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Abstract: This paper reports the influence of submicron hydrophilic fibers on the hydration and
microstructure of Portland cement paste. Submicron fibrillated cellulose (SMC) fibers was prepared
by the acid hydrolysis of cotton fibers in H2SO4 solution (55% v/v) for 1.5 h at a temperature of 50 ◦C.
The SMC fibers were added into cement with a dosage of 0.03 wt.%, and the effect of SMC on the
hydration and microstructure of cement paste was investigated by calorimeter analysis, XRD, FT-IR,
DSC-TG, and SEM. Microcrystalline cellulose (MCC) fibers were used as the contrast admixture
with the same dosage in this study. The results show that the addition of SMC fibers can accelerate
the cement hydration rate during the first 20 h of the hydration process and improve the hydration
process of cement paste in later stages. These results are because the scale of SMC fibers more closely
matches the size of the C-S-H gel compared to MCC fibers, given that the primary role of the SMC is
to provide potential heterogeneous nucleation sites for the hydration products, which is conducive
to an accelerated and continuous hydration reaction. Furthermore, the induction and bridging effects
of the SMC fibers make the cement paste microstructure more homogeneous and compact.

Keywords: cellulose fibers; submicron; cement paste; hydration; microstructure

1. Introduction

Concrete, one of the most widely used man-made materials, has a notoriously low
tensile strength and strain capacity, with poor resistance to crack opening and propagation.
Cracks can develop when concrete members deform under different degrees of external or
internal strain. The driving forces for concrete cracking include the intrinsic contraction
associated with cement hydration (such as autogenous shrinkage), plastic shrinkage in-
duced by the exposed environment, and thermal shrinkage as a result of both factors [1,2].
Modern concrete becomes increasingly susceptible to cracking because of its generally
higher cement content, reduced water-cementitious (w/cm) ratio, and pozzolanic mineral
admixtures (such as slag cement) [3].

The incorporation of different types and sizes of fibers into cementitious composites is
a common method to reduce the brittleness of the matrix and increase its durability, which
is proportional to the resistance to crack propagation offered by the fibers bridging the
matrix that effectively transfer the load [4].

The use of steel fibers makes the concrete members lighter by reducing their sectional
dimension and improving their mechanical properties. However, after prolonged use,
products made from steel fiber reinforced concrete (FRC) are known to develop cracks and
lose their strength, mainly due to the steel’s corrosion [5,6]. Furthermore, because of their
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large scale, steel fibers have no effect on the original defects that form during the hydration
process of cement.

Synthetic fibers have been used with concrete to improve the cracking resistance,
especially to reduce plastic shrinkage cracking [7,8]. However, the main issue with synthetic
FRC is that the weak interface zone between the fibers and matrix due to the hydrophobicity
of synthetic fibers decreases the toughening effect of synthetic fibers on concrete.

Due to their good thermal conductivity, low sensitivity, and high elastic modulus,
carbon fibers have also been used in different types of concrete. Carbon fibers improve
the flexural strength, toughness, splitting tensile strength, and cracking resistance of
concrete [9–11]. However, their use frequently involves higher costs and greater energy
consumption during the processing of fiber-reinforced cementitious composites.

When compared to the above fibers, cellulose fibers provide many advantages, includ-
ing their wide availability, renewability, low density, relatively low cost, biodegradability,
adequate stiffness and strength, surface roughness, as well as high specific hydrophilic-
ity [12]. The high hydrophilicity and hygroscopicity of cellulose fibers can be attributed
to the hydroxyl groups in the cellulose molecular structure, which results in good com-
patibility between cellulose fibers and cementitious materials [13]. Thus, cellulose fibers
have been widely used as alternatives for conventional reinforcement within concrete. It
has also been reported that the ductility and strength of cement concrete were markedly
improved by using fibers of sisal [14], bagasse [15], jute [16], coconut [17], bamboo [18],
fique [19], hemp [20], as well as flax [21] as reinforcing agents [22].

Despite these advancements, there are still several shortcomings that prevent the
wider use of natural cellulose chopped fibers in reinforced cementitious materials for
engineering: (1) The durability of cellulose fibers in the alkaline cement matrix is a major
obstacle that needs to be overcome before the extensive application of cellulose fibers in
reinforced cementitious materials can occur, given that the strength of fibers embedded in
a cement matrix deteriorates with age [17,23]; (2) Wet swelling and dry shrinkage result in
a significant decrease in the fibers’ mechanical properties and an increase in the porosity of
the cement matrix [24,25]; (3) It is difficult to achieve homogeneous dispersion of fibers in
a concrete matrix [24–27].

Microcrystalline cellulose (MCC) [28] fibers or particles and nanocrystal cellulose
(NCC) [29] are typically prepared from natural cellulose fibers by mechanical or chemical
treatments, with the sugar, pectins, and hemicelluloses removed. Therefore, the use of these
materials can potentially overcome the previously mentioned shortcomings of natural fiber.
They have been used in cementitious composites to enhance the compressive and flexural
strength [30–33], to increase the degree of cement’s hydration [32,34–38] and to mitigate
chloride-ion ingress [39]. MCC fibers modified with tetraethyl orthosilicate have been
added to cementitious composites to act as a pozzolans, generating additional C-S-H link-
ages [40]. NCC has been shown to improve the flexural strength of cement composites due
to an increase in the degree of hydration, which is possibly aided by a mechanism referred
to as short-circuit diffusion [41]. As submicron fibrillated cellulose (SMC) fibers have a size
scale just between that of MCC and NCC, their scale matches the size of cement hydration
products, which allows them to induce the microstructure formation of cementitious paste,
instead of reinforcing and diffusing. Given the primary role of SMC in Portland cement
paste systems, we hypothesize that they: (1) provide potential heterogeneous nucleation
sites for hydration products; (2) induce cement hydration products to grow on, along and
finally embed SMC fibers; and (3) act as a bridge between cement particles.

In this experiment, the SMC fibers were prepared by the sulfuric acid hydrolysis of
cotton, and then added into cement paste to induce the growth of calcium silicate hydrates
in order to obtain more homogeneous and uniform microstructures. MCC fibers were used
as the contrast admixture. The effect of SMC and MCC fibers on the microstructure and
hydration of cement paste was investigated using calorimetry, FT-IR spectroscopy, XRD,
TG-DSC, 29Si MAS-NMR, and scanning electron microscopy (SEM). From the results of
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these analyses, the role of SMC fibers on the hydration process and the microstructure
evolution of cement paste is discussed.

2. Experiment
2.1. Materials

Cotton was used to prepare the SMC fibers. Cellulose microcrystalline (MCC) pro-
vided by Shanghai Hushi, Inc. (Shanghai, China) was used as the contrast admixture in this
study. Figure 1 shows the SEM image of the cotton fibers and MCC fibers. Concentrated
sulfuric acid (98% v/v) and sodium bicarbonate were purchased from Shanghai Hushi, Inc.
Deionized water was used in all experiments. For preparing the cement paste, ordinary
Portland cement (OPC) CEM I 42.5, produced by Huaxin cement Co. Ltd. (Wuhan, China),
was used with a Blaine fineness of 360 m2/kg. Its chemical composition, physical and
mechanical properties are shown in Table 1.
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Figure 1. SEM image of (a) cotton fibers and (b) MCC fibers.

Table 1. Chemical composition, physical and mechanical properties of Portland cement used.

Compound Mass wt./% Physical Properties

SiO2 21.70 Starting set time 130 min
CaO 63.01 Ending set time 210 min

Al2O3 4.76 Surface density 3.01 g/cm3

Fe2O3 3.57 Blaine specific surface 360 m2/kg
MgO 2.12 Compressive strength 3 day 35 MPa
SO3 1.98 Compressive strength 28 day 62 MPa

Loss on ignition (LOI) 3.5

2.2. Test and Instrumentation
2.2.1. Calorimeter Analysis

A TAM Air isothermal microcalorimeter (NETZSCH, Selb, Germany) was used to
measure the heat release rate of the hydrating specimens. The cement, SMC, and MCC
were blended with deionized water externally for approximately 1 min, after which the
fresh pastes were placed into an airtight glass ampoule and inserted into the calorimeter.
The experiment was carried out at a fixed temperature of 20 ◦C over a period of 72 h.

2.2.2. FT-IR Characterization of Cement Paste

FT-IR spectra were obtained using a JASCO 4100 FTIR spectrometer (JASCO, Tokyo,
Japan). The solid pellet samples were prepared by mixing 2–3 mg of sample with 100 mg
of KBr.

2.2.3. XRD Analysis

The diffractograms of the samples were determined using a Bruker D8 Advance XRD
(Bruker, Berlin, Germany) device with a Cu kα X-ray source at 40 kV and 40 mA (voltage
and current, respectively). During data collection, the step-length was 0.02◦, the scanning
rate was 2◦/min and the 2θ range was 5–60◦.



Molecules 2021, 26, 5831 4 of 13

2.2.4. DSC-TG Analysis

Thermal analysis (DSC-TG) was conducted using a STA449F3 (NETZSCH, Selb,
Germany) apparatus at a heating rate of 15 ◦C/min from 20 ◦C to 1000 ◦C under a nitrogen
atmosphere.

2.2.5. Scanning Electron Microscopy (SEM)

SEM (JEOL, Tokyo, Japan) was used to investigate the microstructural properties of
the fibers and cement pastes and was performed using an FEI/Quanta450 FEG microscope
in secondary electron imaging mode.

2.3. Methods
2.3.1. Acid Hydrolysis of Cotton Fibers

Cellulose fibers typically consist of microfibrils of macromolecules and contain two
parts: amorphous regions and crystalline regions. After an acid treatment and high shear
mechanical processing of natural cellulose fibers, the amorphous portion of the cotton
fibers can be removed or eliminated, allowing submicron-scale SMC fibers that consist of
crystalline regions to be prepared. Submicron fibrillated cellulose fibers from cotton can be
obtained by optimizing acid hydrolysis process parameters, such as varying acid solution
concentration, reaction temperature and time. The apparatus for preparation of SMC fibers
is shown in Figure 2.
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Figure 2. Apparatus for preparation of SMC fibers.

Cotton was added to 55% (w/w) sulfuric acid solution and then heated to 50 °C with
stirring for 1.5 h. After treatment with acid, the entire solution was transferred to a glass
beaker containing a twentyfold excess volume of deionized water to terminate the reaction.
This solution was kept still until the sediment settled to the bottom of the beaker. The
solution supernatant was then removed, and an excess volume of deionized water was
added to the beaker. A pH meter was used to measure the pH value of the solution until
it was approximately 6.5. This solution was then centrifuged at 4000 rpm to obtain a
concentrated aqueous solution of suspended SMC fibers with a solid content of 12–13%,
which was used to prepare the samples. An SEM image of SMC is shown in Figure 2,
showing that the diameter of the fibers is approximately 1 um. The scale of SMC fibers
matches that of cement hydration products.
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2.3.2. Preparation of Cement Pastes

Mix proportions are listed in Table 2, and the water/binder ratio of the paste is 0.35.
Before the preparation of the mix, MCC and SMC fibers were added into the weighed
deionized water and dispersed by ultrasonication, at the power of 325 W and frequency of
20 kHz, for 30 min to obtain uniform suspensions. Cement was added first to the mixing
container, and then water containing the dispersed fibers was added into the dry cement
and mixed for 3 min with a revolution speed of 60 r/min, then for an additional 2 min with
an increased revolution speed of 130 r/min. The cement pastes were cured for 28 days
according to GB/T17671-1999 [42], using standard curing conditions at a temperature of
20 ◦C with a relative humidity of 95–100%. To prepare the samples for SEM, FTIR, XRD,
DSC-TG, and NMR, small fragments obtained from the middle portion were placed into
an ethyl alcohol solution for 10 days, then dried at 80 ◦C for 8 h.

Table 2. Cement pastes produced.

Mixture Components/wt.% Control SMC MCC

Portland cement 100 100 100
Water 35 35 35

SMC, Submicron fibrillated cellulose fibers None 0.03 None
MCC, Microcrystalline cellulose fibers None None 0.03

3. Results and Discussion
3.1. Hydration Heat Evolution

Figure 3 shows the changes in the hydration heat evolution rate of the control paste,
the paste with MCC, and the paste with SMC. The acceleration period of each of the three
pastes begins approximately 2 h after introduction of the water and ends at approximately
10 h. The MCC and control paste curves are similar in shape, but the SMC curve paste is
quite different because its shoulder peak is greater than its main peak. For the MCC paste,
there is a tendency for the curve to shift to the right, and the heat evolution rate of the
hydration peaks during the acceleration period is lower than the control paste. However,
in the SMC paste, the heat evolution rate of the hydration peak is higher than that of the
control paste.
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Figure 3. Hydration heat evolution rate curves of cement pastes.

Sneillings proposed [43] that the kinetics during the main heat evolution peak are
controlled by the growth of C-S-H “needles”, which grow from the surface of Portland
cement grains once they are mixed with water. At the heat evolution peak, the surface
is covered, but the deceleration is not attributed to diffusion control [44]. The shoulder
peak comes from the renewed reaction of C3A after depletion of sulfate in solution, but
the release of sulfate absorbed onto C-S-H means that ettringite continues to form [45].
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Quennoz and Scrivener [46] used in situ XRD to confirm that the formation of ettringite
during the shoulder peak occurred around 15 h.

From the results of the hydration heat tests, it can be observed that SMC fibers acceler-
ate the reaction rate during the early hydration period. The reason for this phenomenon is
that the primary role of the microscale fibers is to provide potential heterogeneous nucle-
ation sites for the hydration products and to act as growth inducers for the microstructure
of cement paste. In contrast, MCC seems to retard the hydration of the cement during
the first 20 h; the decrease in the hydration heat flow of sample “MCC+Cement” might
be caused by decreasing the water-to-cement ratio because of moisture absorption by the
MCC. The hydration heat flow of the MCC sample was higher than that of the SMC and
control samples after 20 h, because the water stored in MCC starts to participate in the
hydration reaction. Iolanda A. [36] also investigated the effect of microcrystalline and
microfibrillated cellulose on the hydration of cement pastes, indicating that the MCC act as
water reservoirs. The lack of free water during the hydration process of MCC pastes causes
them to release their previously retained water.

The accumulated heat curves of hydration for different pastes are shown in Figure 4,
which shows the relationship between the accumulated heat evolution and the hydration
time during 10 to 20 h (Figure 4a) and the first 70 h (Figure 4b). In agreement with the
exothermic rate trend, the addition of SMC led to only a slightly higher heat release,
whereas that of MCC led to a lower heat release compared to the pure cement paste.
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3.2. FT-IR Analysis of the Hydrated Cement Pastes

The FT-IR spectra of SMC and cement pastes with and without SMC at 3 days and
28 days are shown in Figure 5. The main absorption band and characteristic frequency of
cellulose are 610–670, 980–1060, 1421, 1650, 2900, 3200–3450 cm−1 [47]. The structure of the
SMC is confirmed from the O-H stretching vibration peak at 3350 cm−1, the C-H vibration
peak at 2900 cm−1 and the absorption peak of -CH2 on glucose at 1433 cm−1. The structure
of the C-S-H gel is confirmed from the SiO4

2− stretching vibration peak at 1175–860 cm−1.
The Ca(OH)2 is confirmed by the O-H stretching vibration peak at 3600–3680 cm−1. The
AFt and AFm are confirmed by the SiO4

2− stretching vibration peak at 1120 cm−1 and
3640 cm−1 respectively. Cement hydration gradually completes as its age increases, with
the AFt (3CaO·Al2O3·3CaSO4·32H2O) in the cement hydration products transforming
into AFm (3CaO·Al2O3·CaSO4·12H2O). Therefore, the peak at 3640 cm−1 appears in the
cement pastes without (b′) and with (c′) SMC fibers at 28 days, but the peak at 1120 cm−1

is weakened.
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paste with SMC at 3 days, and (c′) cement paste with SMC at 28 days.

3.3. XRD Analysis of the Hydrated Cement Pastes

The XRD patterns of different cement pastes at 3 and 28 days are shown in Figure 6.
From Figure 6, no obvious new phase is found in the specimens doped with MCC and
SMC, and the curves of the control, MCC, and SMC pastes are almost identical at the same
age. Results of the XRD analysis indicate the existence of alite (C3S), belite (C2S), calcium
hydroxide (Ca(OH)2, CH), and ettringite (AFt). The diffraction peaks of C3S and C2S in
cement at an age of 3 days are still very strong, which indicates that there is some amount
of the unhydrated C3S and C2S present at such an early age. It is worth noting that the
diffraction peaks of C3S and C2S in the SMC sample at 28 days are weaker than that of the
MCC sample at the same age. In contrast, it can be clearly seen from the XRD patterns that
the diffraction peaks of CH in the SMC sample at 28 days was the strongest. It indicates
that SMC contributed to accelerating the hydration of the cement component, which is
reflected in the increase in the calcium hydroxide content of hydration products.
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Figure 6. XRD patterns of cement pastes after 3 and 28 days of hydration.

The CH peak is the main performance index of cement paste specimens because the
CH content in mixtures can be used to track changes in the amount of C-S-H. For the XRD
analysis, the main characteristic peak of CH is located at 2θ = 18.05◦. Although there is
no direct method to determine the concentration of C-S-H, the CH content can indirectly
determine the concentration of C-S-H. In order to further explore the reaction mechanism
of the three cementitious systems, thermal analysis (TG-DSC) was used to calculate the CH
amount in the hydration products.
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3.4. Thermal Analysis of the Hydrated Cement Pastes

The thermal analysis (DSC) of samples at 1 and 28 days are shown in Figure 7. The
DSC results can be used to determine the crystallinity of CH and other hydrates (water
loss), including C-S-H, AFt, gypsum, and others. For those aged 3 and 28 days, the DSC
curve of pastes containing SMC were very similar to that of pastes containing MCC, but
different from the control sample. After 28 days, the peak of the calcium hydroxide became
higher and sharper.
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DSC curves exhibit four distinct stages in the decomposition of the control paste, the
MCC cement paste and the paste with SMC fibers: (1) at temperatures between 20 and
105 ◦C, which is related to free water; (2) at temperatures between 105 and 400 ◦C, which
is related to the dehydration of C-S-H gel and decomposition of AFt, AFm and gypsum;
(3) temperatures between 400 and 500 ◦C, which correspond to the decomposition of CH
(weight loss LCH); (4) temperatures between 670 and 780 ◦C, which correspond to the
decomposition of CaCO3 (weight loss LCalcite) [48].

For cement paste, the free water content (Wf) and bound water content (Wb, constitu-
tive of C-S-H and AFt) make up the total water content, WT (Equation (1)). Moreover, the
total water content (WT) is calculated as the total weight loss between 20 and 1000 ◦C (LT),
minus the weight losses due to the dehydroxylation of portlandite (LCH), the decarbonation
of calcite (LCalcite), and the thermal decomposition of cellulose (LCellulose) (Equation (2)). The
above data can be obtained from the results of thermal analysis (TG), with the weight loss
of cellulose from its content in cement paste (0.03%, Table 2). Furthermore, the total CH
content (PT) of each sample was evaluated using Equation (3). The thermogravimetric
analysis results of samples are displayed in Table 3, and the CH content results are shown
in Figure 8.

WT = Wb + W f (1)

WT = LT − LCH − LCalcite − LCellusose (2)

PT = 74/18× LCH + 74/44× LCalcite (3)

Table 3. The thermogravimetry results of samples.

Sample Wf/% Wb/% LCH/% LCalcite/% LCellulose/% LT/% WT/% Percentage of
Wb/WT/%

Portlandite
Content, PT/%

Control-1d 4.88 5.74 2.70 2.64 0.03 18.02 12.65 61.42 15.54
MCC-1d 4.45 6.56 2.29 2.92 0.03 18.81 13.57 67.21 14.33
SMC-1d 4.00 6.73 2.40 2.81 0.03 18.47 13.23 69.77 14.59

Control-28d 3.63 11.36 3.92 2.22 0.03 23.34 17.17 78.86 19.85
MCC-28d 5.25 11.44 3.42 2.79 0.03 25.79 19.55 73.15 18.75
SMC-28d 4.99 10.94 3.65 3.02 0.03 24.86 18.16 72.47 20.08
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Figure 8. CH content in cement pastes at the age of 1 and 28 days.

As shown in Figure 8, the CH contents of the three systems at the age of 1 day are quite
close, that of the control, MCC and SMC samples are 15.54, 14.33, and 14.59% respectively.
At the age of 28 days, the CH contents of the control, MCC and SMC samples are 19.85,
18.75, and 20.08% respectively. These results indicate that microscale cellulose fibers (MCC
and SMC) do not consume CH, because there is no extra pozzolanic reaction caused by
MCC and SMC. The SMC cement paste has the highest CH content. These results are in
agreement with the analysis of this compound by XRD. It confirms that, compared with
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MCC, SMC is more conducive to promoting the hydration reaction of cement components,
thereby improving the hydration degree of cement. Recent studies indicate that CH formed
in pastes containing MCC are more crystalline [36].

3.5. SEM

At the early hydration stage, the C-S-H gel gathers around the original cement parti-
cles, with the needles on the individual gel clusters interweaving to form a porous structure
where they contact one another [49,50]. The properties of high hydrophilicity of cellulose
fibers can be attributed to the hydroxyl groups in the cellulose molecular structure, which
bring about a good compatibility between cellulose fibers and cementitious materials. The
hydration product C-S-H adheres to the surface of the MCC fiber. However, due to the
large diameter and the internal empty cavity of MCC fiber, it absorbs water and swells in
the early stages. As shown in Figure 9a, with the hydration of cement, the hollow MCC
fiber constantly lose water and contract, resulting in gaps appearing around the cotton
fiber at the age of 28 days. However, the matrix structure around the MCC is relatively
dense.
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Figure 9b shows the SEM micrographs of the SMC cement paste at 28 days. It is
difficult to find the SMC contour, but the microstructure of cement paste with SMC is more
compact and uniform than that of the MCC and control samples. In contrast, the SEM
image in Figure 9c shows that the pure cement sample at 28 days has a non-uniform area of
its porous matrix, with a large amount of embedded calcium hydroxide. The morphologies
of C-S-H gel hydration produced in the three pictures of Figure 9 are obviously different.
It is suggesting that inert or active ultrafine particles can promote cement hydration by
providing a large surface area for the growth of cement hydration products [51–53]. The
size effect of SMC fibers induces the microstructure formation of cement paste instead
of reinforcing it. It is proposed that the primary role of the submicron-scale fibers is to
provide potential heterogeneous nucleation sites for hydration reaction, due to the C-S-H
gel growing on and along the surface of the SMC fibers until they are embedded inside
of it. The final result is that independent C-S-H gel clusters are connected by SMC fibers,
which makes the cement phase microstructure more uniform and compact, contributing to
the increased strength and durability of cementitious composites.

4. Conclusions

Based on the obtained experimental results, the main results of this study are summa-
rized as follows:

(1) SMC fibers can act as potential heterogeneous nucleation sites for the accumulation
of hydration products. Hence, the addition of SMC accelerates the cement hydration
rate during the early hydration period.

(2) Compared with SMC, MCC seems to retard the hydration of cement during the first
20 h. The hydration heat flow of samples containing MCC is decreased by decreasing
the water-to-cement ratio because of moisture absorption by the MCC. However, the
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hydration heat flow of the MCC sample increased after 20 h as the water stored in the
MCC starts to participate in the hydration reaction. It can be inferred from the CH
content obtained from the TG/DTG curves that SMC is more beneficial than MCC to
improve the hydration process in later ages.

(3) Since the scale of SMC fibers and C-S-H gels match better than MCC fibers, it is
estimated that the nucleation, induction, and bridging effects of SMC fibers make the
cement paste microstructure more homogeneous and compact, but further research
and advanced material characterization technology is needed to verify this hypothesis.
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