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Abstract: Pladienolides, an emerging class of naturally occurring spliceosome modulators, exhibit
interesting structural features, such as highly substituted 12-membered macrocycles and epoxide-
containing diene side chains. The potential of pladienolides as anti-cancer agents is confirmed by
H3B-8800, a synthetic analog of this natural product class, which is currently under Phase I clinical
trials. Since its isolation in 2004 and the first total synthesis in 2007, a dozen total syntheses and
synthetic approaches toward the pladienolide class have been reported to date. This review focuses
on the eight completed total syntheses of naturally occurring pladienolides or their synthetic analogs,
in addition to a synthetic approach to the main framework of the natural product.
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1. Introduction

Ribonucleic acid (RNA) post-transcriptional modification is a vital biological process
in most eukaryotic cells. It allows the production of mature RNA that can perform normal
and diverse functions in the cell [1]. One representative process in this modification is
RNA splicing. Premature RNA consists of non-coding intron regions and coded exon
regions. During RNA splicing, introns are removed, leaving exons that are re-ligated
and can function as mature RNA. Because of its significant role in protein production,
the mRNA splicing process in cells is tightly regulated. Indeed, splicing defects such as
exon-skipping can induce changes in the levels of specific splicing isoforms, causing a
variety of diseases, including cancer [2].

The splicing reaction is regulated by a spliceosome, which is a dynamic multimegadal-
ton ribonucleoprotein (RNP) complex composed of five small nuclear RNA ribonucleo-
proteins (snRNPs: U1, U2, U4, U5, and U6) and numerous proteins [3]. Depending on
the function of the spliceosome, a variety of mature mRNAs can be produced from the
same pre-mRNA and can be translated to diverse proteins, such as antibodies, in a process
called alternative splicing. Alternative splicing is an important mechanism for generating
proteomic diversity from a relatively limited number of protein-coding genes [4]. Given
the importance of RNA splicing and the fundamental role of the spliceosome in post-
transcription, the spliceosome has gained attention as a target for fighting cancer. For
example, the splicing factor 3b (SF3b) complex, a representative spliceosomal component,
is the most frequently mutated splicing factor in cancers [5] such as myelodysplastic syn-
dromes [6], acute myeloid leukemia (AML) [7], chronic lymphocytic leukemia (CLL) [8],
and various solid tumors [9–11].

Most splicing modulators reported to date are naturally occurring molecules, in-
cluding the FR class [12–15], herboxidiene class [16,17], and pladienolide class (Figure 1).
Among them, pladienolides are structurally unique in that they possess a highly substi-
tuted macrocyclic core structure that has captured the attention of the synthetic chemistry
community. Pladienolides are naturally occurring macrolides that were first isolated by
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Eisai Co. in 2004 from Mer-11107, an engineered strain of Streptomyces platensis [18–20].
This polyketide natural product was later reported to interfere with spliceosome function
by targeting the SF3b subunit in a dose-dependent manner [21]. Due to this interesting
biological function, several medicinal chemistry efforts have been made using simplified
analogs [22,23] or synthetic molecules hybridized with another splicing modulator [24].
In addition, the biosynthetic production of novel pladienolide analogs has been recently
reported by means of native expression of a pathway-specific activator [25,26].
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Figure 1. Representative examples of naturally occurring spliceosome modulators.

Pladienolide B, one of the related macrolides, has been proven to be the most active
congener, with nanomolar IC50 values against various human cancer cell lines [20,27–29].
The cocrystal structure of pladienolide B and the human SF3b core discovered in 2018 con-
firmed their inhibitory and modulatory effects via splicing [30]. In addition, pladienolide B
has been recently reported to prevent SARS-CoV-2 replication at non-toxic concentrations
in human cells by targeting the splicing process [31].

There are several natural pladienolide derivatives, including pladienolide A–G (1–
7) [18–20], 6-deoxypladienolide D (8) [32], and FD-895 (9) [33,34], as well as synthetic
derivatives E7107 (10) and H3B-8800 (11) (Figure 2). E7107 (10) is an analog of pladienolide
D, developed by Eisai Co., and the first SF3B1 modulator that entered phase I clinical trials
on patients with different types of solid tumors (NCT00459823 and NCT00499499) [35].
However, the trials were discontinued because of unexpected toxicity at higher doses, re-
sulting in vision loss [36–38]. H3B-8800 (11), another analog developed by H3 Biomedicine,
a subsidiary of Eisai Co., is an orally bioavailable drug currently under phase 1 clinical
trials to treat patients with myelodysplastic syndromes, AML, and chronic myelomonocytic
leukemia (NCT02841540) [39].

Owing to a growing interest in RNA splicing for drug discovery, a number of stud-
ies and patents have been reported, including review articles that (partially) cover the
biological features and structure–activity relationship of pladienolides [40–44]. In this
review, we provide a comprehensive overview of the total synthesis of pladienolides or
their core structures, with a detailed analysis of the synthetic routes. We present a summary
of the total syntheses of pladienolides from the time the first synthesis was reported to
the present date (2007–2021). This review is divided into two main sections, based on the
macrocyclization strategy.
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2. Synthesis of Pladienolides
2.1. Synthetic Strategies Regarding Pladienolides

Pladienolides are composed of two fragments: a 12-membered macrolactone ring with
five stereocenters and a side chain bearing up to six contiguous stereocenters, with a trans
epoxide moiety at the center (Figure 3). Most of the reported pladienolide syntheses are
based on the conjugation between these two fragments via metal-catalyzed coupling or
olefination. The major macrolactone moiety has been established by ring-closing metathesis
(RCM) or macrolactonization as the key last step. In addition, the absolute stereochemistry
of trans epoxides has been controlled by external chiral sources, such as AD-mix (Sharpless
asymmetric epoxidation) [45] or fructose-derived organocatalysts (Shi epoxidation) [46].
Pladienolides have methyl or hydroxy groups as substituents, the stereocenter of which is
often controlled by asymmetric aldol reactions.
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2.2. Macrocyclization via Ring-Closing Metathesis

Since the discovery of highly bench-stable and functional-group-tolerant metathesis
catalysts, cross-metathesis has been considered a powerful tool for natural product syn-
thesis [47]. In particular, RCM has become the most popular approach for synthetically
challenging medium and macrocyclic natural products [48]. Unsurprisingly, a number of
synthetic strategies for 12-membered core scaffold of pladienolides rely on RCM, including
those published by Kotake [49], Ghosh [50], Burkart [34], Chandrasekhar [51], Keaney [52],
Krische [53], and their coworkers.

2.2.1. Synthesis of Pladienolide B by Kotake and Coworkers (2007)

In 2007, the first total synthesis of pladienolide class natural products was reported by
Kotake and coworkers [49]. Their approach for the construction of stereogenic centers is
based on reagent-controlled stereoselective reactions to confirm the absolute configurations
of the pladienolides. In their retrosynthetic plan (Scheme 1), the side chain unit and 12-
membered macrolactone 12 of pladienolide B (2) could be disconnected by Julia–Kocienski
olefination. Macrolactone 12 could be derived from 13 through RCM. Compound 13 was
assembled by Yamaguchi esterification from fragments 14 and 15, and both were prepared
in an asymmetric manner by anti-aldol and Reformatsky reactions, respectively.
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Scheme 1. Kotake’s retrosynthetic analysis of pladienolides A and B (2007).

The total synthesis commenced with the preparation of building blocks 14 and 15,
as shown in Scheme 2. The absolute stereochemistry of 14 was established by Paterson
anti-aldol condensation using ketone 17 [54] as an external chiral source, where aldehyde
16 was converted to compound 18 with excellent diastereoselectivity (98% de) after TBS
protection. The resulting aldol product was then transformed to fragment 14 in several
steps, including the removal of benzoyloxy ketone and Wittig olefination of the resulting
aldehyde. Another fragment, 15, was also prepared in 10 steps from aldehyde 19 [55]. The
Sm(II)-mediated asymmetric Reformatsky reaction of 19 with chiral auxiliary 20 afforded
β-hydroxyamide 21, with acceptable diastereoselectivity (82% de) [56]. The diastereomers
were later separated with column chromatography on silica gel. Removal of the chiral
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auxiliary, methylation, and TBS protection allowed the formation of product 22, which
subsequently underwent asymmetric Sharpless dihydroxylation to afford compound 23,
after benzylidene acetal formation and PMB ether deprotection. The Dess–Martin oxidation
of 23, followed by the Wittig reaction and ester hydrolysis, finally provided key fragment 15.
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Scheme 2. Preparation of three fragments for the synthesis of pladienolide B (Kotake, 2007).

Side-chain fragment 31, with five stereogenic centers at C16 and C18–21, was synthe-
sized from the known syn-aldol product 24 [57]. Aldehyde 25 prepared from 24 through the
Weinreb amide-mediated reduction was subjected to the Julia–Kocienski olefination with
sulfone 26 to afford trans-olefin 27. Benzyl deprotection, Mitsunobu reaction with 28, and
the resulting sulfide oxidation smoothly afforded sulfone 29, which underwent asymmetric
Shi epoxidation with chiral ketone 30 to stereoselectively yield side chain fragment 31.

To complete the total synthesis, 14 was coupled with 15 under esterification conditions
using Yamaguchi reagent 32, leading to 13 in a 93% yield (Scheme 3). RCM, followed by a
sequence of PMB deprotection/oxidation, afforded the macrocyclic aldehyde 12. The Julia–
Kocienski olefination between 12 and side-chain unit 31 afforded 33 upon silyl deprotection
and reprotection of the resulting diol, with a dichloroacetyl group. Reprotection with the
electron-deficient dichloroacetyl group was necessitated by the nucleophilic attack of the
C21 hydroxy group on the proximal epoxide during benzylidene deprotection under acidic
conditions. Finally, the removal of both benzylidene and dichloroacetyl groups provided
pladienolide A (1), from which C7–OH was then selectively acetylated to yield pladienolide
B (2), completing the first total syntheses of pladienolide-class natural products.
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Scheme 3. Completion of the total synthesis of pladienolides A and B (Kotake, 2007).

With the absolute structure of the macrocyclic core in hand, synthetic efforts were
directed toward another natural anticancer analog, pladienolide D (4), whose structure
differs from that of pladienolide B by one hydroxy group, located at C16. The absolute
stereochemistry at C16 was confirmed to be R by the chemical degradation/derivatization
of 4 and extensive NMR analysis. The conjugation of two fragments by the Julia–Kocienski
olefination was expected to be ineffective in this case because of the presence of a quaternary
C16. Thus, cross-metathesis (CM) was suggested to combine the fragments [58].

The synthesis of side-chain 38 commenced with the preparation of Julia–Kocienski
reagent 35 from known alcohol 34 [59]. The olefination of 35 with 25 smoothly afforded
trans-olefin 36, which was successfully transformed to epoxide 37 by Sharpless asymmetric
epoxidation, with moderate diastereoselectivity (90% de) (Scheme 4). The second epox-
idation of 37 by Shi’s ketone 30, followed by regioselective reductive epoxide cleavage,
afforded the desired allylic alcohol 38. Another compound required for olefin cross-
metathesis, 39, was obtained from 12 by sequential Tebbe olefination, global deprotection,
and selective acylation. Finally, the cross-metathesis of 38 and 39 completed the first total
synthesis of pladienolide D, with a 64% yield. All stereogenic centers in this synthesis were
delivered and controlled with the aid of external chiral sources, such as chiral auxiliaries or
chiral catalysis, to guarantee the absolute structure of complex natural products, despite
the long linear steps required for this strategy.
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which yielded 43 after PMB protection. β-Keto ester 47 was added to 43 to afford 
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reduction with L-tartaric acid [61], and a substrate-controlled diastereoselective Grignard 
reaction to provide key building block 42 with two newly generated stereogenic centers 
at C3 and C6. 

To synthesize side-chain unit 52, Ghosh and Anderson employed cross-metathesis 
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2.2.2. Synthesis of Pladienolide B by Ghosh and Anderson (2012)

Ghosh and Anderson demonstrated a convergent synthetic pathway toward pla-
dienolides to accelerate structural modification and structure–activity relationship studies
(Scheme 5) [50]. Pladienolide B (2) was divided into small fragments with one or two
stereogenic centers. Parallel to Kotake’s synthesis, the side chain unit could be connected
to the core macrocycle by the Julia–Kocienski olefination, which could be accessed by an
RCM of 40. The formation of 40 could be achieved by the Yamaguchi esterification between
building blocks 41 and 42, which could be conveniently divided into small fragments,
including 43.
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First, building block 41 was prepared from prenol 44, which was protected with a trityl
group and oxidized to 45 (Scheme 6). Asymmetric Brown crotylation [60] furnished 41
with a moderate enantiomeric excess (82% ee). In parallel, the preparation of 42 began with
Sharpless asymmetric epoxidation of commercially available divinyl carbinol 46, which
yielded 43 after PMB protection. β-Keto ester 47 was added to 43 to afford elongated
chain 48, which was subjected to a series of reactions, including asymmetric reduction
with L-tartaric acid [61], and a substrate-controlled diastereoselective Grignard reaction to
provide key building block 42 with two newly generated stereogenic centers at C3 and C6.
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To synthesize side-chain unit 52, Ghosh and Anderson employed cross-metathesis
between two small fragments, namely, homoallylic alcohol 49 and mesylate 50, whereas the
Kotake group used the Julia–Kocienski olefination (Scheme 2). The trans selectivity in cross-
metathesis was moderate, with an E/Z ratio of 5:1 (Scheme 6). Subsequent TES protection,
the 1-phenyl-1H-tetrazole-5-thiol 28 substitution of mesylate, followed by sulfur oxidation,
produced sulfone 51. Asymmetric Shi epoxidation was also applied in this synthesis for
the construction of epoxides at C18 and C19. TES protection completed the preparation of
the Julia–Kocienski reagent 52.

With all of these building blocks, an approach similar to Kotake’s synthesis was
adopted to complete the synthesis of pladienolide B (Scheme 7). Fragments 41 and 42 were
connected through the Yamaguchi esterification to afford 53, which was macrocyclized
by RCM to afford core 54. After acetylation of C7–OH, deprotection of the trityl group
and IBX oxidation furnished aldehyde 55. Finally, the olefination of aldehyde 55 with
sulfone 52 completed the total synthesis of pladienolide B. Ghosh and Anderson reported a
convergent, scalable, and diversifiable synthesis involving 17 steps (LLS) and 1.4% overall
yield.
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2.2.3. Synthesis of FD-895 by Burkart and Coworkers (2012)

Concurrent with Ghosh and Anderson’s synthesis (Schemes 5–7), Burkart and cowork-
ers completed the total synthesis of FD-895 (9), which shares the identical macrocyclic core
of pladienolide B but has a more substituted side chain [34]. Before the isolation of pla-
dienolides in 2004, FD-895 was isolated in 1994 from Streptomyces hygroscopicus A-9561 [33].
Through intensive and combinatorial NMR studies, the full structure was confirmed, except
for the stereochemistry at C16 and C17 positions. To confirm the absolute configuration of
FD-895, a retrosynthesis was designed by the Burkart group, providing four diastereomers
at C16 and C17. The stereoisomeric side chains could be prepared in a stereodivergent
manner and then assembled by Stille coupling with a macrocyclic core (Scheme 8). The core
unit would be accessed by an RCM of 56, which could be disconnected by esterification
into two building blocks 57 and 58. Asymmetric aldol addition of 59 was proposed, to
provide 58 with a C3 stereogenic center.
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As shown in Scheme 9, the synthesis of macrocyclic core 64 began with the asymmetric
Brown allylation of aldehyde 60 for generation of the stereogenic center C7 in 61 [62]. The
induction of stereogenicity at C6 of FD-895 (9) was guided by a C7 stereocenter using the
chelate-controlled Grignard addition method [63]. The ketone resulting from the DMP
oxidation of 61 was converted to carbinol 62 by chelate-controlled methylation and diol
protection, with concomitant deprotection of TBS. To elongate the carbon frameworks,
Sammakia aldol addition was employed, along with chiral auxiliary 63 [64], to afford
esterification substrate 58 after TBS protection and hydrolytic cleavage. The known alcohol
57 was coupled with acid 58 to produce ester 56, which was transformed into the 12-
membered ring 64 via sequential reactions including RCM and acetylation. Although the
synthetic strategy for the core scaffold was analogous to previous syntheses, Burkart and
coworkers succeeded in shortening the purification steps.
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In the next stage, they prepared four plausible diastereomeric side chains in a divergent
manner (Scheme 10). This divergent strategy was based on Marshall’s propargylation of
allenylstannane from the common intermediate aldehyde 70 [65]. The syn-aldol product 66,
which contains two contiguous stereogenic centers (C20 and C21 of FD-895) was prepared
from 65 using a method developed by Crimmins [66]. Conversion to the Weinreb amide,
followed by methylation, and DIBAL-H reduction provided aldehyde 67, which was
immediately transformed to allyl alcohol 69 via the HWE olefination with 68 and reduction
to minimize epimerization at C20. The C18–C19 epoxide was installed by Sharpless
asymmetric epoxidation, and the subsequent oxidation with IBX produced the common
intermediate 70 for the diastereomeric side chains. Marshall’s propargylation using diverse
allenylstannanes allowed the divergent synthesis of 72a–72d, in which 72a with a 16R,17R
configuration was diastereoselectively prepared from 71.
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In the final stage, hydrostannylation of the side chain isomers 72a–72d provided Stille
reagents 73a–73d, which were utilized for cross-coupling reactions with macrocycle 64 to
afford four isomers of FD-895 (9). As expected, the spectral data of one isomer (16R,17R)
matched those of FD-895. Thus, Burkart and coworkers accomplished the first total synthe-
sis of FD-895 and confirmed its absolute configuration at C16 and C17. Recently, a scalable
synthetic method for 17S-FD-895 was also reported, which demonstrated anticancer activity
25 times stronger than that of FD-895 [67].

2.2.4. Synthesis of Pladienolide B by Kumar and Chandrasekhar (2013)

When biologically meaningful natural products are discovered and applied to drug
discovery, synthetic and medicinal chemists sometimes attempt to truncate the structure
to simplify the complexity of the compounds involved. Thus, Kumar and Chandrasekhar
reported the enantioselective synthesis of pladienolide B, as well as its side-chain-truncated
analogs bearing simple aromatic groups, rather than the complex and linear chain of the
natural product [51]. In their retrosynthetic analysis (Scheme 11), pladienolide B (2) could
be disconnected by Pd-catalyzed Stille coupling into the side chain and the macrocyclic
part, the latter of which would be available via RCM of 74, similar to previous synthetic
studies. Acid 75, which can be readily connected with 57 to produce 74, resulted from the
oxidative adjustment of 76.
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In the next stage, side-chain synthesis commenced with the distinctive hydride 
transfer of the known epoxy alcohol 83 (Scheme 13) [70]. Intramolecular hydride transfer 
in the presence of TBSOTf and the amine base regioselectively opened the epoxide to 
afford aldehyde 84. Propionyl ester 85, a substrate of the Ireland–Claisen rearrangement, 
was generated via Grignard addition, oxidation, CBS asymmetric reduction, and 
propionylation. Rearrangement under basic conditions was carried out to afford 
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As depicted in Scheme 12, the construction of the macrocyclic core 82 began with
the Sharpless asymmetric epoxidation of geraniol (77) to afford trans-epoxide 78. Benzyl
protection and acid-mediated epoxide opening of 78 afforded 79 after diol protection [68].
Ozonolysis of trisubstituted olefin 79, followed by HWE olefination and DIBAL-H re-
duction, provided allylic alcohol 76, which underwent a second Sharpless asymmetric
epoxidation to yield epoxy alcohol 80. Reductive regioselective epoxide opening, directed
by the adjacent alcohol, provided 81 after protection steps [69]. Oxidation of the resulting
alcohol 81 produced the corresponding aldehyde, which allowed a series of reactions
including the Wittig olefination to afford building block 75. The connection of 75 with
the known alcohol 57 was achieved under Yamaguchi conditions to afford 74. While the
RCM of 74 with Grubbs first- and second-generation catalysts was ineffective, the use
of the Hoveyda–Grubbs second-generation catalyst instead afforded a moderate yield
(52%) in the absence of the acetal group. Subsequent acetylation was carried out at a low
temperature (−10 ◦C) to selectively introduce the acetyl group on C7–OH, to afford the
cyclic core 82 in good yield (90%).
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In the next stage, side-chain synthesis commenced with the distinctive hydride trans-
fer of the known epoxy alcohol 83 (Scheme 13) [70]. Intramolecular hydride transfer in
the presence of TBSOTf and the amine base regioselectively opened the epoxide to afford
aldehyde 84. Propionyl ester 85, a substrate of the Ireland–Claisen rearrangement, was
generated via Grignard addition, oxidation, CBS asymmetric reduction, and propionyla-
tion. Rearrangement under basic conditions was carried out to afford carboxylic acid 86,
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delivering stereogenicity at C16 [71]. Further decorations, including aldehyde formation
and the Corey–Fuchs reaction, provided alkyne 88 via 87. Finally, the hydrostannylation of
88 and coupling of the resulting product with core unit 82 completed the total synthesis of
pladienolide B (4) [72].
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The versatility of the esterification–RCM sequence discussed in this section was
demonstrated by Kumar and Chandrasekhar’s synthesis of the side-chain-truncated
analogs 91 (Scheme 14). Coupling of advanced intermediate 75 with Evans anti-aldol
products 89 afforded dienes 90, which were converted to simplified pladienolide analogs
91. They demonstrated that the truncated analog 91 demonstrates biological activities com-
parable to those of the natural product in the A549 cell line, indicating that the macrocyclic
core plays a pivotal role in anticancer activity.
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2.2.5. Synthesis of 6-Deoxyoladienolide D by Keaney and Coworkers (2014)

Keaney and coworkers at Eisai Co. reported the total synthesis of 6-deoxypladienolide
D (8) in 2014, scarcely accessed by the semisynthetic pathway, despite its potent splicing
inhibitory activity [52]. Rather than using precise and delicate synthetic strategies, they
focused on scalable and industrial-friendly synthetic routes. From a retrosynthetic per-
spective, 6-deoxypladienolde D (8) is divided into the macrocyclic core unit and the diene
chain, which can be combined by Suzuki coupling (Scheme 15). The 12-membered ring
could be constructed by the RCM of ester 92, which would be derived from 57 and 93 using
a synthetic strategy akin to Burkart’s synthesis [34].
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diastereomer, a chiral resolution of 97 was achieved with (R)-(+)-α-methyl-benzylamine. 
The stereochemistry at C3 of 98 was confirmed by X-ray crystallography. Building block 
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Allylic oxidation of the corresponding macrocycle 102, the key reaction in this synthesis, 
was preliminarily simulated via computational modeling. Influenced by the C6-methyl 
group, stereoselective oxidation at the C7 position was predicted and realized in moderate 
yield and complete diastereoselectivity. Sequential acetylation of 103, Suzuki coupling 
with 101, and TBS deprotection completed the total synthesis of 6-deoxypladienolide D 
(8). Keaney’s synthesis requires the use of inexpensive commercially available starting 
materials and late-stage functionalization to provide a sufficient quantity of scarce 6-
deoxypladienolide B, to confirm the biological activity against mutant SF3b1. 

Scheme 15. Keaney’s retrosynthetic analysis of 6-deoxypladienolide D (2014).

Preparation of building block 93 began with the commercially available citronellal (95)
(Scheme 16). The Peterson olefination of the aldehyde group and oxidative cleavage of the
olefin moiety produced aldehyde 94. Pinnick oxidation, followed by Claisen condensation,
yielded β-keto ester 96, which underwent asymmetric reduction to afford diastereomeric
mixture 97 with a ratio of 4:1. To cost-effectively isolate the pure diastereomer, a chiral
resolution of 97 was achieved with (R)-(+)-α-methyl-benzylamine. The stereochemistry at
C3 of 98 was confirmed by X-ray crystallography. Building block 93 was then obtained via a
three-step sequence: acidification, silylation, and hydrolysis. One of the key building blocks
in pladienolide synthesis, 57, was generated on a bulk scale by the Brown asymmetric
crotylation of aldehyde 99 [73]. Additionally, the synthesis of the side-chain counterpart
101 utilized cross-metathesis between Kotake’s intermediate 38 [49] and vinyl boronate 100.
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Scheme 16. Total synthesis of 6-deoxypladienolide D (Keaney, 2014).

The final stage of the macrolide synthesis proceeded according to general synthetic
procedures, including esterification of the two building blocks and RCM (Scheme 17).
Allylic oxidation of the corresponding macrocycle 102, the key reaction in this synthesis,
was preliminarily simulated via computational modeling. Influenced by the C6-methyl
group, stereoselective oxidation at the C7 position was predicted and realized in moderate
yield and complete diastereoselectivity. Sequential acetylation of 103, Suzuki coupling
with 101, and TBS deprotection completed the total synthesis of 6-deoxypladienolide D
(8). Keaney’s synthesis requires the use of inexpensive commercially available starting
materials and late-stage functionalization to provide a sufficient quantity of scarce 6-
deoxypladienolide B, to confirm the biological activity against mutant SF3b1.
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building block 105. The remaining building blocks were prepared via hydrogenative 
asymmetric crotylation. Allylic alcohol 57 was provided in a one-step reaction: Ir-
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2.2.6. Synthesis of Pladeinolide B by Yoo and Krische (2021)

Given the continuous demand for efficient and practical synthesis of complex
pladienolide-type natural products, which have more than 11 stereogenic centers, Yoo and
Krische designed a remarkably concise convergent synthesis of pladienolide B (2) [53]. By
utilizing the state-of-the-art synthetic methodology developed by themselves, key frag-
ments for the convergent synthesis were expected to be prepared [74,75]. As anticipated,
the total synthesis of pladienolide B has been finished in only 10 longest-linear steps. Most
stereogenic centers on the building blocks 103, 57, and 105 were established by their unique
synthetic methods (Scheme 18).
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Yoo and Krische’s synthesis is based on the parallel preparation of small fragments
57, 105, 106, and 107 (Scheme 19). Preparation of 105 commenced with the Sharpless
asymmetric epoxidation of allylic alcohol 108 [76]. Regioselective epoxidation of more
substituted alkenes in 108 afforded the highly enantiomerically rich epoxide 109 (dr = 20:1,
95% ee), which was regioselectively opened by the dienolate 47 to afford 110 after one-pot
acetylation. Noyori asymmetric hydrogenation of 110 generated a stereogenic center at
C3 with a moderate selectivity of 4:1. Protecting group adjustment successfully provided
building block 105. The remaining building blocks were prepared via hydrogenative asym-
metric crotylation. Allylic alcohol 57 was provided in a one-step reaction: Ir-catalyzed
alcohol-mediated anti-crotylation of 111 and 112. Building blocks of the side-chain frag-
ments 106 and 107 were also accessed by Ru-catalyzed syn-crotylation and Ir-catalyzed
asymmetric allylation of 113 and 114, respectively.



Molecules 2021, 26, 5938 15 of 25Molecules 2021, 26, x FOR PEER REVIEW 15 of 25 
 

 

 
Scheme 19. Preparation of fragments required for the synthesis of pladienolide B (Yoo and Krische, 2021). 

After substitution of the hydroxy functional group in 107 with a methyl group under 
the Normant condition [77], cross-metathesis between the resulting alkynes 115 and 106 
was conducted to provide the side chain carbon skeleton 116 (Scheme 20) [78]. Compound 
116 was transformed to Suzuki reagent 103 via silyl deprotection, Shi epoxidation, and 
hydroboration [79]. In the final stage, Suzuki coupling of 103 and the core unit 104, 
prepared from 57 and 105 by Yamaguchi esterification and RCM, completed the total 
synthesis of pladienolide B (2). Yoo and Krische demonstrated the shortest 
stereodivergent synthetic routes for the pladienolide series by maximizing the usefulness 
of their distinctive chemistry.  

 
Scheme 20. The completion of the total synthesis of pladienolide B (Yoo and Krische, 2021). 

2.3. Synthesis via Macrolactonization 
Another strategy to construct the 12-membered macrocyclic pladienolide core is 

macrolactonization. Because macrocyclic lactone moieties are abundant in natural 
substances (e.g., 8-membered octalactins and 60-membered quinolidomicins) and natural 
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2.3.1. Synthesis of the Macrocyclic Core of ent-Pladienolide B by Skaanderup and Jensen 
(2008) 

Scheme 19. Preparation of fragments required for the synthesis of pladienolide B (Yoo and Krische, 2021).

After substitution of the hydroxy functional group in 107 with a methyl group under
the Normant condition [77], cross-metathesis between the resulting alkynes 115 and 106
was conducted to provide the side chain carbon skeleton 116 (Scheme 20) [78]. Compound
116 was transformed to Suzuki reagent 103 via silyl deprotection, Shi epoxidation, and
hydroboration [79]. In the final stage, Suzuki coupling of 103 and the core unit 104,
prepared from 57 and 105 by Yamaguchi esterification and RCM, completed the total
synthesis of pladienolide B (2). Yoo and Krische demonstrated the shortest stereodivergent
synthetic routes for the pladienolide series by maximizing the usefulness of their distinctive
chemistry.
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2.3. Synthesis via Macrolactonization

Another strategy to construct the 12-membered macrocyclic pladienolide core is macro-
lactonization. Because macrocyclic lactone moieties are abundant in natural substances
(e.g., 8-membered octalactins and 60-membered quinolidomicins) and natural macrocyclic
lactones have exhibited a wide range of interesting properties such as medicinal/insecticide
activity, fragrance production, and phytotoxicity, synthetic approaches have been exten-
sively studied, particularly in the field of natural product synthesis [80]. Three syntheses
of pladienolide B or its core structure that use macrolactonization have been reported by
Skaanderup and Jensen [81], Maier and coworkers [82,83], and Rhoades et al. [84].
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2.3.1. Synthesis of the Macrocyclic Core of ent-Pladienolide B by Skaanderup and
Jensen (2008)

At the outset of the study by Skaanderup and Jensen (2008), the absolute and relative
stereochemistry of pladienolides had not been completely revealed. This allowed them to
synthesize the ent-pladienolide B core structure devoid of the side chain, because the
structurally similar polyketide, 10-deoxymethynolide (117, Figure 4), was previously
reported to have similar enantiomeric stereochemistry to that of pladienolide B.
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dihydroxylation to convert 121 to diol 125, the detachment of the chiral auxiliary, followed 
by Wittig methylenation, yielded a cross-metathesis substrate 120. Subsequent Hoveyda–
Grubbs catalyst-mediated cross-coupling with homoallyl ether 119 afforded product 126 
in moderate yield. Selective deprotection of the trityl ether in the presence of an acetal 
protecting group produced seco-acid 127 after methyl ester hydrolysis. Fine-tuning of the 
Yamaguchi condition eventually furnished 12-membered cycle 128, which was then 
modified to the core structure of ent-pladienolide B. This is the first example of access to 
a 12-membered ring via macrolactonization as the last key step, and core structure 118 
was obtained in 15 steps with an overall yield of 10.0%.  

Figure 4. Structural comparison of pladienolide B (2) and 10-deoxymethynolide (117).

As outlined in Scheme 21, the core structure of the ent-pladienolide B 118 could be
accessed by macrolactonization to form a 12-membered ring, the linear substrate of which is
conceivably disconnected by cross-metathesis into 119 and 120. The vicinal diol moiety 120
and its relative stereochemistry were built up by the Sharpless asymmetric dihydroxylation
of 121. The C2–C3 bond formation is achievable via the asymmetric aldol reaction of
aldehyde 122, with the aid of a chiral auxiliary 123.

Molecules 2021, 26, x FOR PEER REVIEW 16 of 25 
 

 

At the outset of the study by Skaanderup and Jensen (2008), the absolute and relative 
stereochemistry of pladienolides had not been completely revealed. This allowed them to 
synthesize the ent-pladienolide B core structure devoid of the side chain, because the 
structurally similar polyketide, 10-deoxymethynolide (117, Figure 4), was previously 
reported to have similar enantiomeric stereochemistry to that of pladienolide B. 

 
Figure 4. Structural comparison of pladienolide B (2) and 10-deoxymethynolide (117). 

As outlined in Scheme 21, the core structure of the ent-pladienolide B 118 could be 
accessed by macrolactonization to form a 12-membered ring, the linear substrate of which 
is conceivably disconnected by cross-metathesis into 119 and 120. The vicinal diol moiety 
120 and its relative stereochemistry were built up by the Sharpless asymmetric 
dihydroxylation of 121. The C2–C3 bond formation is achievable via the asymmetric aldol 
reaction of aldehyde 122, with the aid of a chiral auxiliary 123. 

 
Scheme 21. Skaanderup and Jensen’s retrosynthetic analysis (2008). 

The synthesis of core structure 118 by Skaanderup and Jensen began with 
commercially available acetate 124, which underwent selective epoxidation followed by 
oxidative cleavage to produce aldehyde 122 (Scheme 22). Chiral acetylthiazolidinethione 
123 was then employed for asymmetric aldol addition with 122 to yield 121, albeit with a 
somewhat low diastereomeric ratio (dr = 4:1). After Sharpless asymmetric 
dihydroxylation to convert 121 to diol 125, the detachment of the chiral auxiliary, followed 
by Wittig methylenation, yielded a cross-metathesis substrate 120. Subsequent Hoveyda–
Grubbs catalyst-mediated cross-coupling with homoallyl ether 119 afforded product 126 
in moderate yield. Selective deprotection of the trityl ether in the presence of an acetal 
protecting group produced seco-acid 127 after methyl ester hydrolysis. Fine-tuning of the 
Yamaguchi condition eventually furnished 12-membered cycle 128, which was then 
modified to the core structure of ent-pladienolide B. This is the first example of access to 
a 12-membered ring via macrolactonization as the last key step, and core structure 118 
was obtained in 15 steps with an overall yield of 10.0%.  

Scheme 21. Skaanderup and Jensen’s retrosynthetic analysis (2008).

The synthesis of core structure 118 by Skaanderup and Jensen began with commer-
cially available acetate 124, which underwent selective epoxidation followed by oxidative
cleavage to produce aldehyde 122 (Scheme 22). Chiral acetylthiazolidinethione 123 was
then employed for asymmetric aldol addition with 122 to yield 121, albeit with a somewhat
low diastereomeric ratio (dr = 4:1). After Sharpless asymmetric dihydroxylation to convert
121 to diol 125, the detachment of the chiral auxiliary, followed by Wittig methylenation,
yielded a cross-metathesis substrate 120. Subsequent Hoveyda–Grubbs catalyst-mediated
cross-coupling with homoallyl ether 119 afforded product 126 in moderate yield. Selective
deprotection of the trityl ether in the presence of an acetal protecting group produced
seco-acid 127 after methyl ester hydrolysis. Fine-tuning of the Yamaguchi condition even-
tually furnished 12-membered cycle 128, which was then modified to the core structure
of ent-pladienolide B. This is the first example of access to a 12-membered ring via macro-
lactonization as the last key step, and core structure 118 was obtained in 15 steps with an
overall yield of 10.0%.
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2.3.2. Synthesis of Pladienolide B by Maier and Coworkers (2014)

In 2014, Maier and coworkers described a total synthesis of pladienolide B (2), incorpo-
rating the Horner–Wadsworth–Emmons olefination/macrolactonization sequence as key
chemistry for the formation of 12-membered core 129 (Scheme 23) [82]. The precursors of
129, fragments 130 and 131, could be prepared by asymmetric aldol reactions, establishing
their absolute and relative stereochemistry. The main skeleton of 131 was constructed by
several transformations of commercially available (R)-linalool (132).
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First, aldehyde fragment 130 with anti-stereochemistry was prepared by the Masamune–
Abiko aldol reaction protocol using chiral ester 133 (Scheme 24) [85,86], after chiral auxiliary
detachment and oxidation [83]. The synthesis of fragment 131 was carried out in parallel
with (R)-linalool (132). Three steps, including the oxidative cleavage of the trisubstituted
olefin, afforded 135, which was converted to 136 via the Nagao acetate aldol reaction with
chiral methyl ketone 137 [87–89]. Following the establishment of the required stereochem-
istry, the chiral auxiliary was removed from compound 136, and the resulting compound
was treated with 139 to introduce the methylphosphonate group, affording the HWE reac-
tion substrate 131. Aldehyde 130 was then combined with methylphosphonate 131 using
an HWE reaction to furnish elongated enone 140, which was reduced to produce 141 by
a chelation-controlled reduction with a moderate diastereomeric ratio. Through several
transformations, including Shiina-type macrolactonization using 2-methyl-6-nitrobenzoic
anhydride (142) [90], the synthesis of the metal-catalyzed reaction substrate 143 was ac-
complished.
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Scheme 24. Synthesis of the macrocyclic core unit 143 (Maier, 2014).

The required side chain, 144, was prepared, as shown in Scheme 25. The known TBS-
protected aldol product 145 [57,91], produced using 146, was converted to allyl alcohol 147,
which was then subjected to SN2′ chlorination and the Finkelstein reaction, which yielded
allyl iodide 148. The second employment of 146 for asymmetric allylation furnished 149,
which underwent the redox sequence, Shi epoxidation, and Seyferth–Gilbert homologation
to provide terminal alkyne 150. Alkyne 150 was subjected to palladium-catalyzed hy-
drostannylation to afford another counterpart 144, which, upon subsequent Stille coupling
with 143, finally furnished pladienolide B (2). This total synthesis was completed in 18 steps
(LLS) and 0.6% overall yield.
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2.3.3. Total Synthesis of Pladienolide A, B, and H3B-8800 by Rhoades et al. (2021)

Rhoades et al. completed the total synthesis of pladienolides A and B as well as the
synthetic analog H3B-8800 (13), which are currently under phase 1 clinical trials [84]. Their
asymmetric synthesis featured a protecting group and chiral auxiliary-free approaches,
resulting in 10-step (LLS)-total synthesis from commercially available building blocks.
Retrosynthetically, the formation of pladienolide class products 1, 2, and 11 divergently
results from vinyl iodide 151, via Suzuki coupling with diverse vinyl borane counterparts
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(Scheme 26). The diol moiety of 151 was introduced from 152 under the control of the
site- and stereoselectivity. The 12-membered ring of 152 could be accessed by macrolac-
tonization after the intermolecular Heck reaction between terminal olefin 153 and vinyl
iodide 154 forming a C7–C8 bond with geometrical selectivity. The absolute and relative
stereochemistry of homoallyl alcohol 153, identical to those of natural products, could be
established via Krische’s crotylation protocol.
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Building blocks 153 and 154, Heck coupling substrates, were prepared efficiently as
shown in Scheme 27. Initially, the terminal olefin 153 was synthesized from enal 155, which
can be obtained from commercially available propyne in two steps [92] and 3-buten-2-yl
acetate 112 by Krische’s crotylation method [93] using a chiral Ir catalyst 156 in excellent
diastereomeric and enantiomeric ratios. Dianion formation of β-keto ester 42, followed
by the addition of allyl bromide 157, afforded vinyl iodide 154. Heck coupling between
153 and 154 in the presence of silver(I) salts afforded (E)-158 with (Z)-158 as a minor
product (E:Z = 7:3). Heating 158 in toluene was effective in producing macrolactone 152,
which was converted to alcohol 159 using stereoselective ketone reduction directed from
outside the ring system. The subjection of 159 to the Sharpless asymmetric dihydroxylation
with the use of AD-mix-β yielded triol 160 with good diastereoselectivity (dr = 10:1) and
excellent regioselectivity toward the C6–C7 olefin despite the presence of other olefins.
NIS-mediated silicon-iodine exchange [94] provided Suzuki reaction substrate 161 after
selective acetylation of the 7-OH of 151.
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Scheme 27. Preparation of a 12-membered macrocyclic unit (Rhoades et al., 2021).

Side-chain unit 103, a Suzuki coupling counterpart, was prepared by a cross-metathesis–
alkyne hydroboration strategy, which was also adopted in Yoo and Krische’s synthesis
(Scheme 28). Further, 103 was elongated by cross-metathesis between 49 and 162 using
the Grubbs 2nd generation catalyst. Shi epoxidation of the corresponding internal olefin
and primary alcohol oxidation afforded 163, the aldehyde of which was converted to a
terminal alkyne with Bestmann–Ohira reagent (164). Hydroboration with N-heterocyclic
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carbene ligand 165 was effective in delivering the vinyl borane group of 103 [95]. The
natural products pladienolide A (1) and B (2) were obtained by the Suzuki coupling of 103
with 151 and 161, respectively. The use of 164 during the workup resulted in the efficient
removal of palladium metals [96]. For the synthesis of H3B-8800 (11), the core unit 151
was reacted with 165 in the presence of dibutyltin oxide to produce the carbamate, which
upon Suzuki reaction with 103, was finally transformed to 11. It is the shortest synthesis of
H3B-8800 (10 LLS from commercially available material, with 10.1% yield; compared with
Eisai Co.: 12 LLS, 4.2% overall yield) [97].
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3. Conclusions

This review focused on the total syntheses of pladienolide-class natural products that
exhibit spliceosome-modulating activity by binding to the SF3b unit. These polyketides
have become an attractive target for the synthetic community because of the synthetic
challenges afforded by its 12-membered macrocyclic framework, as well as up to 10 stere-
ogenic centers. Total syntheses for compounds of this class to date can be divided into
two groups, according to the key method used to access the macrocyclic unit—RCM or
macrolactonization. The yields of both cyclization steps are moderate to excellent (51–93%)
as indicated in Table 1. The overall yields of LLS are also shown in Table 1, which reveals
that Rhoades et al. completed the total synthesis of pladienolides with the best overall
yield (ca. 12%) by virtue of the shortest steps (10 or 11 steps).

Table 1. Summary of total syntheses of pladienolides.

Cyclization Method Year Group Synthetic Target Cycliz-ation
Yield LLS Overall

Yield (LLS) Scheme Refs.

RCM

2007 Kotake
pladienolide A

93%
21 3.5%

1–4 [49]pladienolide B 22 2.9%
pladienolide D 20 3.1%

2012 Ghosh pladienolide B 83% 17 1.4% 5–7 [50]

2012 Burkart FD-895 48% 15 0.8% 8–10 [34]

2013 Chandrasekhar pladienolide B 52% 21 7.0% 11–14 [51]

2014 Keaney 6-deoxypladienolide D 77% 18 0.6% 15, 16 [52]

2021 Krische pladienolide B 51% 10 0.8% 18–20 [53]

Macrolactonization

2008 Skaanderup macrocycle of
pladienolide B 63% 15 10.0% 21, 22 [81]

2014 Maier pladienolide B 93% 17 2.0% 23–25 [82,83]

2021
Rhoades–

O’Malley–Wang

pladienolide A
70%

9 11.8%
26–28 [84]pladienolide B 10 11.9%

H3B-8800 10 10.1%
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The synthetic feature of each synthesis is summarized in Table 2. The syntheses
utilizing RCM reaction commonly share intermolecular esterification–RCM sequence for
the construction of the macrocyclic core. On the other hand, macrolactonization-mediated
syntheses utilize each different sequence for preparing macrocyclic cores. Most stereocen-
ters on pladienolides were established in a reagent-controlled manner. The stereogenic
methyl and hydroxy groups on both the macrocyclic core and the side chain fragment are
mostly controlled by an asymmetric aldol reaction using a chiral auxiliary. The epoxide
in the chain was installed using external chiral sources. Conjugation between the two
fragments was conducted by metal-catalyzed coupling or olefination. These synthetic
efforts finally elaborated the bioactive synthetic analogs, E7107 and H3B-8800, the latter of
which is currently under phase 1 clinical trials to treat patients with various hematologic
malignancies. Given the increasing interest in RNA splicing for drug discovery, as well
as the promising potential as anti-cancer agents, the rapid development of synthetic and
medicinal chemistry leveraging pladienolide-class natural products and their analogs is
anticipated in the near future.

Table 2. Synthetic features of the total syntheses covered in this review.

Cyclization Method Group Synthetic Features

RCM

Kotake
(Section 2.2.1)

X First total synthesis of pladienolide natural products
X Confirmation of the absolute configuration of pladienolides
X Reagents-controlled stereoselective reactions

Ghosh
(Section 2.2.2)

X Convergent and scalable synthesis of pladienolides
X Convergency enabling convenient access to various derivatives

Burkart
(Section 2.2.3)

X First total synthesis and structure confirmation of FD-895
X Stereodivergent synthesis of side chains to confirm the absolute structure
X First synthetic approach utilizing cross-coupling to append the side chain

unit

Chandrasekhar
(Section 2.2.4)

X Synthetic flexibility provides side-chain truncated analogs
X Side-chain truncated analogs prove the importance of the macrocyclic core

Keaney
(Section 2.2.5)

X Industrial-friendly and cost-effective synthetic approach
X Chemoselective allylic oxidation to generate C-7 hydroxy group
X User-friendly Suzuki coupling reaction for the introduction of side chains

Krische
(Section 2.2.6)

X The shortest total synthesis of pladienolide B
X Metal-mediated asymmetric dehydrogenative C-C coupling
X Catalyst-oriented asymmetric synthesis maximizing synthetic convergence

Macro-lactonization

Skaanderup
(Section 2.3.1)

X First synthetic example of the enantiomer of pladienolide B
X Cross-metathesis–macrolactonization sequence employed
X The use of Yamaguchi reagent for macrolactonizations

Maier
(Section 2.3.2)

X The use of commercially available chiral substance at the initial stage
X HWE olefination–macrolactonization sequence employed
X Employment of Shiina-type macrolactonization condition

Rhoades–
O’Malley–Wang

(Section 2.3.3)

X The shortest total synthesis of H3B-8800, pladienolide A and B
X Heck coupling–macrolactonzation sequence employed
X Thermal macrolactonization conducted in the absence of coupling reagents
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