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Abstract: Deep eutectic solvents (DES) are often regarded as greener sustainable alternative solvents
and are currently employed in many industrial applications on a large scale. Bearing in mind the
industrial importance of DES—and because the vast majority of DES has yet to be synthesized—the
development of cheminformatic models and tools efficiently profiling their density becomes essential.
In this work, after rigorous validation, quantitative structure-property relationship (QSPR) models
were proposed for use in estimating the density of a wide variety of DES. These models were based
on a modelling dataset previously employed for constructing thermodynamic models for the same
endpoint. The best QSPR models were robust and sound, performing well on an external validation
set (set up with recently reported experimental density data of DES). Furthermore, the results revealed
structural features that could play crucial roles in ruling DES density. Then, intelligent consensus
prediction was employed to develop a consensus model with improved predictive accuracy. All
models were derived using publicly available tools to facilitate easy reproducibility of the proposed
methodology. Future work may involve setting up reliable, interpretable cheminformatic models for
other thermodynamic properties of DES and guiding the design of these solvents for applications.

Keywords: DES; density; cheminformatics; QSPR; validation; consensus modelling; thermophysical
properties

1. Introduction

Over the last few decades, demand has sharply increased for the replacement of toxic
organic chemicals with more environmentally safe alternatives [1,2], This led to the emergence
of green solvents, such as ionic liquids (ILs) and deep eutectic solvents (DES) [3–6]. However,
as far as ecotoxicity is concerned, DES have been found to be more eco-friendly than ILs [7–9].
In fact, they are not only greener than ILs, they are less expensive. The price, eco-friendliness,
non-volatile nature, biodegradability, and ease of preparation all make DES one of the most
desirable and well-investigated industrial solvents [10,11]. A suitable combination of a
hydrogen bond acceptor (HBA) with a hydrogen bond donor (HBD) in a specific molar ratio
gave rise to a DES with a freezing point considerably lower than each of its components [5,6,12].
There have been reports of mixing two HBDs at the same time to achieve formation of the
so-called ternary DES, but the latter was deemed out of the scope of the present study [13].

Similar to other industrial solvents, the density of DES is a commonly investigated
physicochemical property, frequently needed in process design and optimization [1,2].
Likewise, knowledge of the ways temperature and pressure influence DES density is often
required for finding suitable equations of states, which in turn help in establishing their
industrial applications [6,14,15]. The density of DES can vary substantially depending
on the nature and concentration of their constituents; however, most DES are denser
than water [6]. To date, only a few thermodynamic models have been reported on the
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density of DES. Recently, we reported a simple and global thermodynamic model—based
on critical temperature, critical volume, acentric factor, and measuring temperature—for
estimating the density of a wide range of DES [14]. Herein, our aim was to explore
cheminformatic modelling techniques to derive predictive models for characterizing the
density of diverse DES.

Quantitative structure property relationship (QSPR) is a long-utilized cheminformatic
techniques that has often been applied to predict the physicochemical properties of a
large range of chemicals [16–18]. Despite the significant number of QSPR modelling
studies targeting predictions of the density of ILs (predecessors of DES) [19], to the best
of our knowledge, only two QSPR studies, both based on the COSMO-RS approach, have
been reported so far (by Lemaoui et. al.) for predicting the density of DES [20,21]. The
first study [20] was based on hydrophilic DES, whereas the second, more recent one [21]
focused solely on hydrophobic DES. However, both studies pertained to a smaller number
of data points compared to those handled herein. Furthermore, both lacked an in-depth
validation of the developed models—which is considered crucial for QSPR modelling
of mixtures (see Section 2.3.)—which restricted their overall applicability. The main aim
of the present work was to set up linear, interpretable, highly predictive, and properly
validated QSPR models for characterizing the density of a wide range of hydrophilic DES,
following the principles of the Organization for Economic Cooperation and Development
(OECD). According to the OECD, the following five requirements must be met in order for
a QSPR study to be accepted: (i) a well-defined end point; (ii) an unambiguous algorithm;
(iii) a defined applicability domain; (iv) suitable measures of goodness of fit, robustness
and validation; and (v) a mechanistic interpretation, if possible [22]. Yet the scope of this
work was not solely limited to such an aim; it also dealt with solving challenges related
to cheminformatic analysis of mixtures in a simple and straightforward fashion, using
in-house, open-access tools. Thus, the methodology applied here may be extended in the
future to other thermodynamic properties of DES.

2. Materials and Methods
2.1. Dataset Collection

Undoubtedly, selection of dataset is not only the first, but also the most important step
in cheminformatic analyses. In the present work, we selected a dataset containing 145 DES
with 1154 data points collected from our previous work [14], wherein the development
of a thermodynamic model for DES density was reported. This dataset assembled the
experimental densities (in g/cm3) of a wide range of DES, measured in the temperature
range from 283.15 K to 373.15 K at ambient pressure. In addition to being reliable for finding
structural requirements for DES density estimation, these data allow for consideration of
temperature as an independent parameter and evaluation of its relation to density. The
large variation of chemicals (i.e., 17 types of HBAs and 42 types of HBDs) also made this
dataset suitable for developing predictive and reliable QSPR models. Nevertheless, the
dataset was updated by including all recent data reported in literature after publication
of our previous work, i.e., since 2019. For this purpose, new, experimentally determined
density values—measured under the same temperature and pressure conditions—were
collected from recently published literature. This new dataset contained a total of 207 new
data points, including five HBAs and three HBDs not present in the initial modelling
dataset. However, instead of merging this new data with the old, we decided to maintain
the old dataset (n = 1154) as the modelling dataset and the new dataset (n = 207) as an
additional validation set, henceforth referred as the external validation set. Thus, the
modelling dataset was used for identifying and establishing the most predictive QSPR
models, whereas the external validation set was employed for estimating the predictive
accuracies of individual and consensus models developed with the modelling dataset.
Details about chemical structures, experimental values and references pertaining to the
modelling and external validation sets are given in Table S1 of the Supplementary Materials.
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2.2. Calculation of Descriptors

The calculation of the molecular descriptors of mixtures like DES requires special
treatment so that these descriptors may account for structural/physicochemical attributes
of each component as well as their molar ratios [23,24]. Previously, Oprisue et al. reported
QSPR models for the density of a large number of mixtures [25]. In the same work, the
authors described simple but effective calculation methodologies for binary mixtures.
Among these, the ‘weighted by molar fraction mixture descriptors’ (henceforth referred
as WM descriptors) must be noted; in our earlier studies, we found them highly useful
to characterize DES properties [7,24]. In the present work, the WM descriptors may be
classified into two types, namely Dpmix and Dnmix, which were calculated according to
Equations (1) and (2), below [25].

Dpmix = x1D1 + x2D2 (1)

Dnmix = |x1D1 − x2D2| (2)

Following this strategy, descriptors of individual components (Descriptors D1 and D2
for HBA/cationic part of HBA and HBD, respectively) were weighted as per their molar
fractions (x1 and x2 for components 1 and 2, respectively). The starting descriptors D1
and D2 are 2D descriptors, calculated with the Dragon software [26], which was accessed
free of cost from the OCHEM webserver [25]. In fact, 3D descriptors were discarded,
since reliable 3D conformations of DES components in the mixture demand high-level
computational methods. Additionally, the widespread, exclusive use of the most stable
molecular conformation yielded systematically erroneous descriptor values with misleading
information for the inferred structure/property relationships [27]. Apart from these WM
descriptors, three other independent variables were included: the measuring temperature,
T(K), the presence/absence of chlorine ions, and the presence/absence of bromine ions.
The latter two self-explanatory descriptors were binary (1/0) indicator variables that
simply accounted for the composition of the DES’ HBA component. The inclusion of these
two binary parameters was required; the WM descriptors were calculated only on the
basis of the HBA’s cationic portion, with the contributions of the anionic part excluded.
Calculations of WM descriptors from the starting descriptors were performed using our
in-house software tool, QSAR-Mx, available under public license in https://github.com/
ncordeirfcup/QSAR-Mx.

2.3. Dataset Division and Validation Methods

Similar to the descriptor calculation techniques, the dataset division demanded an
advanced strategy. Indeed, any random division of datasets may give rise to underfitted
and unreliable cheminformatic models [23,28]. Validation methods for mixtures that
largely depend on the dataset division were described in detail by Muratov et al. [23,28].
Briefly, three unique dataset division and validation techniques—namely, points-out, (PO),
mixtures-out (MO), and compounds-out (CO)—were introduced in the referred works.
In PO, mixture data points are randomly distributed in such a way that each mixture is
present in both the training and test sets. In the case of MO, mixtures are distributed in
such a way that some mixtures are present in the training set and the rest of the mixtures
are placed in the test set. Therefore, each mixture is present either in the training set or
in the test set, but never in both sets. For CO, at least one compound of the dataset is
never placed in the training set. Among these techniques, PO-based validation was found
to be the weakest and should be avoided, whereas the CO technique was deemed the
strongest validation strategy. Clearly, the utilization and goals of the mixtures-out- and
compounds-out-based validation strategies are different [23]. The MO-based validation
technique is the most suitable for predicting a mixture property. Therefore, this validation
may be sufficient when the modelling dataset possesses a large structural heterogeneity.
However, in practice, the model is expected to also be applicable to datasets containing new
chemical entities. For example, the external validation set employed in the present work
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contained new compounds in either the HBA or HBD component of DES. The CO-based
validation technique can ensure better predictivity in such cases, when the anticipated
mixture is formed by a novel pure compound absent in the modelling dataset [24,28]. Thus,
the CO-based validation is considered the most robust technique for mixtures. In this work,
we attempted to set up models by applying both these validation strategies. At the same
time, we employed a consensus prediction analysis with the highly predictive models
resulting from both MO- and CO-based validations.

Nonetheless, it should be noted here that neither MO- nor CO-based validation is
straightforward; indeed, any unsystematic selection of the validation set based on these
techniques may not yield the most predictive model. This is especially true in the case of
linear QSPR modelling, for which feature selection is largely conditioned by the training
data. Therefore, our in-house tool QSAR-Mx was designed to produce QSPR models with
multiple automatically-generated MO- and CO-based data-distributions. In so doing, the
most suitable data distribution and the most predictive model can be easily identified by
means of statistical metrics. The functionalities of QSAR-Mx have been detailed in the
instruction manual, which is accessible from https://github.com/ncordeirfcup/QSAR-Mx.
Shortly, this tool requires two user-specific parameters—seed and interval—for setting
up multiple data distributions based on the mixtures-out and compounds-out validation
techniques. In the MO technique, the tool (i) identifies unique mixtures present in the
dataset and (ii) sorts them, considering their number of instances in descending order.
From the sorted list, the sample mixtures are collected according to the seed (the starting
point for selection) and interval values. The selected unique mixtures are then placed
in the test set. In Module 2 of QSAR-Mx (see screenshot of Figure 1), the user can input
the maximum values for seed and interval chosen, and the data distributions are created
by iterating all values between 1 and those values. Similarly, for the CO technique, the
QSAR-Mx tool starts to sort the unique chemicals that belong to component-1, followed
by sorting them according to the number of instances in descending order and finally,
by choosing some chemicals based on the maximum values of seed and interval given.
The process is then repeated for the unique chemicals, which belong to component2. The
selected unique chemicals comprise the test set. Note that QSAR-Mx always places the
sample with the maximum number of instances in the training set. After selecting the data
distributions, QSAR-Mx generates multiple linear regression (MLR) models for each of
these distributions. Only models with a test set size reaching at least 20% of the modelling
dataset size were considered in this work. The main advantage of the QSAR-Mx tool is that
it provides a straightforward and one-directional strategy for linear model development
using MO/CO-based validation techniques.

2.4. Feature Selection and Model Development

The linear interpretable models were developed employing sequential forward selection-
based multiple linear regression (SFS-MLR) analysis. The current SFS-MLR modelling
was performed using the Sequential Feature Selector module of Mlxtend (http://rasbt.
github.io/mlxtend/) [29], implemented in our in-house QSAR-Mx tool. Multiple SFS-MLR
models were generated by varying the following parameters:

(i) Scoring method: four scoring methods related to statistical parameters such as the
determination coefficient (R2), negative mean absolute error (NMAE) and the negative
mean Poisson deviance (NMPD) were used for model selection.

(ii) Cross-validation (CV): the possibility of using 5-fold, 10-fold or no CV was allowed.
A correlation cutoff of 0.95 was set to remove highly intercorrelated descriptors. Dur-

ing model development, selection of the optimal number of descriptors was guided through
a scheme entitled %MAELOO reduction, implemented in QSAR-Mx. Initially, all models
were generated with a maximum of 10 descriptors (by setting maximum steps to 10, see
Figure 1). At the same time, %MAELOO reduction was fixed at 5, ensuring the inclusion
of one descriptor in the model if its addition reduced the value of leave-one-out (LOO)
cross-validated mean absolute error (MAELOO) by at least 5% with respect to the existing

https://github.com/ncordeirfcup/QSAR-Mx
http://rasbt.github.io/mlxtend/
http://rasbt.github.io/mlxtend/
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model. Otherwise, further addition of descriptors is terminated immediately. Therefore, the
%MAELOO-based selection guaranteed incorporation of the optimal number of descriptors
in the present QSPR models—i.e., no descriptors were force fed into the models. Simul-
taneously, this strategy helped to compare the predictive efficiencies of multiple QSPR
models generated with different data distributions as well as model development criteria
from a neutral condition. Still, if the best model had 10 descriptors, the maximum step was
increased to 15 while keeping the %MAELOO reduction option at 5 in order to check for
the possibility of inclusion of a greater number of descriptors. If additional descriptors
were found to be viable, these were considered, albeit only if their inclusion into the model
improved its external predictivity.
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2.5. Model Evaluation

The best models were selected, taking into consideration, first of all, the internal
validation parameters MAELOO and Q2

LOO (LOO cross-validated determination coefficient
R2) [30]. Then, two additional external validation parameters were considered: the mean
absolute error for the test set (MAEtest) and the variance explained in external prediction
(Q2

F1) [30,31]. Along with these frequently used statistical parameters, another internal
prediction parameter—the so-called leave-chemical-out cross-validated R2 (Q2

LCO)—was
also addressed. Q2

LCO is a new criterion, conceptually similar to leave-many-out cross
validation R2 (or Q2

LMO); however, the removal of samples is more strategic than in the
former. This technique is applicable only to binary mixtures. For the calculation of Q2

LCO,
all mixtures formed by a new chemical (with observed property Yi) that belonged to
component-1 of the training dataset (HBAs in our case) were removed one by one. After
each removal, their predicted values (ŶL(HBA)O) were obtained with the model derived
using the remaining training set samples. A similar procedure was applied to each chemical
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belonging to component-2 (HBDs in our case) to obtain ŶL(HBD)O. The final parameter
Q2

LCO was then calculated according to the following equation:

Q2
LCO =

1−
∑
i
(Yi−ŶL(HBA)O)

2

∑
i
(Yi−Ym)2

+

1−
∑
i
(Yi−ŶL(HBD)O)

2

∑
i
(Yi−Ym)2


2

(3)

where Ym is the average observed property for the training set samples. It may be inferred
that, although Q2

LCO uses the idea of the well-known leave-many-out cross-validation
approach [30], it can be particularly useful for the internal validation of models developed
with mixtures.

Similarly, one more statistical parameter, MAELCO (leave-compounds-out based mean
absolute error), was calculated as follows:

MAELCO =

(
∑
i
|Yi−ŶL(HBA)O|

N

)
+

(
∑
i
|Yi−ŶL(HBD)O|

N

)
2

(4)

where N stands for the total number of datapoints of the training set. A large difference
between the values of Q2

LOO and Q2
LCO (or MAELOO and MAELCO) indicated that the

model fitting for at least one component of the mixtures was not satisfactory. Such a
model should be avoided as it can not satisfy the compounds-out cross-validation internal
predictivity criteria. In addition to the above-mentioned statistics, the statistical significance
of the final models was also checked by additional internal predictivity statistics, such as
the absolute-average-relative-deviation (AARD), and two scaled rm

2 metrics (i.e., rm
2

LOO
and ∆rm

2. Essentially, rm
2 metrics are based on the correlation between the observed and

predicted values, with and without intercept for the least squares regression lines [32].
Correspondingly, the AARDtest, along with the scaled parameters rm

2
test and ∆rm

2
test, were

used for external validation. A more detailed description of these statistical parameters
can be found elsewhere [14,30–33]. One should note here that criteria based on the lowest
AARD are uncommon in QSPR modelling. However, these are useful for understanding
the statistical significance of the models developed for thermodynamic properties. Thus,
we included such parameters, as these allowed us to compare the statistical quality of the
models proposed here with that of previously developed ones [14].

The statistical robustness of the final model was established through the Y-randomization
method. This method proceeded as follows: first, several new models were generated with
randomized responses (resorting to the same set of variables) and then, the metric cR2

P
was calculated [34] by the following equation:

cR2
P = R ·

√
(R2 − Rr2) (5)

where R2 and Rr
2 stand for the determination coefficients of the original non-randomized

model and the randomized model, respectively. Therefore, high values of cR2
P (at least

greater than 0.5) indicated that the original model was not obtained by chance.
Additionally, the applicability domain (AD) of the developed models was determined.

To do so, we built the so-called Williams plot, in which standardized residuals were
plotted against leverage values. Doing so permitted us to identify response and structural
outliers [35,36]. All plots shown in the present work were conceived with Matplotlib [37].

2.6. Consensus Prediction with Multiple Models

The most predictive QSPR models generated with multiple data division techniques
(MO- and CO-based) and development criteria were subjected to consensus modelling. For
this purpose, the Intelligent Consensus Predictor software was utilized. The four following
techniques were used as described by Roy et al. [38]:
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(a) Consensus model 0 or original consensus: simple arithmetic average of predicted
response values from all input individual models;

(b) Consensus model 1: simple arithmetic average of predictions from qualified
individual models;

(c) Consensus model 2: weighted average predictions from all qualified models. In
this method, a weightage value is assigned to a qualified model with respect to a specific
test set sample and the average is then calculated from the weighted models;

(d) Consensus model 3: best selection of predictions (compound-wise) from qualified
individual models. In the latter, the model with the least cross-validated MAE of ten
compounds similar to a particular test compound is selected for prediction.

The efficacy of consensus modelling was estimated with respect to the external valida-
tion set. Then, structurally similar samples were identified with a threshold value equal
to mean Euclidean distance plus three times the standard deviation of Euclidean distance
(i.e., mean + 3*SD).

3. Results and Discussion

Figure 2 shows a diagram illustrating the basic workflow followed in this work. Two
of its major purposes were: (a) to identify the best individual model for characterization of
the density of DES and (b) to identify the models for best consensus prediction. In order to
obtain the best individual QSPR model, the most predictive models from both MO-based
and CO-based data divisions were first determined separately and then compared.
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Let us first consider the QSPR models generated with MO-based data divisions. A
total of 90 models (MO1-MO90) were generated using QSAR-Mx, with maximum values
of seed and interval set to 7. A summary of the statistical performance of all these models
is given in Table S2. With different dataset division strategies and model development
criteria, the statistical quality of such models varied to a considerable extent. After sorting
the resulted models according to the lowest MAELOO values, 15 models with the most
significant internal predictivities were identified. A summary of the statistical performance
of these models is given in Table 1.
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Table 1. Summary of statistical performance of the top 15 models (according to MAELOO values) obtained from MO-based
data divisions.

Model
Model Development Parameters Training Set Results Test Set Results

Max Inc #
Scoring CV Seed Intv * Ntr Q2

LOO Q2
LCO MAELOO Ntest R2

Pred MAEtest

MO029 NMAE 0 4 2 666 0.967 0.930 0.010 488 0.627 0.043 0.606
MO023 NMAE 0 2 2 619 0.967 0.930 0.010 535 0.626 0.040 0.586
MO011 R2 0 4 2 666 0.973 0.949 0.0101 488 0.424 0.054 0.475
MO041 NMPD 0 2 2 619 0.972 0.955 0.010 535 0.527 0.046 0.573
MO035 NMAE 0 6 2 711 0.964 0.941 0.011 443 0.540 0.046 0.600
MO005 R2 0 2 2 619 0.966 0.946 0.012 535 0.480 0.047 0.720
MO071 R2 5 6 2 711 0.956 0.933 0.013 443 0.642 0.045 0.811

MO059 † R2 5 2 2 619 0.954 0.919 0.013 535 0.748 0.033 0.776
MO012 R2 0 4 3 818 0.956 0.917 0.013 336 0.750 0.036 0.814
MO053 NMPD 0 6 2 711 0.952 0.936 0.014 443 0.444 0.052 0.719
MO017 R2 0 6 2 711 0.953 0.933 0.014 443 0.475 0.050 0.719
MO085 R2 10 4 4 894 0.943 0.924 0.014 260 0.543 0.050 0.841
MO047 NMPD 0 4 2 666 0.951 0.929 0.014 488 0.503 0.046 0.715
MO031 NMAE 0 4 4 894 0.926 0.902 0.015 260 0.658 0.043 0.918
MO022 NMAE 0 1 5 915 0.940 0.919 0.016 239 0.689 0.033 0.643

* Interval, # Maximum intercorrelation between any two descriptors. † Most predictive model is marked in bold.

As may be expected, these fifteen MO-based models presented large variations in
their external predictivity. Some of these models (for example, MO12, MO85, MO31 and
MO71) were generated with high inter-collinearity among any of their two descriptors
(R > 0.8). Overall, MO59 was selected as the best MO-based model, as it delivered the most
significant statistical quality, judging from the high values of Q2

LOO (= 0.954) and Q2
LCO

(= 0.919) and the low value of MAELOO (= 0.013). At the same time, this model, which
was produced with 535 test set samples, gave rise to a satisfactory external predictivity,
as follows from its metrics R2

Pred (= 0.748) and MAEtest (= 0.0328). Nevertheless, we
checked whether the model could accept a higher number of descriptors by employing
the 5% MAELOO reduction criterion. In so doing, we could have found a model with
11 descriptors by increasing the maximum step to 15, rather than using the initial value of
10. Yet, at the 11th step of stepwise selection, the reduction of MAELOO was less than 5%. In
spite of having slightly higher internal predictivity (i.e., Q2

LOO = 0.957, Q2
LCO = 0.906 and

MAELOO = 0.0128) R2
Pred and MAEtest of this eleven-descriptor model reduced to 0.741

and 0.0326, respectively. In other words, the additional descriptor failed to improve the
external predictivity of the model. Therefore, the ten-descriptor model MO59 was retained
as the final, and best, MO-based model.

Regarding the CO-based validation, the QSAR-Mx tool generated a total of 55 QSPR
models (CO1-CO55, for details see Table S2). As in the previous case, the top 15 CO-based
models were selected based on the lowest MAELOO values. A summary of the statistical
performance of these models is shown in Table 2.

Similar to the derivation of MO-based models, the results, as presented in Table 2,
clearly indicated that, with different data-distributions and model development strategies,
the statistical quality of the MLR models varied significantly. Several models from Table 2,
comparably to those from Table 1, showed a substantial level of inter-collinearity. Addi-
tionally, although some of the models presented rather high internal predictivity, their
external predictivities were found to be unsatisfactory. Among all the CO-based models,
model CO15 stood out due to its overall characteristics. The latter model was generated
with 10 descriptors. Therefore, the %MAE(LOO) reduction rule was applied by increasing
the maximum step to 15, as described for the case of MO-based models. However, this
did not result in additional viable descriptors. Thus, the presented number of descriptors
was considered optimal for model CO15. Moreover, the maximum inter-correlation be-
tween any of two descriptors was fairly small (R = 0.503), prompting independence among
its descriptors. Thus, model CO15 appeared to be rather robust. The MO-based model
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MO59, however, exhibited a slightly higher, but still acceptable, inter-collinearity among
descriptors (R = 0.776; see Table 1).

Table 2. Summary of statistical performance of the top 15 models (according to MAELOO values) obtained from CO-based
data divisions.

Model
Model Development Parameters Training Set Results Test Set Results

Max Inc #
Scoring CV Seed Intv * Ntr Q2

LOO Q2
LCO MAELOO Ntest R2

Pred MAEtest

CO023 NMPD 0 1 1 609 0.947 0.901 0.010 545 0.637 0.063 0.647
CO001 R2 0 1 1 609 0.948 0.875 0.011 545 0.624 0.054 0.541
CO012 NMAE 0 1 1 609 0.925 0.838 0.011 545 0.225 0.088 0.545
CO013 NMAE 0 1 2 825 0.956 0.934 0.012 329 0.750 0.055 0.535
CO014 NMAE 0 1 3 784 0.926 0.726 0.012 370 −3.107 0.168 0.931

CO015 † NMAE 0 1 4 827 0.934 0.915 0.012 327 0.867 0.036 0.503
CO004 R2 0 1 4 827 0.938 0.927 0.013 327 0.731 0.060 0.503
CO026 NMPD 0 1 4 827 0.938 0.927 0.013 327 0.731 0.060 0.503
CO016 NMAE 0 1 5 831 0.930 0.900 0.013 323 0.618 0.068 0.868
CO002 R2 0 1 2 825 0.950 0.895 0.013 329 0.707 0.059 0.848
CO017 NMAE 0 1 6 837 0.927 0.891 0.014 317 0.880 0.041 0.538
CO005 R2 0 1 5 831 0.931 0.910 0.014 323 0.625 0.068 0.833
CO027 NMPD 0 1 5 831 0.918 0.887 0.014 323 0.327 0.084 0.670
CO029 NMPD 0 2 1 600 0.954 0.925 0.014 554 0.645 0.045 0.852
CO018 NMAE 0 2 1 600 0.938 0.877 0.015 554 0.617 0.050 0.384

* Interval, # Maximum inter-correlation between any two descriptors, † Most predictive model is marked in bold.

Equations and extended statistical results for both models CO15 and MO59 are pro-
vided in Table 3. As can be seen, the Y-randomization test performed with 1000 runs gave
rise to cR2

P values of 0.948 and 0.931 for models MO59 and CO15, respectively, suggesting
that both of these were unique in nature. Noticeably, the MO59 model displayed better
external predictivity as compared to the CO15 model (see MAEtest and %AARDtest values),
although a greater number of test set samples were present in the former. As far as internal
predictivity was concerned, both models yielded equivalent statistical results.

Table 3. Best models derived for the DES’ density (ρ in g/cm3) along with their MLR statistical parameters, using MO- and
CO-based techniques (models MO59 and CO15).

Model Equation Training Set Results Test Set Results

Ntraining = 619; R2 = 0.956;
MO59 ρ = +1.065(±0.012) + 0.072(±0.002) MAXDNpmix +

0.007(±0.000) P_VSA_s_5pmix

R2
Adj = 0.955; Ntest = 535;

+0.018(±0.002) nHDonpmix + 0.024(±0.002)
CATS2D_03_DApmix

F(10,608) = 1305.70; R2
Pred = 0.748;

+0.042(±0.003) CATS2D_01_NLpmix − 0.011(±0.006)
CATS2D_08_LLpmix

Q2
LOO = 0.953; MAELOO = 0.013; MAEtest = 0.033,

+0.010(±0.000) MLOGP2pmix + 0.042(±0.002)
VE3sign_Xnmix

Q2
LCO = 0.919; MAELCO = 0.018; rm

2
(test) = 0.646;

+0.091(±0.009) MATS4pmix − 0.001(±0.000) T(K) rm
2

(LOO) = 0.933; ∆rm
2

(LOO) = 0.040; ∆rm
2

(test) = 0.199;
%AARDtraining = 1.151; %AARDtest = 2.914
cR2

P (1000 runs)= 0.948

Ntraining = 827; R2 = 0.937;
CO15 ρ = +1.101(±0.014) + 0.033(±0.002) AMWpmix −

0.066(±0.005) Psi_i_1dpmix

R2
Adj = 0.936; Ntest = 327;

−0.012(±0.000) ATSC8mpmix + 0.851(±0.016)
ATSC1epmix

F(10,816) = 1213; R2
Pred = 0.867;

−0.255(±0.016) VE2_Dz(Z)pmix + 0.054(±0.005)
nCconjpmix

Q2
LOO = 0.934; MAELOO = 0.012; MAEtest = 0.036;

−0.029(±0.002) CATS2D_02_DLpmix + 0.010(±0.000)
MLOGP2pmix

Q2
LCO = 0.915; MAELCO = 0.014; rm

2
(test) = 0.586;

+0.185 (±0.014) GGI5nmix − 0.001(±0.000) T(K) rm
2

(LOO) = 0.905; ∆rm
2

(LOO) = 0.055; ∆rm
2

(test) = 0.205;
%AARDtraining = 1.040; %AARDtest = 3.400
cR2

P (1000 runs) = 0.931
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Figure 3 shows the plots of the predicted densities vs. the experimental observed
densities, as well as the relative deviation percentage (%RD) vs. the experimental observed
densities. As can be noted from this figure, the distribution of test set samples was
somewhat clustered for CO15. Contrastingly, a more uniform distribution was obtained
for MO59.
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To critically examine the predictivity of models MO59 and CO15, we compared
their Williams plots [35,36], as presented in Figure 4. As expected, model CO15 had a
larger number (129 with h* = 0.0399) of structural outliers as compared to model MO59
(25 with h* = 0.0533). On the other hand, the number of response outliers obtained (absolute
SDR > 3) for models MO59 and CO15 were 19 and 10, respectively.
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Figures 3 and 4 present a typical scenario for MO- and CO-based validation ap-
proaches. In CO validation, new chemicals and their mixtures are placed in the test set to
resort to a more rigorous validation strategy. Consequently, these test set samples might
occupy a separate physicochemical space than the training set samples. For instance,
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in CO15, all mixtures containing tetrabutylammonium salts, L-proline, ethylene glycol,
L-glutamic acid and propionic acid were placed in the test set. Unsurprisingly, more
structural outliers were obtained in the corresponding Williams plot (Figure 4). However,
most of these structural outliers were predicted remarkably well by CO15. This indicated
a high efficiency of the model when predicting the density of DES prepared with new
chemicals, which was the exact purpose of the compounds-out based validation.

Interestingly, MO59 placed as many mixtures as 17 chemicals (namely: citric acid,
D-glucose, diethylamine, tetrahexylammonium salt, 1,2-propanediol, 2,3-butanediol, L-
arginine, D-sucrose, L-glutamic acid, glycolic acid, mandelic acid, O-cresol, oxalic acid, p-
chlorophenol, propionic acid, tartaric acid, and xylitol) exclusively in the test set. Therefore,
model MO59 also satisfied the criteria for compounds-out validation. This arose from
the MO-based data division procedure implemented in QSAR-Mx (see Materials and
Methods), which ensured that only new mixtures assigned by the seed and interval values
were placed in the test set. For large and diverse datasets, such a policy could produce some
test mixtures composed by chemicals not present in the training set. In spite of including
several new chemicals in the test set, MO59 yielded a smaller number of structural outliers.
Thus, due to the significant structural diversity of both sets, model MO59 was considered
the more reliable predictor.

Furthermore, 19 response outliers found in MO59 belonged to only five mixtures:
trimethylglycine-2-chlorobenzoic acid (1:2), choline chloride-D-sucrose (1:1), choline chloride-
D-sucrose (2:1), benzyl tripropylammonium chloride-oxalic acid (1:1), and tetrabutylam-
monium chloride-phenylacetic acid (1:2). The presence of the D-sucrose containing DES
among the structural outliers may be explained by taking into account that D-sucrose was
the only disaccharide present in the modelling dataset. Notwithstanding, removal of all
sucrose-based DES from the modelling dataset only slightly improved the external predic-
tivity of the model (MAEtest = 0.032, R2

Pred = 0.758, %AARDtest = 2.897). Therefore, these
structural outliers were retained in the modelling dataset along with all other structural
outliers predicted well by the model [39].

Hence, after considering all the aforementioned details as well as the better overall
(internal plus external) predictivity, MO59 was selected as the best individual QSPR model.
The descriptors of this model were used to understand crucial structural and physico-
chemical factors responsible for the density of DES. Yet the high predictivity of CO15 and
other CO-based models should not be ignored. Consequently, highly predictive models
obtained from both MO- and CO-based validation schemes were considered for consensus
modelling, which will be discussed further. The performance characteristics of model
MO59 against the modelling dataset (such as descriptor values, predicted density, outlier
information, etc.) are shown in Table S3.

Density is a physicochemical property and is generally difficult to interpret from
molecular descriptors. The relative contributions of the descriptors of model MO59 are
shown in Figure 5 with the help of a variable importance plot.

The absolute difference (Dnmix type) of weighted MATS4p descriptors between two
components of a DES was found to have the highest importance in this QSPR model.
MATS4p is a 2D autocorrelation descriptor conveying the Moran autocorrelation at a
specific topological distance (lag-4), weighted by polarizability [40,41]. Importantly, the
relationship between polarizability and density has now been well established [42]. As
seen, MATS4pnmix was positively correlated to density—meaning that the higher the values
of this graph-based topological descriptor, the higher the DES density. What is more, since
the Moran autocorrelation descriptors disclosed property deviations from average values,
it can be inferred that the difference in polarizability between two DES components was
related to the density of these components’ mixtures [43].
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The sum (Dpmix type) of weighted MAXDN descriptors was found to be the second
most influential descriptor. MAXDN, i.e., maximal electrotopological negative variation,
is an E-state topological index encoding information regarding the effect on each atom
due to the perturbation of its neighboring atoms [40,41]. This effect is based on the atomic
intrinsic state (I), computed as the ratio between the Kier–Hall electronegativity of the atom
and its number of bonds. MAXDN can be related to the nucleophilicity of the chemical
species and, based its positive correlation with the density, it suggested that nucleophilic
components would trigger denser DES.

The MO59 model contained three two-dimensional chemically advanced template
search (CATS2D) descriptors [44]. Among them, CATS2D_01_NLpmix exhibited the maxi-
mum relative importance in the model. CATS2D descriptors are topological descriptors that
provide information regarding two types of atomic features at a given topological distance
(lag) within the hydrogen-depleted molecular graph. As an example, CATS2D_01_NL
accounted for both negative and lipophilic atomic features located at lag-1. Similarly,
CATS2D_03_DA and CATS2D_08_LL represented hydrogen bond donor-acceptors at lag-3
and two lipophilic features at lag-8, respectively. CATS2D_08_LLpmix showed negative
correlation with density, contrarily to the other two CATS2D descriptors.

The fourth most important descriptor of the model was a 2D matrix-type descriptor
entitled VE3sign_X, which stands for the logarithmic coefficient sum of the last eigenvector
from the chi-matrix. Its positive correlation with the density indicated that the greater the
absolute difference of the weighted descriptors between two DES’ components, the denser
the DES will be.

Two descriptors, based on the number of hydrogen bond donors per mixture (nHDon)
and the squared Moriguchi octanol-water partition coefficient (MLOGP2), were also found
to impact the density of DES. Despite the low relative importance of MLOGP2pmix, it
is one of the most frequently found descriptors in the SFS-QSPR models developed in
this work. Clearly, this indicated that an increased number of hydrogen bond donor
features and higher lipophilicity in the DES’ components could lead to a greater density of
these solvents.

Another type of Dpmix descriptor, namely P_VSA_s_5, was found to contribute posi-
tively to DES density. P_VSA descriptors represent a comparatively novel type of descrip-
tors that characterizes the amount of van der Waals surface area (VSA) having a property P
in a certain range (at bin size 5 in this case) [45]. The property involved here was atomic
intrinsic states, thus revealing once more the impact of both atomic electronegativities and
their topological position within the DES’ components on DES density.
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As a final descriptor, model MO59 included the influence of temperature (T(K)) on
density. It is well known that, with increases in temperature, the density of these solvents
gradually decreases. Similar to MLOGP2pmix, T(K) frequently appeared in the QSPR
models developed here. While the latter descriptor contributed relatively little to the
model, it clearly demonstrated the effect of temperature on DES density.

The overall performance of model MO59 is illustrated in Figure 6, where the density
values for eight randomly selected DES, taken from the literature and predicted by that
model, were depicted in a wide range of temperatures. Th results proved that the proposed
model was able to correlate temperature differences well with variation in DES density.
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Figure 6. Comparison of densities calculated by the MO59 model to data in the literature, in
temperature range from 283.15 K to 373.15 K for eight random DES at atmospheric pressure. DES1:
choline chloride-D-fructose (1:1), DES2: methyltriphenyl phosphonium bromide-glycerol (1:2), DES3:
acetylcholine chloride-D-fructose (1:1), DES4: choline chloride-glycerol (1:3), DES5: choline chloride-
glutaric acid (1:1), DES6: choline chloride-phenol (1:3), DES7: tetrabutylammonium chloride-L-
arginine (7:1), DES8: tetrabutylammonium chloride-L-aspartic acid (11:1).

To sum up, our attempts to develop linear interpretable models gave rise to multiple
QSPR models with comparable significant predictivities. Such highly predictive models
could be used for consensus prediction as long as a separate dataset was available to
estimate their predictive accuracies. Accordingly, the external validation set containing
density data of 207 DES was employed for this purpose. It should be noted that none of
the external dataset samples were included in the modelling dataset. Thus, such external
datasets can be considered an ideal dataset for understanding the predictive efficiency of
individual models as well as of intelligent consensus prediction. Initially, the three best
models obtained from both from MO- and CO-based validation techniques (i.e., six in total)
were selected for consensus prediction. The criteria for selection were the average values
of MAELOO and MAEtest, as well as reasonable levels of inter-collinearity (i.e., models with
R > 0.80 between any two descriptors were discarded). In such a way, models MO75, MO59,
MO10, CO15, CO17 and CO54 were chosen. Subsequently, the predictivity of these models
was tested against the external validation set. The results for this external validation set are
summarized in Table 4.
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Table 4. Summary of the performance of the best three MO-based and best three CO-based QSPR models (sorted by the
MAEtest values) obtained for the external validation set.

Model
Parameters Training Set Test Set External Validation Set

Scoring CV Seed Intv Ntr Q2
LOO Q2

LCO MAELOO Nts R2
Pred MAEtest Nex R2

Pred MAEtest

CO54 R2 10 4 1 854 0.881 0.838 0.025 300 0.803 0.030 207 0.867 0.034
MO75 R2 10 1 4 856 0.865 0.845 0.025 298 0.802 0.020 207 0.879 0.038
CO17 NMAE 0 1 6 837 0.927 0.891 0.014 317 0.880 0.041 207 0.874 0.039
CO15 NMAE 0 1 4 827 0.934 0.915 0.012 327 0.867 0.036 207 0.842 0.040
MO59 R2 5 2 2 619 0.954 0.919 0.013 535 0.748 0.033 207 0.856 0.041
MO10 R2 0 3 4 885 0.884 0.865 0.022 269 0.903 0.022 207 0.786 0.051

All these QSPR models, save for MO10, presented high predictivity towards the
external validation set. Regarding model MO10, its MAEtest value, being greater than
0.5, suggested a rather modest efficiency. Both models MO59 and CO15, which were
identified in this work as the most predictive QSPR models, displayed similarly satisfactory
predictivity against the external validation set. The external validation parameters of
the best individual model (MO59) were: R2

Pred = 0.856, MAEtest = 0.041, rm
2

(test) = 0.654,
∆rm

2
(test) = 0.136, and %AARTDtest = 3.703. Figure 7 shows a comparison of the predicted

vs. observed densities, as well as of the %RD vs. the observed densities for the best MO59
model and its final William plot. Significantly, 46 structural outliers (h* = 0.0533) were
found in the external validation set, yet no detected response outlier (absolute SDR > 3)
reiterated the high predictive efficiency of this model. After inspecting the outliers, we
found that all these outliers contained 3-amino-1-propanol as HBD. Thus, the absence of
this compound in the modelling dataset should be the main reason for their occurrence as
structural outliers. Details on the MO59 prediction against the external validation dataset
(i.e., descriptor values, predicted density and outlier information) are shown in Table S3.
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Five models (namely, CO15, CO17, CO54, MO59 and MO75) showing MAEtest of less
than 0.50 and AARDtest value of less than 4 against the external validation set were selected
for consensus prediction. Evidently, these models consolidated good overall predictivity
against both the external validation set and the modelling dataset. The equations and statis-
tical parameters of CO17, CO54 and MO75 models are provided as Supplementary Material
(Table S5). Interestingly, CO54 and MO75 comprised 7 and 5 descriptors, respectively. In
other words, even with a comparatively small number of descriptors and, consequently,
less internal predictivity, these two models revealed good predictivity against both the
test and external validation sets. The overall predictivity of model CO17 was found to be
similar to that of model CO15. In addition, 7 out of 10 descriptors of these two models were
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the same. It was noteworthy that, in addition to T(K), the lipophilicity-based descriptors,
such as ALOGPpmix and MLOGP2pmix, were consistently encountered in all these models,
implying that the presence of hydrophobic constituents increased the density of DES.

The five best-performing models were combined into an intelligent consensus model
in order to obtain the maximum predictive accuracy against the external validation set.
The results of these experiments are shown in Table 5. First, all of the consensus models,
C1–C11, helped to improve predictions toward the external validation set. Among all these
models, model C9 had exceptionally excellent statistics with R2

Pred value of 0.921, MAEtest
of 0.025 and %AARDtest of 2.151. This model was set up using three individual models,
namely, CO54, MO75 and CO17, following a procedure where sample-wise predictions
were made from qualified individual models [38]. All in all, model C9 was proposed for
the prediction of the new DES’ density. Detailed results of this consensus prediction are
provided in Table S5.

Table 5. Results obtained for the external validation set (n = 207) by consensus prediction using the most significant QSPR
models. The best consensus model is marked in bold.

No. Models CM R2
Pred MAEtest rm

2
(test) ∆rm

2
(test) %AARDtest

C1 CO54 MO75 CO17 CO15 MO59 2 0.903 0.030 0.883 0.046 2.544
C2 CO54 - CO17 CO15 MO59 2 0.901 0.300 0.895 0.047 2.533
C3 CO54 MO75 CO17 CO15 - 3 0.906 0.027 0.918 0.038 2.281
C4 CO54 MO75 - CO15 MO59 2 0.898 0.031 0.840 0.057 2.592
C5 CO054 MO75 CO17 - MO59 2 0.911 0.029 0.868 0.050 2.460
C6 - MO75 CO17 CO15 MO59 0 0.893 0.033 0.850 0.057 2.813
C7 CO54 - CO17 CO15 - 3 0.906 0.027 0.916 0.036 2.301
C8 CO54 MO75 - CO15 - 3 0.893 0.028 0.903 0.017 2.311
C9 CO54 MO75 CO17 - - 3 0.921 0.025 0.932 0.031 2.151
C10 CO54 - CO017 - - 3 0.921 0.026 0.929 0.029 2.171
C11 CO54 MO75 - - - 3 0.907 0.030 0.793 0.074 2.619

4. Conclusions

In this work, a systematic cheminformatics modelling analysis was carried out, with
the aim of efficiently modelling the density of a large number of DES, following the prin-
ciples of OECD guidelines. The individual models were set up with our in-house tool
QSAR-Mx, which is a user-friendly, Python-based code that is available in public domain.
Similarly, the consensus prediction models were derived with the help of an open access
tool, Intelligent Consensus Predictor. Therefore, all proposed models are easily repro-
ducible. Initially, the models were generated with a modelling dataset, previously used
for development of simple and global thermodynamic model for estimating the density
of DES [14]. It is important to mention that a number of thermodynamic models were
reported to characterize the density of DES in the last decade [46–50]. Some recently pub-
lished review articles also provided detailed descriptions about different thermodynamic
modelling approaches for DESs [51,52]. Nevertheless, many of these models were devel-
oped with a small number of data points, as compared to our larger modelling dataset.
Additionally, these models may not be considered proper QSPR models since they lacked a
robust validation strategy, inspection of their applicability domain, and mechanistic inter-
pretation from the context of molecular structures. The results of this work showed that
cheminformatic methodologies may be considered an efficient alternative for delivering
simple, global, and accurate models for estimating the density of DES. This work was
further extended forward—predicting an external validation set collected from recently
reported experimental density data. This external validation set allowed us to infer the
predictive accuracies of the developed individual and consensus models. Though it was dif-
ficult to select the best individual QSPR model (since several of these displayed analogous
predictive capacities), model MO59 was chosen on the basis of its high predictivity on the
modelling dataset. The descriptors of this model were considered the most significant for
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characterizing the density of DES. The best individual model yielded an overall %AARD
of 2.589, indicating that the performance of this QSPR model was better than that of the
previously developed thermodynamic model (%AARD = 3.12) [14]. Upon analysis of this
individual model, it was found that the lipophilicity, number of hydrogen bond donors per
mixture, polarizability, van der Waals surface area, and topology of DES’ components all
play important roles in determining the DES’ density.

This work provided valuable information regarding the structural attributes required
for estimating the density of DES. It also laid out important guidelines for developing linear
interpretable models with mixtures using rigorous validation techniques. Furthermore,
the high predictivity obtained from consensus models toward the external validation set
indicated that multiple models generated in the current study were highly effective at
obtaining reliable predictions for novel DES.

Supplementary Materials: The following are available online: Table S1. List of DES and experimental
density data; Table S2. Summary of the statistical performance of all CO- and MO-based models;
Table S3. Summary of the results for the best model found; Table S4. Detailed results of the consensus
prediction; Table S5. Models CO54, MO75 and CO17, derived for DES’ density (ρ in g/cm3), along
with their statistical parameters.
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