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Abstract: The classic gut hormone cholecystokinin (CCK) and its CCK2-receptor are expressed in almost
all regions of the brain. This widespread expression makes CCK by far the most abundant peptidergic
transmitter system in the brain. This CNS-ubiquity has, however, complicated the delineation of the
roles of CCK peptides in normal brain functions and neuropsychiatric diseases. Nevertheless, the
common panic disorder disease is apparently associated with CCK in the brain. Thus, the C-terminal
tetrapeptide fragment of CCK (CCK-4) induces, by intravenous administration in a dose-related manner,
panic attacks that are similar to the endogenous attacks in panic disorder patients. This review describes
the history behind the discovery of the panicogenic effect of CCK-4. Subsequently, the review discusses
three unsettled questions about the involvement of cerebral CCK in the pathogenesis of anxiety and
panic disorder, including therapeutic attempts with CCK2-receptor antagonists.

Keywords: anxiety; cholecystokinin (CCK); neuropeptides; panic disorder; panicogenicity; peptider-
gic neurotransmission

1. Introduction

Cholecystokinin (CCK) is an established gut hormone that stimulates gallbladder
contraction and the emptying of bile into the small intestine [1], hence its name. CCK also
regulates pancreatic enzyme secretion and growth, and it influences gastric emptying, in-
testinal motility, and satiety (for reviews, see [2–4]). On top of the essential gastrointestinal
and pancreatic functions, the late 1970s showed—at that time surprisingly—that CCK is
also a major neuropeptide in the central and peripheral nervous system [5–10].

The cerebral expression is unique among neuropeptides, in the sense that CCK in
adult mammalian brains is abundantly present in all regions, except the cerebellum [9,10].
Moreover, the tissue concentrations, not least in the neocortical regions, are significantly
higher than those measured for other neuropeptides [9,11]. In addition, the total amounts
of CCK synthesized in the human brain are beyond those of the gut. CCK peptides have
also turned out to be potent neurotransmitters [12,13]. As in the intestinal endocrine I-cells,
CCK peptides in cerebral neurons mature from proCCK processing to different bioactive
forms. CCK neurons have the short O-sulfated CCK-8 as the predominant form [6,9,14]
and the shorter, nonsulfated CCK-5 as the second most abundant form [15,16]. In contrast,
intestinal I-cells mainly release longer molecular forms (CCK-58, -33, and -22 in sulfated,
as well as nonsulfated, variants [17–19]). The molecular size differences between the CCK
peptides in endocrine gut cells and cerebral neurons are governed by the expression of
prohormone convertases (PCs) along the secretory pathway within the cells. The endocrine
I-cells mainly utilize PC 1/3, whereas CCK-neurons primarily use PC 2 in the cellular
processing [20].

When it comes to the association of CCK with panic disorder, with a lifetime prevalence
of 3.5% (5% in women and 2% in men) [21], a couple of observations are worth remembering.
First, among brain regions in mammals, the amygdala plays a decisive role in fear and
anxiety [22–24]. Accordingly, the centromedial amygdaloid nuclei are also particularly rich in
networks of CCK neurons [10,25,26] and express high densities of CCK2-receptors [27–29].
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Second, although CCK-8 in its sulfated form is the predominant cerebral form of CCK, and
may by exogenous administration (of CCK-8S itself or its analogue, caerulein) cause anxiety
and panic attacks [24,30,31], the short C-terminal tetrapeptide fragment, CCK-4, appears on a
molar basis to be a more potent panicogenic peptide [24,30]. These observations and other
unsettled questions will be discussed in the following.

2. The Bioactivity of CCK-4

The interest in the biological activity of the carboxyamidated tetrapeptide of CCK (Trp-
Met-Asp-Phe·CONH2) dates back to the structural identification of another gastrointestinal
hormone, the gastric acid regulatory hormone, gastrin [32,33]. Detailed structure–function
studies of the identified gastrin-17 peptide revealed that the “active site” or receptor
epitope of gastrin was precisely confined to the C-terminal tetrapeptide amide [34]. Thus,
substitution of any of the four amino acid residues in the tetrapeptide (Trp, Met, Asp,
Phe) reduced the acid-stimulatory activity markedly. A few years later, identification of
the structure of intestinal CCK-33 showed a remarkable homology between gastrin-17
and CCK-33 [35,36]. Thus, CCK has exactly the same C-terminal bioactive tetrapeptide
sequence as gastrin (Figure 1). Moreover, this common carboxyamidated sequence has
been exceedingly well preserved during 600 million years of evolution [37–40], a fact that
emphasizes the biological significance of the common tetrapeptide.

Figure 1. The C-terminal amino acid sequences of members of the cholecystokinin family.

The discovery that the activity of gastrin could be mimicked by the smaller C-terminal
tetrapeptide fragment in the 1960s [34] had two immediate consequences: First, the
tetrapeptide was a considerably cheaper secretagogue to synthetize in comparison with
the full-length gastrin-17 peptide, and gastrin was needed for clinical and basic studies
of gastric acid secretion. The context in those years was that gastrin and its effect on
acid secretion was essential for understanding the pathophysiology of the widespread
duodenal ulcer disease. Along that line, the so-called “Pentagastrin®” was also synthetized.
“Pentagastrin” is, however, a misnomer for a synthetic analogue with a BOC-Ala group
coupled to the N-terminus of the authentic tetragastrin sequence (Figure 1). Second, some
pharmaceutical companies synthesized tetragastrin analogues as possible drug targets for
development of a gastrin receptor antagonist, to be used in the treatment of the gastric acid
hypersecretion in duodenal ulcer patients that otherwise required major gastric surgery.
However, a useful gastrin-4 based drug never materialized, and some pharmaceutical
companies therefore had stocks of unused synthetic tetragastrin (alias CCK-4). One of these
companies was the Danish LEO Pharmaceutical Products, who had prepared thousands of
ampoules, each containing 70 µg of the tetrapeptide, to be injected as a bolus in dyspeptic
ulcer patients for measurement of the gastric acid output.
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In 1968, I wanted to study the effect of gastrin on insulin secretion after the rediscovery
of incretin (incretin is the gut hormonal stimulation of insulin secretion [41,42] (for a recent
review, see [43])). With limited funding, a generous gift of gastrin-4 ampoules from LEO
Pharma was an appreciated help. Indeed, a bolus injection of gastrin-4 in healthy young
men released considerably more insulin than a gastrin-17 preparation, in spite of similar
effects on gastric acid secretion [44,45]. The potent insulinogenic effect of the tetrapeptide
was later confirmed in more comprehensive studies using an isolated, perfused porcine
pancreas [46].

Since gastrin-4 (identical with CCK-4) is a potent hormone releaser, since we had plenty
of the tetrapeptide from LEO Pharma, and since we had observed CCK-neurons in the
hypothalamus innervating the pituitary [10], we also wished to examine the effect of the
tetrapeptide of growth hormone secretion. In a pilot experiment, I consequently injected a
bolus of gastrin-/CCK-4 intravenously into myself and a colleague (Dr. Thue W. Schwartz).
The effect on growth hormone secretion was small, but the “side” effect was dramatic.

3. The Panicogenic Activity of CCK-4

Half a minute after the injection of CCK-4, we experienced the beginning of what was
to be a full-blown panic attack. The symptoms were intense anxiety, with a fear of dying,
and a strange sense of the world sliding away, accompanied by palpitations, sweating, and
faintness. The attack peaked after 5–8 min, and then gradually disappeared during the
following 15–20 min [47]. None of us had experienced such an attack before. Of course, we
wanted to follow it up. However, shortly after, my colleague moved to Chicago, and I got a
busy chair in Copenhagen. In July 1984, however, Vanderhaeghen and Crawley organized
an international conference on “Neuronal Cholecystokinin” in Brussels [48]. The last
session of the conference was entitled “Clinical significance of neuronal cholecystokinin”.
The chairman asked in the general discussion whether anyone in the audience beyond the
session-speakers had observations of clinical interest. I therefore described the experienced
panic attacks provoked by CCK-4. Present in the audience were also Jacques Bradwejn
and Claude de Montigny from Montreal in Canada. In microiontophoretic studies in
rat hippocampus they had recently observed that benzodiazepine antagonized CCK-8
(s)-induced activation of hippocampus neurons [49,50]. After the session, they contacted
me about the CCK-4/panic story. I gave them information about further details of dose,
injection, and symptoms. Working in psychiatry, they have since followed this up; first with
systematic CCK-4 studies in healthy volunteers and patients with panic disorders [51–53].
Moreover, Bradwejn et al. subsequently performed dose ranging studies [54], showing
that panic disorder patients have an increased sensitivity to CCK-4, and examined the
therapeutic effect of CCK2-receptor antagonists (also including L-365, 260) [55]. Since then,
the volume of clinical and experimental publications about CCK-4 and panic disorder has
grown overwhelmingly, as also reflected in later reviews [56–59]. There is no doubt that
Jacques Bradwejn played a leading role in this development.

Today, nobody questions CCK-4 as a robust panicogenic peptide, that is and has
been a reliable tool in the study of panic disorder in man, and anxiety in most mammals.
It is also well-established that CCK-4, of course, targets the cerebral CCK2-receptor and
interacts in the provocation of anxiety with other neurotransmitter systems, such as the
benzodiazepine/GABA complex, corticotropin-releasing factor, dopamine, noradrenaline,
opioids, and serotonin [60–67]. Moreover, exogenous CCK-4 stimulates blood-flow in
the anterior cingulate gyrus, the claustrum-insular-amygdala region, and the cerebellar
vermis [68,69], and may act also at locus coeruleus and brainstem nuclei nucleus tractus
solitarius, medulla, and parabranchial nuclei [70].

Regarding the CCK2-receptor binding, there is evidence that the receptor in patients
with panic disorder may be more sensitive to CCK-4 and its analogue, pentagastrin [71–73].
Some genetic studies have also found variations in the genes encoding CCK and the CCK2-
receptor [74–79].
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So far, the use of synthetic CCK-4 in a high dose administered as an intravenous bolus
(as described above) has been decisive for initiating the broad spectrum of investigations
of the association between cerebral CCK and the widespread panic disorder in man.
Moreover, a multitude of experimental anxiety-studies, not least in rodents, have used the
CCK-4 approach. You might even ask whether significant knowledge about the CCK-panic
disorder link would exist today without the serendipitously discovered effect of CCK-4.

4. Does the Brain Synthesize CCK-4 as a Separate Neuropeptide?

As mentioned above, the entirely dominant CCK-neurotransmitter is sulfated
CCK-8 [9,14,16]. Beyond CCK-8 and small amounts of the longer forms (sulfated and
nonsulfated CCK-58, -33, and -22 [15,80,81]), cerebral neurons, however, also synthesize
the short CCK-5 (Gly-Trp-Met-Asp-Phe·NH2) in significant amounts [15,82]. However,
an additional genuine neuronal synthesis of CCK-4 as such is questionable for different
reasons: First, although the CCK-4 peptide has indeed been chemically identified in extracts
of the porcine brain [15], the tissue concentrations were very low. Hence, the observed
trace amounts of CCK-4 might well be a degradation product of CCK-5 occurring during
extraction. CCK-4 differs from CCK-5 only by a single N-terminal glycyl residue (Figure 1).
Second, so far no laboratory has managed to raise antibodies specific for the N-terminus
of CCK-4. Such antibodies might by immunocytochemistry be decisive for the discus-
sion of whether biosynthesis of CCK-4, as such, occurs in neurons. A third consideration
concerns the N-terminal Trp-residue in CCK-4. The identified G-protein-coupled recep-
tor, GPR142 [83], binds free tryptophan and to some extent also short peptides with an
N-terminal Trp-residue. GPR142 is expressed in large amounts on pancreatic islet cells [84],
where it seems to balance the effect of some gut hormones, including CCK, on insulin
secretion [85]. Since CCK-4 more potently releases insulin than CCK-5 and the longer CCK-
peptides [46], a mechanism might be that high dosing of exogenous CCK-4 simultaneously
activates both the CCK2-receptor and GPR142 in pancreatic islets [84,86]. Whether the
striking panicogenic potency of exogenous CCK-4 is due to a similar mechanism remains
to be shown. If so, the lack of intracellular processing of CCK-5 to CCK-4 might make sense
as a way to prevent severe panic attacks and anxiety.

5. Is Endogenous CCK in Plasma Associated with Panic Disorder?

CCK was, as mentioned, discovered as a gallbladder emptying gut hormone nearly a
century ago [1]. Today, we know that the entire small intestine produces CCK in response
to meals. We also know that essentially all the hormonally active CCK in plasma is derived
from the CCK-producing endocrine I-cells in the gut [18]. Thus, even though endocrine
cells in the pituitary, the thyroid C-cells, the adrenal medulla, and the testes express modest
amounts of CCK [87–91], the extraintestinal endocrine cells contribute only marginally to
the CCK in plasma.

The concentrations of bioactive CCK in mammalian plasma are low. In the fasting
state, the concentrations vary from 0.1 to 2.0 pmol/L, and after a normal mixed meal, the
concentrations increase to 5–7 pmol/L [92,93]. The molecular forms of CCK in human
plasma are sulfated CCK-58, -33, -22, and -8, of which CCK-33 is the predominant form [18].
It is unlikely, but remains to be examined, whether any of these forms in their low picomolar
plasma concentrations are able to penetrate the blood–brain barrier to any significant extent.
Hence, the discrepancy with the peak in the high nanomolar range of CCK-4 concentrations
in plasma after an intravenous bolus injection of 70 µg CCK-4 is enormous. It is, however,
well known that sulfated CCK peptides in plasma, during and after a meal, signal satiety
to the hypothalamus via CCK1-receptors on afferent vagal neurons [94,95]. Whether a
similar neuronal mechanism, from peripheral plasma CCK to anxiety centers in the brain
(amygdala), exists also remains to be studied.
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6. CCK2-Receptor Antagonists in Panic Disorder Therapy

The realization that cerebral CCK2-receptors are the targets of CCK-4 in its induction of
panic attacks clearly suggested examining receptor antagonists as therapeutic possibilities.
So far, only a few antagonists have been studied. Interestingly, the well-established CCK2-
receptor antagonist, L-365,260, reduced the panic response to the bolus of CCK-4 in patients
suffering from panic disorders [55]. However, the reduction was observed only when L-
365,260 was administered acutely, just before the injection of CCK-4. Placebo-controlled
clinical trials showed no effect of L-365,260; presumably due to the limited bioavailability
of the antagonist [96]. Along the same line, the CI-988 antagonist had only a weak effect on
CCK-4-induced panic in healthy volunteers [97], but failed to affect patients with panic
disorder [98]. In a recent study of anxiety in rats [99], the CCK2-receptor antagonist, LY-
225,910, prevented the normalization of anxiety levels in rats. However, whether this
antagonist also prevents attacks in panic disorder patients remains to be shown.

Generally, there is a problem in using systemic administration of CCK2-receptor
antagonist in the therapy of panic disorder and other neuropsychiatric disorders, because
CCK peptides and CCK2-receptors are so abundantly expressed in almost all regions
of the brain [27–29,100] and not only in limbic structures, such as the amygdala. The
blocking of the CCK-system (agonists and receptors) in the brain may have several serious
effects, as shown in CCK knock-out mice, who apparently lose their memory (Jufang
He, personal communication); and what is life without memory? At present, it seems
difficult to overcome that kind of problem. Perhaps local administration of CCK2-receptor
antagonists exclusively to the amygdala might help?

7. Conclusions

CCK peptides and the CCK2-receptor are, as mentioned, expressed at high levels
in most brain regions, with marked densities in the cerebral cortex and limbic struc-
tures [9,10,27–29,100,101]. Since panic disorder is a rather common psychiatric condition,
with a prevalence among women of 5% and 2% in men [21], you could argue that some
involvement of the cerebral CCK-system in the pathogenesis of panic attacks should not
come as a surprise. Nevertheless, it was unexpected that a simple intravenous bolus
injection of the C-terminal tetrapeptide fragment of CCK should open the gates for decades
of comprehensive studies of the role of CCK in panic disorder.

CCK-4 studies have unequivocally demonstrated that cerebral CCK-peptides and
CCK2-receptors play a significant role in panic attacks. The studies have also shown
that CCK-4 in high doses is a highly useful and reliable agent for provocation of panic
attacks, both in healthy volunteers and panic disorder patients. In addition to CCK,
however, it is now established that several other transmitter systems also are involved in
the pathophysiology of panic attacks.

The story of CCK and panic disorders, however, has left several open questions.
Among these, the present review has focused on three: Is CCK-4 a naturally occurring
endogenous agonist for the cerebral CCK2-receptor? Second, is peripheral intestinal CCK
in plasma associated with panic disorder? Finally, are CCK2-receptor antagonists useful
drugs for panic disorder patients? This review suggests that CCK-4 as such, in contrast
to CCK-5, can hardly be considered a natural product of biosynthesis in cerebral CCK
neurons. Moreover, there is probably no association between the low CCK concentrations
in plasma and panic disorder. Finally, no CCK-receptor antagonist has proved useful for
therapy of panic disorder. Consequently, it is to be concluded that further basic and clinical
research is necessary to answer these still unsettled questions.
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