6, 127.3 (2C), 126.7, 126.4, 126.3, 126.0, 60.0, 35.5, 30.0, 28.9, 28.3, 21.6; HRMS (TOF MS
ES+) m/z: [M + Na] calcd. for C28H29NO2S 466.1817, found 466.1816.
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chromatography (0–10% EtOAc/hexanes) to afford the title compound as a yellow oil
(154 mg, 0.34 mmol, 46% yield). TLC Rf = 0.5 (20% EtOAc/hexanes); 1H NMR (500 MHz,
CDCl3) δ 7.71 (d, J = 8.1 Hz, 2H), 7.68 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.36–
7.22 (m, 8H), 7.18 (d, J = 8.0 Hz, 2H), 7.10 (s, 1H), 5.95 (s, 1H), 5.80 (d, J = 6.1 Hz, 1H), 4.35
(dt, J = 18.6, 3.5 Hz, 1H), 3.84 (dq, J = 18.7, 2.8 Hz, 1H), 2.96 (ddt, J = 16.3, 6.4, 3.2 Hz, 1H),
2.87 (d, J = 17.2 Hz, 1H), 2.33 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 144.9, 144.6, 143.6,
140.0, 139.9, 129.9 (2C), 129.2, 128.8 (2C), 128.4, 127.4 (2C), 126.8 (2C), 124.5, 124.3, 123.5,
122.3, 122.3, 53.9, 42.2, 37.1, 36.7, 31.7, 21.7.
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1.0 equiv), Pd/C (20 mg), DCM (2.0 mL) and MeOH (5.0 mL). The residue was puri-
fied by column chromatography (0–10% EtOAc/hexanes) to afford the title compound as
a pale yellow oil (24 mg, 53 µmol, 25% yield, >20:1 dr trans:cis). The dr was determined
based on the integration of the resonances attributed to the benzylic hydrogens in the 1H
NMR spectrum. The relative configuration was assigned based on nOe analysis. TLC
Rf = 0.5 (20% EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) δ 7.81 (d, J = 8.4 Hz, 2H), 7.77
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31.6, 21.6; HRMS (TOF MS ES+) m/z [M+Na] calcd. for C26H25NO2S2Na 470.1224, found
470.1228.
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ing to Method D. The following amounts of reagents were used: imine 28 (0.31 g, 1.0 mmol,
1.0 equiv), isoprene (1.5 mL, 15 mmol, 15 equiv), FeCl3 (16 mg, 0.10 mmol, 10. mol %),
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4-Methyl-2-(naphthalen-2-yl)-1-tosylpiperidine (25) was prepared according to Method
E. The following amounts of reagents were used: substrate 31 (53 mg, 0.14 mmol, 1.0 equiv),
Pd/C (27 mg), DCM (1.0 mL) and MeOH (1.0 mL). The residue was purified by flash
column chromatography (0–10% EtOAc/hexanes) to afford the title compound as a pale
yellow oil (9.6 mg, 25 µmol, 18% yield, 6:1 dr cis:trans). The dr was determined based
on the integration of the resonances attributed to the benzylic hydrogens in the 1H NMR
spectrum. The relative configuration was assigned based on nOe analysis. For clarity, the
1H NMR and 13C NMR data of the major and minor diastereomers have been tabulated
individually.

TLC Rf = 0.5 (10% EtOAc/hexanes); HRMS (TOF MS ES+) m/z [M + H] calcd. for
C23H26NO2S2 380.1684, found 380.1689.

Major Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.80–7.76 (m, 4H), 7.73–7.71 (m,
1H), 7.63 (s, 1H), 7.46–7.44 (m, 3H), 7.28 (d, J = 8.0 Hz, 2H), 5.48 (d, J = 4.5 Hz, 1H), 3.96 (d,
J = 14.4 Hz, 1H), 3.06 (ddd, J = 14.0, 13.2, 3.1 Hz, 1H), 2.69 (d, J = 25.9 Hz, 1H), 2.42 (s, 3H),
2.30 (d, J = 13.3 Hz, 1H), 1.43–1.36 (m, 2H), 0.98 (ddd, J = 24.5, 12.4, 4.5 Hz, 1H), 0.82 (d,
J = 6.5 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 143.1, 138.8, 136.7, 133.3, 132.3, 129.7 (2C),
128.4, 128.0, 127.5, 127.1 (2C), 126.1, 125.9, 125.8, 125.1, 55.6, 42.0, 36.0, 33.0, 25.3, 22.2, 21.5.

Minor Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.80–7.76 (m, 4H), 7.73–7.71 (m,
1H), 7.63 (s, 1H), 7.46–7.44 (m, 3H), 7.28 (d, J = 8.0 Hz, 2H), 5.25 (d, J = 4.9 Hz, 1H), 3.88 (d,
J = 10.6 Hz, 1H), 3.04–2.98 (m, 1H), 2.42 (s, 3H), 2.38 (d, J = 3.86 Hz, 1H), 2.14 (d, J = 13.7 Hz,
1H), 1.43–1.36 (m, 2H), 0.79 (d, J = 6.5 Hz, 3H), 0.75 (d, J = 6.4 Hz, 1H); 13C NMR (151 MHz,
CDCl3) δ 143.1, 138.8, 136.7, 133.3, 132.3, 129.6 (2C), 129.3, 128.0, 127.6, 127.1 (2C), 126.1,
125.9, 125.8, 124.0, 55.2, 41.8, 36.0, 33.1, 25.2, 23.3, 21.5.
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N-(but-3-en-1-yl)-4-methylbenzenesulfonamide (34) was prepared according to a proce-
dure reported by Jiang [77]. To a flame-dried flask equipped with a stir bar was added 4-
bromo-1-butene 32 (4.1 mL, 40. mmol, 1.0 equiv), p-toluenesulfonamide 33 (6.8 g, 40. 
mmol, 1.0 equiv), K2CO3 (6.6 g, 48 mmol, 1.2 equiv), and MeCN (160 mL). The mixture 
was heated to 60 °C and allowed to stir for 3 d. The reaction mixture was quenched with 
saturated NH4Cl (100 mL) and extracted with EtOAc (3 × 50 mL). The combined organic 
layers were washed with H2O (50 mL) and brine (50 mL), dried over Na2SO4, and concen-
trated in vacuo. The residue was purified by column chromatography (5–25% EtOAc/hex-
anes) to afford the title compound as a clear, colorless oil (5.4 g, 24 mmol, 60%). Analytical 
data are consistent with literature values [77]. 1H NMR: (400 MHz, CDCl3) δ 7.76 (d, J = 
8.2, 2H), 7.30 (d, J = 8.1, 2H), 5.63 (ddt, J = 17.1, 10.4, 6.8, 1H), 5.11 (br s, 1H), 5.02–4.93 (m, 
2H), 2.99 (q, J = 6.7, 2H), 2.41 (s, 3H), 2.20 (q, J = 6.9, 2 H). 

 
2-(Naphthalen-2-yl)-1-tosylpiperidin-4-ol (35) was prepared according to Method F. The 
following amounts of reagents were used: 2-napthaldehyde (0.94 g, 6.0 mmol, 1.0 equiv), 
homoallylic sulfonamide 35 (1.1 mL, 6.0 mmol, 1.0 equiv), TFA (4.6 mL, 60. mmol, 10 
equiv), and CH2Cl2 (60 mL, 0.10 M). The residue was purified by flash column chroma-
tography (0–30% EtOAc/hexanes) to afford the title compound as an orange solid (0.72 g, 
1.8 mmol, 31% yield, 5:1 dr trans:cis). The dr was determined based on the integration of 
the resonances attributed to the benzylic hydrogens in the 1H NMR spectrum. The relative 
configuration of the major 34 was assigned based on analogy to compound 24. For clarity, 
the 1H NMR data of the major and minor diastereomers have been tabulated individually.  

TLC Rf = 0.1 (30% EtOAc/hexanes, stained with CAM); HRMS (TOF MS ES+) m/z [M + H] 
calcd. for C22H24NO3S 382.1477, found 382.1483. 

Major Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.79–7.77 (m, 4H), 7.68 (s, 1H), 7.49–
7.41 (m, 4H), 7.29 (d, J = 8.1 Hz, 2H), 5.54 (d, J = 4.5 Hz, 1H), 3.99 (d, J = 15.0 Hz, 1H), 3.74 
(tt, J = 10.9, 7.9 Hz, 1H), 3.03 (td, J = 15.3, 2.7 Hz, 1H), 2.63 (dt, J = 13.3, 2.0 Hz 1H), 2.43 (s, 
3H), 1.70 (br s, 1H), 1.58 (ddd J = 13.6, 11.3, 5.5 Hz, 1H), 1.26–1.18 (m, 2H). 13C NMR (151 
MHz, CDCl3) δ 143.5, 138.3, 135.9, 133.3, 132.5, 130.0 (2C), 128.7, 128.0, 127.5, 127.0 (2C), 
126.3, 126.2, 125.5, 124.7, 64.7, 55.8, 40.7, 36.2, 33.8, 21.6. 

N-(but-3-en-1-yl)-4-methylbenzenesulfonamide (34) was prepared according to a proce-
dure reported by Jiang [77]. To a flame-dried flask equipped with a stir bar was added 4-
bromo-1-butene 32 (4.1 mL, 40. mmol, 1.0 equiv), p-toluenesulfonamide 33 (6.8 g, 40. mmol,
1.0 equiv), K2CO3 (6.6 g, 48 mmol, 1.2 equiv), and MeCN (160 mL). The mixture was heated
to 60 ◦C and allowed to stir for 3 d. The reaction mixture was quenched with saturated
NH4Cl (100 mL) and extracted with EtOAc (3 × 50 mL). The combined organic layers were
washed with H2O (50 mL) and brine (50 mL), dried over Na2SO4, and concentrated in
vacuo. The residue was purified by column chromatography (5–25% EtOAc/hexanes) to
afford the title compound as a clear, colorless oil (5.4 g, 24 mmol, 60%). Analytical data are
consistent with literature values [77]. 1H NMR: (400 MHz, CDCl3) δ 7.76 (d, J = 8.2, 2H),
7.30 (d, J = 8.1, 2H), 5.63 (ddt, J = 17.1, 10.4, 6.8, 1H), 5.11 (br s, 1H), 5.02–4.93 (m, 2H), 2.99
(q, J = 6.7, 2H), 2.41 (s, 3H), 2.20 (q, J = 6.9, 2 H).
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dure reported by Jiang [77]. To a flame-dried flask equipped with a stir bar was added 4-
bromo-1-butene 32 (4.1 mL, 40. mmol, 1.0 equiv), p-toluenesulfonamide 33 (6.8 g, 40. 
mmol, 1.0 equiv), K2CO3 (6.6 g, 48 mmol, 1.2 equiv), and MeCN (160 mL). The mixture 
was heated to 60 °C and allowed to stir for 3 d. The reaction mixture was quenched with 
saturated NH4Cl (100 mL) and extracted with EtOAc (3 × 50 mL). The combined organic 
layers were washed with H2O (50 mL) and brine (50 mL), dried over Na2SO4, and concen-
trated in vacuo. The residue was purified by column chromatography (5–25% EtOAc/hex-
anes) to afford the title compound as a clear, colorless oil (5.4 g, 24 mmol, 60%). Analytical 
data are consistent with literature values [77]. 1H NMR: (400 MHz, CDCl3) δ 7.76 (d, J = 
8.2, 2H), 7.30 (d, J = 8.1, 2H), 5.63 (ddt, J = 17.1, 10.4, 6.8, 1H), 5.11 (br s, 1H), 5.02–4.93 (m, 
2H), 2.99 (q, J = 6.7, 2H), 2.41 (s, 3H), 2.20 (q, J = 6.9, 2 H). 

 
2-(Naphthalen-2-yl)-1-tosylpiperidin-4-ol (35) was prepared according to Method F. The 
following amounts of reagents were used: 2-napthaldehyde (0.94 g, 6.0 mmol, 1.0 equiv), 
homoallylic sulfonamide 35 (1.1 mL, 6.0 mmol, 1.0 equiv), TFA (4.6 mL, 60. mmol, 10 
equiv), and CH2Cl2 (60 mL, 0.10 M). The residue was purified by flash column chroma-
tography (0–30% EtOAc/hexanes) to afford the title compound as an orange solid (0.72 g, 
1.8 mmol, 31% yield, 5:1 dr trans:cis). The dr was determined based on the integration of 
the resonances attributed to the benzylic hydrogens in the 1H NMR spectrum. The relative 
configuration of the major 34 was assigned based on analogy to compound 24. For clarity, 
the 1H NMR data of the major and minor diastereomers have been tabulated individually.  

TLC Rf = 0.1 (30% EtOAc/hexanes, stained with CAM); HRMS (TOF MS ES+) m/z [M + H] 
calcd. for C22H24NO3S 382.1477, found 382.1483. 

Major Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.79–7.77 (m, 4H), 7.68 (s, 1H), 7.49–
7.41 (m, 4H), 7.29 (d, J = 8.1 Hz, 2H), 5.54 (d, J = 4.5 Hz, 1H), 3.99 (d, J = 15.0 Hz, 1H), 3.74 
(tt, J = 10.9, 7.9 Hz, 1H), 3.03 (td, J = 15.3, 2.7 Hz, 1H), 2.63 (dt, J = 13.3, 2.0 Hz 1H), 2.43 (s, 
3H), 1.70 (br s, 1H), 1.58 (ddd J = 13.6, 11.3, 5.5 Hz, 1H), 1.26–1.18 (m, 2H). 13C NMR (151 
MHz, CDCl3) δ 143.5, 138.3, 135.9, 133.3, 132.5, 130.0 (2C), 128.7, 128.0, 127.5, 127.0 (2C), 
126.3, 126.2, 125.5, 124.7, 64.7, 55.8, 40.7, 36.2, 33.8, 21.6. 

2-(Naphthalen-2-yl)-1-tosylpiperidin-4-ol (35) was prepared according to Method F. The
following amounts of reagents were used: 2-napthaldehyde (0.94 g, 6.0 mmol, 1.0 equiv),
homoallylic sulfonamide 35 (1.1 mL, 6.0 mmol, 1.0 equiv), TFA (4.6 mL, 60. mmol, 10 equiv),
and CH2Cl2 (60 mL, 0.10 M). The residue was purified by flash column chromatography
(0–30% EtOAc/hexanes) to afford the title compound as an orange solid (0.72 g, 1.8 mmol,
31% yield, 5:1 dr trans:cis). The dr was determined based on the integration of the res-
onances attributed to the benzylic hydrogens in the 1H NMR spectrum. The relative
configuration of the major 34 was assigned based on analogy to compound 24. For clarity,
the 1H NMR data of the major and minor diastereomers have been tabulated individually.
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TLC Rf = 0.1 (30% EtOAc/hexanes, stained with CAM); HRMS (TOF MS ES+) m/z
[M + H] calcd. for C22H24NO3S 382.1477, found 382.1483.

Major Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.79–7.77 (m, 4H), 7.68 (s, 1H),
7.49–7.41 (m, 4H), 7.29 (d, J = 8.1 Hz, 2H), 5.54 (d, J = 4.5 Hz, 1H), 3.99 (d, J = 15.0 Hz, 1H),
3.74 (tt, J = 10.9, 7.9 Hz, 1H), 3.03 (td, J = 15.3, 2.7 Hz, 1H), 2.63 (dt, J = 13.3, 2.0 Hz 1H), 2.43
(s, 3H), 1.70 (br s, 1H), 1.58 (ddd J = 13.6, 11.3, 5.5 Hz, 1H), 1.26–1.18 (m, 2H). 13C NMR
(151 MHz, CDCl3) δ 143.5, 138.3, 135.9, 133.3, 132.5, 130.0 (2C), 128.7, 128.0, 127.5, 127.0
(2C), 126.3, 126.2, 125.5, 124.7, 64.7, 55.8, 40.7, 36.2, 33.8, 21.6.

Minor Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.74–7.70 (m, 4H), 7.63 (s, 1H),
7.60 (d, J = 8.3 Hz, 2H), 7.49–7.41 (m, 2H), 7.16 (d, J = 8.4 Hz, 2H), 5.10 (t, J = 5.1 Hz, 1H),
3.99 (d, J = 15.0 Hz, 1H), 3.67 (tt, J = 13.4, 4.6 Hz, 1H), 3.03 (td, J = 15.3, 2.7 Hz, 1H), 2.63 (dt,
J = 13.3, 2.0 Hz 1H), 2.36 (s, 3H), 1.81–1.73 (m, 1H), 1.67 (br s, 1H), 1.26–1.18 (m, 2H). 13C
NMR (151 MHz, CDCl3) δ 143.3, 137.7, 135.9, 133.2, 132.5, 129.6 (2C), 128.7, 128.2, 127.5,
127.2 (2C), 126.3, 126.0, 125.3, 124.8, 65.1, 55.5, 39.0, 37.0, 31.9, 21.5.
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Method G. The following amounts of reagents were used: alcohol 35 (0.25 g, 0.66 mmol, 
1.0 equiv), NaH (63 mg, 2.6 mmol. 4.0 equiv), benzyl bromide (90. μL, 0.73 mmol, 1.1 
equiv), and THF (2.3 mL, 0.2 M). The residue was purified by column chromatography 
(0–10% EtOAc/hexanes) to afford the title compound as a white solid (140 mg, 0.30 mmol, 
56% yield, 5:1 dr trans:cis). The dr was determined based on the integration of the reso-
nances attributed to the benzylic hydrogens in the 1H NMR spectrum. The relative con-
figuration was assigned based on nOe analysis. For clarity, the 1H NMR and 13C NMR 
data of the major and minor diastereomers have been tabulated individually.  

TLC Rf = 0.8 (20% EtOAc/hexanes, stained with CAM); HRMS (TOF MS ES+) m/z [M + Na] 
calcd. for C29H29NO3SNa 494.1766, found 494.1758. 

Major Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.80 (d, J = 8.1 Hz, 4H), 7.70 (d, 1H), 
7.61 (s, 1H), 7.48–7.45 (m, 3H), 7.32–7.26 (m, 7H), 5.55 (d, J = 3.8 Hz, 1H), 4.50 (d, J = 11.9 
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JAB = 12.3 Hz, 2H), 3.80–3.68 (m, 3H), 2.53 (dt, J = 14.4, 9.4 Hz, 1H), 2.35 (s, 3H), 2.06 (ddd, 
J = 14.3, 5.3, 2.9 Hz, 1H), 1.81–1.80 (m, 2H), 1.31–1.34 (m, 1H); 13C NMR (151 MHz, CDCl3) 
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4-Methoxy-2-(naphthalen-2-yl)-1-tosylpiperidine (12) was prepared according to 
Method G. The following amounts of reagents were used: alcohol 35 (110 mg, 0.30 mmol, 
1.0 equiv), NaH (16 mg, 0.67 mmol, 2.2 equiv), methyl iodide (20. μL, 0.33 mmol, 1.1 
equiv), and THF (1.5 mL, 0.20 M). The residue was purified by column chromatography 
(0–20% EtOAc/hexanes) to afford the title compound as a pale yellow solid (61 mg, 0.15 

4-(Benzyloxy)-2-(naphthalen-2-yl)-1-tosylpiperidine (26) was prepared according to Method
G. The following amounts of reagents were used: alcohol 35 (0.25 g, 0.66 mmol, 1.0 equiv),
NaH (63 mg, 2.6 mmol. 4.0 equiv), benzyl bromide (90. µL, 0.73 mmol, 1.1 equiv),
and THF (2.3 mL, 0.2 M). The residue was purified by column chromatography (0–10%
EtOAc/hexanes) to afford the title compound as a white solid (140 mg, 0.30 mmol, 56%
yield, 5:1 dr trans:cis). The dr was determined based on the integration of the resonances
attributed to the benzylic hydrogens in the 1H NMR spectrum. The relative configuration
was assigned based on nOe analysis. For clarity, the 1H NMR and 13C NMR data of the
major and minor diastereomers have been tabulated individually.

TLC Rf = 0.8 (20% EtOAc/hexanes, stained with CAM); HRMS (TOF MS ES+) m/z
[M + Na] calcd. for C29H29NO3SNa 494.1766, found 494.1758.

Major Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.80 (d, J = 8.1 Hz, 4H), 7.70 (d,
1H), 7.61 (s, 1H), 7.48–7.45 (m, 3H), 7.32–7.26 (m, 7H), 5.55 (d, J = 3.8 Hz, 1H), 4.50 (d,
J = 11.9 Hz, 1H), 4.43 (d, J = 11.9 Hz, 1H), 4.02 (d, J = 14.7 Hz, 1H), 3.52 (tt, J = 10.8 Hz, 1H),
3.04 (td, J = 14.5, 2.5 Hz, 1H), 2.68 (d, J = 13.6 Hz, 1H), 2.43 (s, 3H), 1.80 (d, J = 11.5 Hz, 1H),
1.62 (ddd, J = 17.7, 11.9, 6.1 Hz, 1H), 1.31–1.34 (m, 1H); 13C NMR (151 MHz, CDCl3) δ 143.4,
138.3, 136.0, 133.2, 132.5, 130.0 (2C), 129.5, 128.6, 128.5 (2C), 128.0, 127.8, 127.7 (2C), 127.5,
127.0 (2C), 126.2, 126.1, 125.5, 124.8, 71.3, 70.2, 55.8, 40.8, 33.4, 30.8, 21.6.

Minor Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.80 (d, J = 8.1 Hz, 4H), 7.70
(d, 1H), 7.59 (s, 1H), 7.48–7.45 (m, 3H), 7.32–7.26 (m, 2H), 7.15 (d, J = 8.2 Hz, 1H), 7.07 (t,
J = 7.6 Hz, 1H), 6.96 (t, J = 7.3 Hz, 2H), 6.69 (d, J = 7.6 Hz, 1H), 5.17 (t, J = 5.1 Hz, 1H),
4.24, 4.20 (ABq, JAB = 12.3 Hz, 2H), 3.80–3.68 (m, 3H), 2.53 (dt, J = 14.4, 9.4 Hz, 1H), 2.35 (s,
3H), 2.06 (ddd, J = 14.3, 5.3, 2.9 Hz, 1H), 1.81–1.80 (m, 2H), 1.31–1.34 (m, 1H); 13C NMR
(151 MHz, CDCl3) δ 143.4, 138.4, 136.0, 133.2, 132.5, 130.0 (2C), 129.5, 128.6, 128.5 (2C),
128.0, 127.8, 127.7 (2C), 127.5, 127.19 (2C), 127.16, 125.9, 125.6, 125.2, 71.2, 69.8, 55.8, 39.3,
34.2, 30.8, 21.6.
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4-Methoxy-2-(naphthalen-2-yl)-1-tosylpiperidine (12) was prepared according to Method
G. The following amounts of reagents were used: alcohol 35 (110 mg, 0.30 mmol, 1.0 equiv),
NaH (16 mg, 0.67 mmol, 2.2 equiv), methyl iodide (20. µL, 0.33 mmol, 1.1 equiv), and
THF (1.5 mL, 0.20 M). The residue was purified by column chromatography (0–20%
EtOAc/hexanes) to afford the title compound as a pale yellow solid (61 mg, 0.15 mmol, 52%
yield, 5:1 dr trans:cis). The dr was determined based on the integration of the resonances
attributed to the benzylic hydrogens in the 1H NMR spectrum. The relative configuration
was assigned based on nOe analysis. For clarity, the 1H NMR and 13C NMR data of the
major and minor diastereomers have been tabulated individually.

TLC Rf = 0.6 (30% EtOAc/hexanes, stained with CAM); HRMS (TOF MS ES+) m/z
[M + Na] calcd. for C23H25NO3SNa 396.1633, found 396.1636.

Major Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.83–7.76 (m, 5H), 7.72 (s, 1H),
7.54–7.51 (m, 1H), 7.48–7.46 (m, 2H), 7.29 (d, J = 7.9 Hz, 2H), 5.56 (s, 1H), 4.04 (d, J = 14.1 Hz,
1H), 3.29 (tt, J = 7.4, 3.0 Hz, 1H), 3.25 (s, 3H), 3.09 (t, J = 13.1 Hz, 1H), 2.68 (d, J = 13.2 Hz,
1H), 2.42 (s, 3H), 1.80 (d, J = 11.5 Hz, 1H), 1.53 (td, J = 12.2 Hz, 1H), 1.16 (qd, J = 11.6, 5.8 Hz,
1H); 13C NMR (151 MHz, CDCl3) δ 143.4, 138.4, 136.1, 133.4, 132.5, 130.0 (2C), 126.7, 128.1,
127.6, 127.0 (2C), 126.3, 126.1, 125.5, 124.7, 73.2, 55.8, 55.5, 40.8, 33.2, 30.2, 21.6.

Minor Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.83–7.76 (m, 5H), 7.72 (s, 1H),
7.54–7.51 (m, 1H), 7.48–7.46 (m, 2H), 7.29 (d, J = 7.9 Hz, 2H), 4.99 (t, J = 5.38 Hz, 1H),
3.77–3.71 (m, 1H), 3.60 (dt, J = 13.6, 4.6 Hz, 1H), 3.42 (br s, 1H), 3.03 (s, 3H), 2.37–2.29 (m,
1H), 2.33 (s, 3H), 2.02 (d, J = 15.2 Hz, 1H), 1.86–1.82 (m, 1H), 1.72–1.68 (m, 1H); 13C NMR
(151 MHz, CDCl3) δ 143.0, 138.3, 137.4, 133.1, 132.5, 129.4 (2C), 126.7, 128.0, 127.5, 127.2
(2C), 125.8, 125.7, 125.5, 125.2, 73.5, 56.4, 55.5, 40.0, 34.1, 29.6, 21.5.
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mmol, 10 equiv), CH2Cl2 (50 mL, 0.10 M). The residue was purified by flash column
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Major Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.65 (d, J = 8.29 Hz, 2H), 7.46 (dd,

J = 6.75, 2.12 Hz, 1H), 7.21–7.18 (m, 3H), 7.15 (d, J = 8.61 Hz, 2H), 6.49 (t, J = 2.0 Hz, 1H),
5.51 (d, J = 5.48 Hz, 1H), 3.97–3.90 (m, 2H), 3.23 (td, J = 13.5, 2.7 Hz, 1H), 2.51–2.45 (m, 1H),
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Minor Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.65 (d, J = 8.29 Hz, 2H), 7.46 (dd,
J = 6.75, 2.12 Hz, 1H), 7.21–7.18 (m, 3H), 7.15 (d, J = 8.61 Hz, 2H), 6.51 (t, J = 1.1 Hz, 1H),
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5.33 (d, J = 5.6 Hz, 1H), 4.14–4.10 (m, 2H), 3.64 (td, J = 10.9, 4.0 Hz, 1H), 2.51–2.45 (m, 1H),
2.32 (s, 3H), 2.12 (ddd, J = 14.4, 6.7, 3.3 Hz, 1H), 1.94–1.88 (m, 1H), 1.53 (d, J = 5.0 Hz, 1H),
1.44 (ddd, J = 24.1, 12.8, 4.5 Hz, 1H).

Molecules 2021, 26, x FOR PEER REVIEW 21 of 25 
 

 

mmol, 52% yield, 5:1 dr trans:cis). The dr was determined based on the integration of the 
resonances attributed to the benzylic hydrogens in the 1H NMR spectrum. The relative 
configuration was assigned based on nOe analysis. For clarity, the 1H NMR and 13C NMR 
data of the major and minor diastereomers have been tabulated individually. 

TLC Rf = 0.6 (30% EtOAc/hexanes, stained with CAM); HRMS (TOF MS ES+) m/z [M + Na] 
calcd. for C23H25NO3SNa 396.1633, found 396.1636. 

Major Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.83–7.76 (m, 5H), 7.72 (s, 1H), 7.54–
7.51 (m, 1H), 7.48–7.46 (m, 2H), 7.29 (d, J = 7.9 Hz, 2H), 5.56 (s, 1H), 4.04 (d, J = 14.1 Hz, 
1H), 3.29 (tt, J = 7.4, 3.0 Hz, 1H), 3.25 (s, 3H), 3.09 (t, J = 13.1 Hz, 1H), 2.68 (d, J = 13.2 Hz, 
1H), 2.42 (s, 3H), 1.80 (d, J = 11.5 Hz, 1H), 1.53 (td, J = 12.2 Hz, 1H), 1.16 (qd, J = 11.6, 5.8 
Hz, 1H); 13C NMR (151 MHz, CDCl3) δ 143.4, 138.4, 136.1, 133.4, 132.5, 130.0 (2C), 126.7, 
128.1, 127.6, 127.0 (2C), 126.3, 126.1, 125.5, 124.7, 73.2, 55.8, 55.5, 40.8, 33.2, 30.2, 21.6. 

Minor Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.83–7.76 (m, 5H), 7.72 (s, 1H), 7.54–
7.51 (m, 1H), 7.48–7.46 (m, 2H), 7.29 (d, J = 7.9 Hz, 2H), 4.99 (t, J = 5.38 Hz, 1H), 3.77–3.71 
(m, 1H), 3.60 (dt, J = 13.6, 4.6 Hz, 1H), 3.42 (br s, 1H), 3.03 (s, 3H), 2.37–2.29 (m, 1H), 2.33 
(s, 3H), 2.02 (d, J = 15.2 Hz, 1H), 1.86–1.82 (m, 1H), 1.72–1.68 (m, 1H); 13C NMR (151 MHz, 
CDCl3) δ 143.0, 138.3, 137.4, 133.1, 132.5, 129.4 (2C), 126.7, 128.0, 127.5, 127.2 (2C), 125.8, 
125.7, 125.5, 125.2, 73.5, 56.4, 55.5, 40.0, 34.1, 29.6, 21.5. 

 
2-(Naphthalen-2-yl)-1-tosylpiperidin-4-ol (36) was prepared according to Method F. The 
following amounts of reagents were used: 2-benzofurancarboxaldehyde (0.60 mL, 5.0 
mmol, 1.0 equiv), homoallylic sulfonamide 34 (0.91 mL, 5.0 mmol, 1.0 equiv), TFA (3.8 mL, 
50. mmol, 10 equiv), CH2Cl2 (50 mL, 0.10 M). The residue was purified by flash column 
chromatography (0–50% EtOAc/hexanes) to afford the title compound as an orange solid 
(0.42 g, 1.1 mmol, 22% yield, 5:1 dr trans:cis). The dr was determined based on the inte-
gration of the resonances attributed to the benzylic hydrogens in the 1H NMR spectrum. 
The relative configuration was assigned based on analogy to compound 26. For clarity, 
the 1H NMR data of the major and minor diastereomers have been tabulated individually.  

TLC Rf = 0.1 (30% EtOAc/hexanes, stained with CAM).  

Major Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.65 (d, J = 8.29 Hz, 2H), 7.46 (dd, J = 
6.75, 2.12 Hz, 1H), 7.21–7.18 (m, 3H), 7.15 (d, J = 8.61 Hz, 2H), 6.49 (t, J = 2.0 Hz, 1H), 5.51 
(d, J = 5.48 Hz, 1H), 3.97–3.90 (m, 2H), 3.23 (td, J = 13.5, 2.7 Hz, 1H), 2.51–2.45 (m, 1H), 2.33 
(s, 3H), 1.94–1.88 (m, 1H), 1.75 (ddd, J = 13.0, 11.6, 5.9 Hz, 1H), 1.53 (d, J = 5.0 Hz, 1H), 1.44 
(ddd, J = 24.1, 12.8, 4.5 Hz, 1H). 

Minor Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.65 (d, J = 8.29 Hz, 2H), 7.46 (dd, J = 
6.75, 2.12 Hz, 1H), 7.21–7.18 (m, 3H), 7.15 (d, J = 8.61 Hz, 2H), 6.51 (t, J = 1.1 Hz, 1H), 5.33 
(d, J = 5.6 Hz, 1H), 4.14–4.10 (m, 2H), 3.64 (td, J = 10.9, 4.0 Hz, 1H), 2.51–2.45 (m, 1H), 2.32 
(s, 3H), 2.12 (ddd, J = 14.4, 6.7, 3.3 Hz, 1H), 1.94–1.88 (m, 1H), 1.53 (d, J = 5.0 Hz, 1H), 1.44 
(ddd, J = 24.1, 12.8, 4.5 Hz, 1H). 

 

2-(benzofuran-2-yl)-4-(benzyloxy)-1-tosylpiperidine (27) was prepared according to method
G. The following amounts of reagents were used: alcohol 36 (0.15 g, 0.40 mmol, 1.0 equiv),
NaH (46 mg, 1.9 mmol, 4.7 equiv), benzyl bromide (52 µL, 0.44 mmol, 1.1 equiv), and
THF (3.0 mL, 0.2 M). The residue was purified by column chromatography (0–10% EtOAc/
hexanes) to afford the title compound as a yellow solid (87 mg, 0.19 mmol, 47% yield, 5:1 dr
trans:cis). The dr was determined based on the integration of the resonances attributed to
the benzylic hydrogens in the 1H NMR spectrum. The relative configuration was assigned
based on nOe analysis. For clarity, the 1H NMR and 13C NMR data of the major and minor
diastereomers have been tabulated individually.

TLC Rf = 0.8 (30% EtOAc/hexanes, stained with CAM); HRMS (TOF MS ES+) m/z
[M + Na] calcd. for C27H27NO4SNa 484.1559, found 484.1542.

Major Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.65 (d, J = 8.3 Hz, 2H), 7.45, (d,
J = 8.3 Hz, 1H), 7.30–7.17 (m, 8H), 7.15 (d, J = 8.2 Hz, 2H), 6.44 (s, 1H), 5.52 (d, J = 5.3 Hz,
1H), 4.49 (s, 2H), 3.94 (d, J = 13.7 Hz, 1H), 3.66 (tt, J = 11.2, 4.0 Hz, 1H), 3.20 (td, J = 13.4,
2.6 Hz, 1H), 2.57 (dt, J = 13.2, 1.8 Hz, 1H), 2.32 (s, 3H), 1.97 (d, J = 12.3 Hz, 1H), 1.78 (ddd,
J = 13.0, 11.7, 5.8 Hz, 1H), 1.45 (qd, J = 12.8, 4.8 Hz, 1H); 13C NMR (151 MHz, CDCl3) δ
155.3, 154.7, 143.3, 138.2, 137.2, 129.5 (2C), 128.5 (2C), 128.1, 128.0, 127.8, 127.1, 126.9, 124.1,
122.9, 120.9, 111.1, 104.8, 71.8, 70.2, 51.7, 41.4, 34.2, 31.3, 21.5.

Minor Diastereomer: 1H NMR (500 MHz, CDCl3) δ 7.68 (d, J = 8.3 Hz, 2H), 7.35,
(d, J = 4.4 Hz, 1H), 7.30–7.17 (m, 5H), 7.07 (t, J = 7.5 Hz, 1H), 6.99 (t, J = 7.6, 2H), 6.79 (d,
J = 7.6 Hz, 2H), 6.42 (s, 1H), 5.36 (d, J = 6.4 Hz, 1H), 4.28 (s, 2H), 3.76–3.73 (m, 2H), 3.66 (tt,
J = 11.2, 4.0 Hz, 1H), 2.70 (d, J = 14.1 Hz, 1H), 2.32 (s, 3H), 1.97 (d, J = 12.3 Hz, 1H), 1.83 (d,
J = 13.8 Hz, 1H), 1.72–1.68 (m, 1H); 13C NMR (151 MHz, CDCl3) δ 155.3, 154.7, 143.3, 138.2,
137.2, 129.5 (2C), 128.5 (2C), 128.1, 128.0, 127.8, 127.1, 126.9, 123.6, 122.6, 120.7, 110.9, 103.2,
71.8, 70.0, 49.6, 37.6, 31.0, 29.3, 15.3.

4. Conclusions

In conclusion, we have developed a Kumada XC reaction of benzylic sulfonamides
with Grignard reagents including methylmagnesium iodide and arylmagnesium iodide.
This reaction utilizes readily available starting materials that are not activated prior to
the XC reaction. We have demonstrated that increasing the steric bulk adjacent to the
reactive center destabilizes the conformation necessary for β-hydride elimination to occur.
A stereospecific ring opening Kumada XC reaction has been established to synthesize
highly substituted acyclic fragments. This work provides a basis for the XC reaction of
simple benzylic sulfonamides.

Supplementary Materials: The following are available online, 1H, 13C, COSY and NOE NMR data
are available online.
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