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Abstract: Weak interfacial interactions remain a bottleneck for composite materials due to their
weakened performance and restricted applications. The development of core–shell engineering shed
light on the preparation of compact and intact composites with improved interfacial interactions. This
review addresses how core–shell engineering has been applied to energetic materials, with emphasis
upon how micro-energetic materials, the most widely used particles in the military field, can be
generated in a rational way. The preparation methods of core–shell structured explosives (CSEs)
developed in the past few decades are summarized herein. Case studies on polymer-, explosive- and
novel materials-based CSEs are presented in terms of their compositions and physical properties (e.g.,
thermal stability, mechanical properties and sensitivity). The mechanisms behind the dramatic and
divergent properties of CSEs are also clarified. A glimpse of the future in this area is given to show
the potential for CSEs and some suggestions regarding the future research directions are proposed.

Keywords: core–shell structure; micro-energetic materials; preparation; insensitivity; formation mechanism

1. Introduction

In materials science, energetic materials (EMs) capable of storing and releasing large
amounts of chemical energy are widely used in military and civilian areas [1,2]. Micro-
energetic materials whose particle sizes range between several micrometers and hundreds
of micrometers are mostly engaged in propellants and large-scaled explosives. High energy
and safety are the greatest concerns and have always been an inherent contradiction of
energetic materials because high energy levels are mostly achieved at the expense of stabil-
ity [3–5]. Therefore, extensive work has been done to balance the stringent requirements for
power and sensitivity. Because the synthesis of novel insensitive energetic compounds de-
velops slowly, current techniques for the desensitization of high explosives mainly include
mediating particle size and morphology, improving crystal quality by recrystallization,
exploring energetic cocrystals and preparing the polymer bonded explosives (PBXs) [6–12].
Among these strategies, techniques based on PBXs are considered most efficient to tune
the performance of explosives. Nevertheless, due to the differences of molecular structure
and polarity between explosives and polymer binders, the composites suffer from poor
compatibility and weak interfacial interaction sometimes, resulting in poor mechanical
properties [13–15]. The introduction of the core–shell strategy to PBXs has provided an
elegant method to achieve explosives with better integrated performance.

As an important branch of coating, the design and preparation of core–shell structures
have attracted much attention recently due to their potential applications [16–19]. Over
the last decade, the number of publications and citations in terms of core–shell structured
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explosives (CSEs) has increased significantly, as shown in Figure 1. The types of core–
shell energetic composites and the preparation of controllable core–shell structures have
made great advances. In general, CSEs consist of one kind of energetic material that can be
regarded as the “core” and another coating component which can be seen as the “shell”. The
core components are wrapped by shell materials through chemical bonds or intermolecular
interactions. The core–shell structure possesses the advantages of both core and shell
materials and can also regulate the assembly and contents of core and shell according to the
application requirements [20–22]. Therefore, CSEs have a wider application prospect than
a single explosive. It is expected that an integral CSE will have the high energy density of
the core and the insensitivity of the shell. Compared to the rapid development of core–shell
engineering in catalysis, electronics, photoluminescence and biomedicine field [23–29], the
application of core–shell techniques in energetic materials has had a slow start. There are
two major problems responsible for this; one is that the sensitivity and mechanically fragile
nature of energetic crystals increase the process handling difficulty, the other is that the
smooth and chemically inert surface of explosive particles leads to the weak interfacial
interactions between particles [30–32]. Fortunately, recent developments in core–shell
engineering have significantly enhanced our understanding of the formation mechanism of
core–shell structures and some pioneering researchers have shown that energetic core–shell
structures can be realized based on hydrogen bonding and π–π conjunction [33–35].
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In essence, most pure explosives possess high sensitivity. Coating insensitive com-
ponents on the explosive particles suppresses the formation of hot-spots and reduces the
risk of accidental explosion [36–38]. Application of the core–shell strategy can achieve a
complete surface coverage with minimal use of coating materials to ensure energy perfor-
mance and can be extended to different types of EMs with simple and mild methods [39,40].
In general, polymers or insensitive explosives are selected as shell components in CSE
formulations to improve their mechanical strength and safety properties. It is known that
the key indicators to evaluate a core–shell material are the degree of coverage and the
adhesion force between core and shell materials. Various novel components [41–45] (e.g.,
dopamine and graphene) and preparation techniques (e.g., in situ polymerization and
the emulsion method) have been developed to construct core–shell structures. The novel
components and advanced preparation methods have proved to be effective in tailoring
the properties of CSEs.

Although extensive data have been published in terms of preparation and characteri-
zation of CSEs, a comprehensive summary of the advancements in preparation methods
and promising CSEs has not been presented to date. This contribution will focus upon
CSEs with special emphasis upon the following: preparation methods, compositions, fun-
damental properties and the formation mechanism of core–shell structures. Especially, the
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characteristics of different preparation methods are analyzed, and the reasons for the im-
provements in the properties are explained. This review aims to deepen the understanding
of core–shell structure and promote the evolution of CSEs.

2. Preparation Methods for CSEs
2.1. Water Suspension Method

The water suspension method together with solvent–nonsolvent mixing is the most
common practice to prepare CSEs. In this method, a certain amount of explosive is added
to pure water to obtain uniform dispersion under stirring which is called an explosive
suspension. Then, the polymer solution with the polymer dissolved in an organic solvent
is added dropwise to the explosive suspension. The solvent is removed under heating
and a slight vacuum. During the solvent evaporation process, the explosive core is coated
and forms an agglomeration of explosive@polymer particles [46–48]. The process of water
suspension to prepare CSEs is depicted in Figure 2a.

Extensive work has been done to investigate the influence of experimental parameters
(e.g., the agitation rate, heating rate and temperature) on the quality of the composite.
The variables including the size, shape, coating uniformity and integrity are the main
areas of concern. Kasprzyk and Bell [49] investigated the effects of agitation speed, reactor
temperature and air sweep rate on the production of PBX 9501 molding powder using
the water suspension method. An increase in agitation speed leads to smaller particle
size and higher bulk density. It is interesting to find that the shape of the molding pow-
der, which is considered to determine the bulk density to a large extent, changes as the
agglomerates grow. However, the mechanical strength of the molding powder has a slight
dependence on the particle size and bulk density. An et al. [50] successfully prepared a
cyclotrimethylenetrinitramine (RDX) composite with 2,4,6-trinitrotoluene (TNT) and an
energetic material (HP-1) as the shell material. They stated that there existed optimal mass
ratio of HP-1 to TNT, stirring speed, and cooling rate to achieve the best coating effect.
The authors proposed a coating mechanism: TNT and HP-1 can form a liquid composite,
adhere onto the RDX particles, and then grow on the surface of RDX with the decrease in
temperature, which could account for the necessity of the process parameters chosen.

Yang et al. [27] offered up unique insights into the effects of crystal quality and mor-
phology on the mechanical properties of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-
105)@fluoropolymer composites. The authors revealed that the improved mechanical
strength of the composite could be attributed to its neat spherical morphology and rough
surface. However, recrystallized LLM-105 with high quality led to reduced tensile strength
of the core–shell composite. A possible explanation is that the rough surface with anchor
points and a high-quality internal structure are of vital importance to obtain a desirable core–
shell structure as the anchor points enhance the interaction between the core surface and
the polymer shell. In addition, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane
(CL-20)@1,3,5-triamino-2,4,6-trinitrobenzene (TATB) core–shell composite [51] was also
prepared by the research group through a water suspension process. Surfactants, such as
polyvinyl alcohol (PVA) and Tween-20, were used to improve the wettability of CL-20 and
ensure the dispersion of TATB particles. The morphology of the prepared CL-20@TATB
is shown in Figure 3b. The crystal form of CL-20 in the core–shell composite maintained
the optimum ε form. Compared with a physical mixture of CL-20 and TATB, the core–
shell composite featured compact coating and high coverage, while most TATB and CL-20
molecules exist independently in the mixture.

Water suspension method features moderate processing condition and versatility for
most coating systems. The simple and straightforward physical protocol protects the core
from significant changes, resulting in particles with well quality and shape. The weight
ratio of shell to core and agitation speed should be considered with a view to the quality
of core–shell composite. One should note that for small grains of explosives, especially
below the micrometer scale, the water suspension method is not appropriate to construct
core–shell structure since the aggregation of particles has frequently been reported.
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2.2. In Situ Polymerization

The in situ polymerization method, extensively applied to microencapsulation and
surface coating, is a direct chemical route to achieve high coverage and firm adhesion
force between the explosive and coating materials [35,52–55]. The in situ polymerization
process involves two steps: first, the monomers of coating shell are absorbed to the surface
of core explosives through preferential interactions, they then polymerize on the core
surface in situ under certain reaction conditions. Thus, in situ polymerization renders the
composite with higher adhesion force and shell strength than a simple physical mixing
process. Up to now, there are almost twenty candidates available as shell materials. The
core–shell products and their features prepared by in situ polymerization method have
been summarized in Table 1. It can be seen that most of the composites can achieve high
coverage and uniform coating with shell contents of no more than 5%.

Polydopamine (PDA) coating has attracted much attention in the past decade due
to the strong adhesive attachment of PDA to various surfaces under ambient condi-
tions [20,39,56]. Gong, He and Lin conducted a series of studies [34,35,52,54,57] on in
situ polymerization of dopamine for typical explosive crystals including cyclotetram-
ethylenetetranitramine (HMX), TATB and CL-20. The schematic for the preparation of
core–shell structured TATB composites and the supposed interactions between TATB, PDA
and fluoropolymer are illustrated in Figure 2b. It was found that the surface of the explo-
sive was wrapped by the PDA layer completely and the composites displayed an evident
surface color change from yellow to brown. He et al. [55] proposed a “grafting-from”
route to construct TATB-based core@double-shell (CDS) composites by in situ grafting
hyperbranched polymers (HBPs) on the PDA surface. It has been demonstrated that PDA
and HBP shells have synergism in enhanced mechanical properties and improved interfa-
cial adhesion. Another similar work was reported by Zeng et al. [58] in which the PDA
layer served as interfacial layer of TATB particles with three polymer binders: glycidyl
azide polymer (GAP), polyethylene glycol (PEG) and polytetramethylene ether glycol
(PTMEG), leading to outstanding mechanical properties and good compatibility between
the composites and binders in PBXs.

Melamine–formaldehyde (MF) resins, popularly used as a coating shell for the fab-
rication of core–shell composites, are synthesized by the polycondensation reaction of
melamine and formaldehyde molecules [59]. Yang et al. prepared RDX, HMX and CL-
20-based CSEs [60] via in situ polymerization of MF resins on the explosive surface. It
was found that the whole surface of the energetic core was completely and uniformly
covered with 3% MF resins. A core-etching test was performed for CL-20@MF CSE and its
physical mixture with the same component amounts. In striking contrast to the mixture,
the MF resin shell of CSE was well connected and maintained fairly high mechanical
resistance under vigorous stirring. Urea formaldehyde (UF) resin [61] and melamine urea
formaldehyde (MUF) resin [62] were also utilized to fabricate HMX and CL-20. Studies
indicate that this kind of resin with mild reaction conditions and desirable mechanical
and stability performance are accommodative in the framework of CSEs. One should
note that the addition of PVA plays an essential role during the process in that PVA in-
creases the surface interactions between the resins and the explosive crystals and restricts
the self-agglomeration of shell materials. Zhang et al. [63] produced HMX@polyaniline
(PANI) CSEs using the in situ polymerization method. Before polymerization reaction,
(3-aminopropyl)trimethoxysilane (APTES) was adopted to modify the HMX in order to
increase the amino groups on the its surface. APTES acts similar to PDA as a linkage to
enhance the adhesion between explosive particles and polymers. The scanning electron
microscopy (SEM) images demonstrated that HMX particles were uniformly coated by a
layer of polymer. Although there are limited monomers for in situ polymerization in mild
conditions without destroying the structures of explosive crystals, this approach shows
potential in designing and fabricating novel composites with integrated performance.
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Table 1. Characteristics of the products prepared by in situ polymerization method.

Product Size of Core
[Diameter, µm]

Thickness of
Shell [nm]

Shell Content
[wt%] Degree of Coverage Feature Comments Contributor

TATB@PDA 14 NA 1.5 Close to 100%
Homogeneous PDA coating,

coupled with obvious surface
color change.

[52]

HMX(HNIW)@UF resin 20 (5–40) NA 4.8 (4.3) 98.1% (95.3%) Compact coating, without
shrinks or bubbles. [61]

TATB@HBP 20 NA 1.5 NA Intact coating, rough surface. [55]

CL-20/HMX/RDX@MF
resin 120/120/60 1–2 µm 3.0 99.2%/98.7%/93.1% Compact and uniform coating,

slight agglomeration.

The reaction time should be
well controlled to reduce

self-agglomeration of
shell material.

[60]

HMX@PDA 22 100 2.1 NA
Dense coating with PDA

depositing layer-by-layer on
the HMX crystal.

[64]

HMX@MPNs 1 91 50 3.4 NA
The composite particles have
more textured surface with

negligible wrinkles or holes.

Increasing the coating times
may be an effective way to

improve the compactness and
mechanical strength through
sequential layer deposition.

[65]

HMX@HPW 1@PDA 47 NA NA NA A novel litchi-like
core@double shell structure. [66]

ε-CL-20@PDA 60 NA 1.6 NA
The composite particles have

polyhedron shapes with
uniform and compact coating.

[57]

HMX@BAMO-THF 23 NA 1.5 NA

The particle size distribution
was relatively uniform, and

the crystal quality greatly
improved after coating.

[67]

HMX/rGO/G 1 10 NA 2.0 NA
Spherical morphology of the

composite, different from
angular HMX.

[43]

HMX@TATB@PDA 149.1 50–80 NA NA Uniform and porous surface. [35]

LLM-105@PDA@HBPU 1 50,20,5 NA 1.0 NA
A layer of plicate

characteristics with nanoscale
protuberances on the shell.

[12]
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Table 1. Cont.

Product Size of Core
[Diameter, µm]

Thickness of
Shell [nm]

Shell Content
[wt%] Degree of Coverage Feature Comments Contributor

HMX@PANI 5–40 NA 3.1 NA
Compact coating, few

agglomerations and larger
roughness after coating.

[63]

CL-20/HMX/
RDX@MUF resin 10 NA 5.0 NA Spheroidized structure with

dense and smooth surface.

Core–shell structured
composites with high quality

can be achieved.
[62]

HMX@TATB <250 NA 42.5 NA HMX core has been jacketed
with a layer of TATB particles. [68]

CL-20@TATB 98 NA NA NA Uniform coating. [69]

NBTTP 1@PDA/GO 5–15 NA 2.0 NA Regular color and particle size
of all the samples. [70]

HMX@Polyurethane 25.59 NA NA NA
More uniform, complete and
smooth surface than virgin

HMX particles.
[71]

HMX@HTPB/GAP/
BAMO-THF NA NA 5.0 NA Almost uniform coating. [72]

1 Abbreviations: MPNs: Metal–phenolic networks; HPW: High melting point paraffin wax; rGO: reduced graphene oxide; G: graphene; HBPU: Hyperbranched polyurethane; NBTTP: Tetranitro-
benzopyridotetraazapentalene.
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2.3. Emulsion Method

The emulsion method can fabricate spherical core–shell composites and improve
the homogeneity of particles. In this method, an oil phase (O) is obtained by dissolving
polymer shell material into a suitable organic solvent and dispersing explosive in the
polymer solution subsequently. The water phase (W) is derived from mixing emulsifier
and stabilizer solution. Then, the two phases are blended together, and the composite
particles are filtered after evaporating the solvent. The emulsion droplets remain stable
and dispersive, preventing the coating particles from aggregation [19,73–75]. The emulsion
polymerization is easy to operate. Most of the medium in the polymerization process is
water, which avoids the trouble of using high solvents and their recovery, ensures the safety
of the experiment to the greatest extent and reduces the possibility of pollution and fire.

Li et al. used the emulsion solvent evaporation (ESV) method to fabricate HMX
with a thermoplastic polyester-ether elastomer (TPEE) coating as shown in Figure 2c [76].
Stabilizer PVA, emulsifier sodium dodecylbenzene sulfonate (SDBS) and nonaphenol
polyethyleneoxy ether (OP-10) were adopted to form a stable emulsion. It was found that
the HMX@TPEE composites exhibited a honeycomb-like core–shell structure and narrow
size distribution (Figure 3e). The formation of a stable O/W emulsion and the precipita-
tion of TPEE polymers on the explosive surface were supposed to be key elements in the
formulation of well-shaped spherical particles. Liao et al. prepared CL-20@waterborne
polyurethane grafted styrene and acrylonitrile copolymer (WPU-g-SAN) core–shell com-
posites [77] via an emulsion polymerization method. The amorphous structure of WPU-
g-SAN copolymer with asymmetrical styrene and acrylonitrile units favors the coating
effect. X-ray photoelectron spectroscopy (XPS) and SEM analysis confirmed a well-shaped
core–shell structure.

With the development of self-assembly and membrane techniques, the combination of
emulsion and the newly developed methods have become popular trend to obtain desirable
CSEs. Wang et al. [78] prepared CL-20/cellulose acetate butyrate (CAB) CSE through the
premix membrane emulsification method. The coarse emulsion was pushed through a
membrane to produce a homogeneous emulsion solution under pressure. It is interesting
to find that the morphological structure of the composites changes from dumbbell shape to
spherical with an increase in the CAB content. SEM and X-ray powder diffraction (XRD)
analyses showed regular solid spherical particles with a smooth surface and dense coating
layer. Jia et al. [79] reported a strategy utilizing poly methyl metharylate (PMMA)-PVA
as the shell material and CL-20, HMX and RDX as cores for molecular collaborative self-
assembly. The authors revealed that a honeycomb structure of the core–shell composite was
formed based on hydrogen bonding between the explosive and the PMMA-PVA emulsion,
which can promote self-assembly of the particles.

Emulsion method shows great potential for scale-up production due to its good
operability, simplicity, and profitable processing performance. This approach is more
mature in fabricating small particles of core explosives at several micrometer levels. One
drawback is that emulsion process requires various chemical additives, such as monomers,
emulsifier, stabilizer and initiator, which may integrate with shell materials, thus increasing
the risk of chemical incompatibility among the components.

2.4. Crystallization Coating Method

Crystallization technique is a convenient and flexible method to tune the crystal size
and shape in the dissolution and cooling process. The development of the crystallization
coating method in the energetic material community has provided an alternative method
to achieve EMs within the specifications of desirable crystal morphology and narrow
crystal size distribution. The appearance and sensitivity performance can be optimized by
selecting the right operating conditions, such as the solvent type, the concentration ratio of
shell to core, stirring speed and the degree of sub-cooling [80,81].

Kim et al. [82] reported a novel HMX@3-nitro-1,2,4-triazole-5-one (NTO) CSE by
embedding an NTO shell onto the surface of an HMX core. The crystallization coating
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process is shown in Figure 2d. The formation of the core–shell structure in the crystallization
coating process was shown to be an agglomeration and crystal growth mechanism. In
situ measurement of agglomeration tests were carried out using an Lasentec particle
analyzer with a focused beam reflectance measurement (FBRM) control interface. The
tests verified the proposed mechanism that the surface nucleation occurred first, and then
the fine agglomerates grew on the surface of the HMX seed. During the agglomeration
process, supersaturation was the most important parameter in producing agglomerated
particles. The kinetics of agglomeration revealed that a relative high cooling rate facilitated
supersaturation, leading to a uniform coating on the HMX surface (Figure 3g).

2.5. Spray Drying Method

Spray drying is a well-established, cost-effective method for producing micropar-
ticles [83–85]. Recently, the spray drying method has been introduced to the energetic
materials field including fabrication of CSEs, cocrystals and explosive recrystallization due
to the simplicity of the “all-liquid” precursor and one-step crystallization and formulation
operation [86,87]. Furthermore, such an effective and reliable synthesis strategy is potential
and advantageous for the quick and large-scale production of EMs.

Ma et al. [88] prepared HMX@TATB CSEs through a spray drying process as shown in
Figure 4a. The surface of HMX@TATB core–shell micro-composites become rough because
the outer TATB layer possessed grainy characteristics (Figure 3f). The thickness of the
TATB shell is about 2 µm with a fairly high utilization of shell materials. The crystalline
phase of β-HMX remained unchanged during the spray drying process due to the mild
coating conditions. A formation schematic of the core–shell HMX@TATB composites
is shown in Figure 4b. An aqueous dispersion containing TATB nanoparticles and pre-
modified HMX microparticles is atomized into droplets, followed by solvent evaporation
with a hot gas. Once the droplets contact the hot gas, TATB is rapidly precipitated and
coated on the surface of HMX particles. Yang et al. [89] prepared a core–shell structure
with fluoroelastomer (F2602) coated on 1,1-diamino-2,2-dinitroethylene (FOX-7) using a
spray drying strategy. The mean particle size of the composites was reduced remarkably
from 39.72 µm of raw FOX-7 to 1.50 µm, indicating that spray drying technique tends
to produce sub-micro particles. The thickness of polymer layer was 10 nm–20 nm from
transmission electron microscopy (TEM) images. The authors revealed that the particles
were progressively coated in that the saturation of F2602 was not enough to make the liquid
bridge crosslink, which is in accordance with the formation mechanism of particles in the
spray drying process. Qiu et al. [86] conducted a similar work in terms of RDX@PVA and
RDX@ carboxyfunctional terpolymer (VMCC) CSEs. They stated that the composition of
microparticles could be precisely controlled by tuning the composition of explosive crystals
and polymers in the precursor solution.

Lobry et al. [90] reported an innovative work on the spray flash evaporation of an
oxidizer ammonium dinitramide (ADN) on two secondary explosives RDX and HMX. A
liquid solution containing ADN and explosive was superheated in atomization chamber.
The high temperature and pressure drop induce a sudden solvent evaporation and particle
formation at the micro scale. The authors aimed to present novel insights into the formula-
tions with an oxygen balance close to zero. Different from the raw material, ADN@HMX
composite particles exhibited rod shape and ADN@RDX CSE showed needle shape, which
could be attributed to the solution solvent, to a large extent. The main limiting factors are
the process pressure and the solubility of the compounds in suitable solvents for spray
flash evaporation process.
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2.6. Other Fabrication Techniques
2.6.1. Ultrasonic

The ultrasonic technique has a wide application in the synthesis and modification
of various kinds of materials. During the ultrasound process, a rich body of cavitation
bubbles is generated. These bubbles act as microreactors that grow, collapse, and create
localized hot spots [35,37,75]. CSEs fabricated by this method typically feature micro-sized
core explosives and nano-sized shell materials. However, the aggregation of particles after
ultrasonic processing has been frequently discovered and becomes an obstacle for high
coating efficiency and scaled-up production [91,92]. To overcome the problem, surface
modifiers (such as PVA, Estane 3703, etc.) have been tried and proved to be essential to
increase the core–shell adhesion and avoid the agglomeration of particles. Based on uniform
dispersity, safe and environmentally friendly characteristics, the ultrasonic technique
together with appropriate surface modification has great potential to produce compact and
monodispersed core–shell composites.

Huang et al. [93] prepared TATB-coated HMX microparticles via a facile ultrasonic
method. The process involved two steps, namely surface modification of HMX with the
assistance of Estane and ultrasonic synthesis of HMX@TATB microcomposites. It was
found that HMX and TATB were packed close through intermolecular interactions by
coating. The effects of shell content, size of core particle and the amount of Estane on
the morphology of the core–shell structure were studied. The contents of the shell and
surface modifier can be controlled within a proper range to achieve perfect coating and
decrease the energy loss. In addition, the decrease in the average particle size of core
explosives is in fact detrimental to maintaining uniform coating under the constant sheath
content. It was proposed that the formation of such a desirable core–shell structure could
be attributed to the activated group interactions between the core–shell interfaces and
the extraordinary conditions (high temperature and pressure simultaneously) conducted
through high intensity ultrasound.
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2.6.2. Supercritical Encapsulation Method

During the past decades, the application of supercritical fluids has been an active field
of research. The main motivation for this is the properties of supercritical fluids in specific
pressure and temperature [23]. In particular, supercritical carbon dioxide (sc-CO2) is the
most widely used supercritical fluid for encapsulation process due to its near-ambient
supercritical temperature (Tc = 304.2 K) for easy operation and its high solubility of most
organic substances [41]. The supercritical encapsulation method stands out with two main
advantages: one is the high preparation efficiency in that the separation of supercritical
fluid from the product can be easily accomplished by depressurization. The other is the
green and friendly production process without the use of toxic organic solvents or chemical
additives. Several encapsulation processes to prepare micro-CSEs based on supercritical
fluids have been developed [4,94]. He et al. [95] prepared RDX@poly(vinylidene fluoride-
co-hexafluoropropylene) (VDF-HFP22) and RDX@polystyrene (PS) composites via a rapid
expansion of supercritical solutions (RESS) method. RDX and the polymers were dissolved
in sc-CO2 and then the dissolved material precipitated when the pressure was reduced,
and the supercritical fluid expanded. RDX crystallizes first as it has lower solubility than
the polymer. Subsequently, the polymer is deposited on the surface of the RDX particles.
The major problem of RESS technique is that it is difficult to control the morphology of
the composite particles since the formation of microparticles is extremely fast. The other
challenge one should not ignore is that the utilization of polymers is relatively higher than
other above-mentioned methods. The content of polymers in RDX composites is near 30%.

2.6.3. Vapor Deposition Method

The vapor deposition method has been extensively adopted to prepare metastable in-
termixed composites (MICs). The obtained MICs (such as Al/CuO, Al/NiO and Al/Fe2O3)
feature single periodicity stacked structure with intimate mixing [29,96–98]. Inspired by
the rapid development in MIC field, the vapor deposition technique was introduced to
prepare CSEs. By coating metal on the explosive surface through vapor phase deposi-
tion or magnetron sputtering methods, the explosives are free from morphology or size
change, which is pivotal to integrate the multiple functionalities of core–shell materials
and maintain the fundamental characteristics of core explosives. Zhou et al. [99] prepared
RDX@copper oxide (CuO) core–shell particles by RF magnetron sputtering technology.
CuO was expected to improve the combustion efficiency and performance of RDX-based
propellants as an additive. It was found that CuO deposited onto the surface of RDX
uniformly and continuously with a thickness of about 50 nm. The intimate interfacial
contact between RDX and nano-sized CuO facilitates the thermal decomposition of RDX
and lowers the ignition temperature. So far, the application of vapor deposition method to
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prepare CSEs has been confined to metal or metal oxide coating. As a result, the species of
shell materials and wide application of vapor deposition method remain to be explored.

2.7. Comments on the Above-Mentioned Methods

Sometimes, it is difficult to choose a single method for the preparation of a certain
CSE since these methods have their own advantages and drawbacks as shown in Table 2.
In general, the water suspension method is a simple, versatile and straightforward physical
protocol to prepare most CSEs. However, the aggregation between particles frequently
occurs, especially for small-sized particles. The ultrasonic method faces the same dilemma,
that the uniformity of composite particles is hard to control. Surface modifiers have been
adopted to increase the dispersity of particles and improve the surface adhesion to solve
the problem at some level. The crystallization coating method seems to be a practical
method to decrease the agglomeration and tune the performance of CSEs. One must
note that the degree of supersaturation plays such a decisive role in the process that the
cooling rate should be carefully controlled. The in situ polymerization and emulsion
methods are the most popular techniques currently to fabricate CSEs. These methods
feature uniform and compact coating, easy scale-up, mild process conditions and profitable
processing performance. A common concern with further applications is that there are
limited monomers for in situ polymerization in mild conditions without destroying the
structures of explosive crystals. The content of various surfactants and stabilizers should
also be controlled during the emulsion process to ensure the purity and stability of the
explosive composite. The other techniques, such as electrospray deposition, supercritical
encapsulation, and the vapor deposition method have been recently developed for the
purpose of high-performance CSEs, which are promising to prepare desirable core–shell
structures with high preparation efficiency. However, the expense of these processes
restricts the scale-up production to some extent. To sum up, the combination of different
techniques may be an alternative to fabricate novel structured CSEs (e.g., combination of
ultrasonic and in situ polymerization method, combination of self-assembly and emulsion
technique). The formation mechanism of physical coating methods, including water
suspension, emulsion, spray drying and ultrasonic methods, can be generally summarized
into two steps: Firstly, the shell materials adhere to the surface of core explosives via
hydrogen-bonding, π–π conjunction, N···O or O···O interactions under various processing
conditions. Then, the shell components solidify and coat on the core surface with the
removal of solvent. In the crystallization coating method, surface nucleation occurs first,
and then the fine agglomerates grow on the surface of the core seed. In situ coating is a
chemical polymerization process. The monomers of the shell are selectively adsorbed onto
the core surface via preferential interactions, such as hydrogen bonding, π–π interaction,
etc., and then polymerize in situ on the core surface under certain reaction conditions.

Table 2. Characteristics of the products prepared by water suspension, emulsion, spray drying and other methods.

Product Preparation
Methods

Size of Core
[Diameter, µm] Feature Comments Contributor

RDX@TNT/HP-1 Water
suspension 70

A coarse and
continuous film

coating over RDX
surface.

Rough surface and nice
coating structure could
be achieved. Sometimes

aggregations exist.

[50]

LLM-
105@fluoropolymer

Water
suspension 60

Spherical morphology,
rough surface and few

agglomerates.
[27]

HMX@TPEE Emulsion solvent
evaporation 25

Compact and coherent
spherical particles

with many tiny holes.

The use of emulsifiers
has significant influence

on the morphology of
microspheres.

[76]
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Table 2. Cont.

Product Preparation
Methods

Size of Core
[Diameter, µm] Feature Comments Contributor

CL-20@CAB
Premix

membrane
emulsification

78
Dumbbell-shaped

composites with two
balls sticking together.

[78]

HMX@TATB Spray drying 10–25

The surface of
core–shell composites
presented a coarse and

continuous
morphology.

A highly efficient
one-step process to
produce core–shell

micro-particles.

[88]

FOX-7@F2602 Spray drying 20–69

The particle size
decreased significantly
after coating with the

thickness of shell layer
about 10–20 nm.

[89]

HMX@NTO Crystallization
coating 200–300

NTO crystallized onto
the surface of HMX as
the nucleation center

homogeneously.

The specific crystal
morphology and narrow
crystal size distribution

can be achieved.

[80]

HMX@TATB Ultrasonic 90–120 Rough surface and
homogeneous coating.

A mild and suitable
process to prepare

micro-CSEs. Dispersant
is commonly used to
avoid aggregation.

[93]

RDX@VDF-HFP22
Supercritical

encapsulation

Smooth and
homogeneous thin
film was obtained.

Green production
process with high

preparation efficiency
but few aggregates.

[95]

RDX@CuO RF magnetron
sputtering

CuO covered the RDX
particle intimately

and uniformly.
[99]

3. Compositions and Characteristics of CSEs

CSEs are core–shell structured composites with an explosive core wrapped by ener-
getic or non-energetic shell. In general, the core explosives are high-energy and sensitive
materials, such as CL-20, HMX and RDX. The shell materials are adopted to tune the
sensitivity, thermal stability or mechanical properties of the core explosives. CSEs can be
classified into three groups according to the types of shell material: polymer-, explosive-
and novel materials-based CSEs.

3.1. CSEs with Polymer as Shell

Polymers have been used as binders in explosive formulations for a long time to
improve the mechanical properties of the explosive charges and desensitize the high-energy
explosives, composing what are known as PBXs [14,100,101]. The compatibility among the
components should be paid sufficient attention to ensure the safety and performance of the
composites. Polymers are expected to possess tight adhesive capability, well compatibility
and reliable stability for the formulation of CSEs.

3.1.1. HMX-Based CSEs

For the core components of CSEs, HMX is the most frequently used due to its high
energy density, superior explosive performance and relatively low cost [8,48,102,103].
When it comes to shell components, various polymers can be considered, such as PDA,
MF resin and polyurethane. By varying the polymer shell and preparation methods, the
performance of corresponding CSEs could be tuned for specific applications.

HMX@PDA composite was the first reported CSE [64] prepared by the in situ poly-
merization method. The PDA shell acts as an armature to retard the phase transition of
explosive crystals and enhance the mechanical strength of the composites. The authors
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proposed a possible formation mechanism of PDA coating on HMX surface as shown in
Figure 5. Firstly, dopamine was oxidized into 5,6-dihydroxyindole and rearranged to 5,6-
indolequinone under alkaline conditions. Then, the monomers concentrate on the surface
of the HMX through interfacial interactions, polymerize and further assemble to PDA
coating layer. It is known that the phase transition of HMX from the insensitive β-form to
the sensitive δ-form is undesirable in that voids and crystal defects are induced and stability
is challenged during the period [104,105]. The phase transition temperature of HMX was
improved by 27.5 ◦C with only 0.5% PDA. The retardation of phase transition is benefit for
the thermal stability of HMX composite. However, the rigid PDA shell fails to decrease
the impact sensitivity at room temperature. The characterization of the degree of coverage
remains a challenge for core–shell composites. Up to now, there are two methods generally
accepted to evaluate the degree of coverage: the first is X-ray photoelectron spectroscopy
(XPS) analysis where the surface N/C atomic ratio of the prepared CSEs, PDA and virgin
explosives are compared qualitatively to confirm the effectiveness of the coating process.
The other is the etching technique where a selective solvent such as acetone or ethyl acetate
is adopted in the etching of the explosive cores from the CSEs. The content of explosive in
the obtained solution is measured by high-performance liquid chromatography (HPLC)
analysis. The amount of PDA could be determined by the formula 100%—[content of
energetic crystals].
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MF, UF and MUF resins have been applied to CSEs in recent years. By in situ poly-
merization of resin prepolymer on the surface of HMX, RDX or CL-20, CSEs with desirable
performance could be achieved. The crystal form remains unchanged during the coating
process, which is quite important for the safety of polymorphic CL-20 and HMX. After
coating with 3% MF resin, the phase transition as well as thermal decomposition temper-
ature of HMX@MF increased remarkably (197.4→216.1 ◦C, 278.7→280.2 ◦C), implying
improved thermal stability of the CSE composite [60]. In addition, the impact sensitivity of
HMX@MF CSE (impact energy of 50% explosion probability E50 = 25.3 J) reduced visibly
compared to HMX explosive (13.8 J) and physical mixtures (HMX + MF, 14.7 J). MF resin
shell acts as a buffer system to dissipate the impact energy when being attacked. The high
surface coating of MF resin in the CSEs produced a noticeable desensitization compared to
the mixture, confirming the superiority of the core–shell structure. However, the coating
of HMX with UF or MUF as shell material exhibited an unexpected reduction in thermal
decomposition temperature as shown in Figure 6. HMX@PANI CSE [63] prepared via in
situ polymerization and HMX@TPEE CSE (with 5/1 ratio) [76] fabricated by emulsion
solvent evaporation face the similar dilemma that the peak decomposition temperature
shifted lower compared with the original uncoated candidates. This may be attributed
to the chemical reactivity of the core explosive with the existence of polymers at high
temperatures and the possible impurities involved during the coating process. The detailed
mechanism needs to be investigated further. Regarding electrostatic spark sensitivity,
HMX@PANI CSEs exhibit excellent stability with E50 values twice higher than raw HMX.
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The fact that conductive PANI polymer could conduct static electricity to avoid aggregation
on the surface of HMX may be responsible for this.
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As a third example, HMX@high melting point paraffin wax (HPW)@PDA CSEs [66]
possess low sensitivity and high mechanical properties with a litchi-like core@double
shell structure. The composite was prepared with an inner paraffin wax shell and outer
PDA shell fabricated via a facile water suspension and in situ polymerization method
sequentially. The authors provided a unique perspective on the intermolecular interactions
between HMX and the polymer binder. The contact angle slightly increased with HPW
coating (from 66.63◦ for HMX/copolymer of chlorotrifluoroethylene and vinylidene fluo-
ride (F2314) to 70.55◦ for HMX@HPW/F2314), indicating that the coating with paraffin wax
resulted in a decrease in interfacial interaction. The PDA coating improves the compat-
ibility between HMX@HPW@PDA and F2314, attributing to the hydrogen bonding with
–OH groups in PDA molecule as proton donors and –F groups in fluoropolymer chains as
proton acceptors. Based on a parameter introduced by Kubát [106] in terms of the interface
energy loss, the calculation results showed that the flow of HPW filled the voids between
the explosive and the binder, and a higher molding temperature increased the interfacial
interaction of explosives and F2314.

In terms of thermal properties, the polymorphic phase transition temperature (T0) of
HMX@HPW CSE slightly increased by 1.1 ◦C, and the further coating with PDA-6 h pro-
vided an evident retardation of phase transition temperature by 12.2 ◦C. The mechanism
of enhanced phase transition temperature may be that the strong interface interactions
blocked the formation of δ-nuclei at the crystal surface. However, the coatings had lit-
tle effect on the thermal decomposition temperature of HMX@HPW@PDA composites.
Compared to HMX virgin explosive, the HMX@HPW@PDA particles demonstrated a
160% increase in impact energy EBAM from 5 J to 13 J and a significant decrease in friction
sensitivity from 92% to 20%, implying that the surface coating with core–shell structure is
very favorable for the safety performance of explosives. As for mechanical properties, the
litchi-like HMX@HPW@PDA CSEs also exhibited far superior mechanical strength than
those of the corresponding HMX@HPW and the raw HMX explosive. The influence of
the melting point of paraffin wax and PDA coating time on the mechanical strength were
explored. As shown in Figure 7, the relatively high melting point of paraffin wax was in
favor of compressive and tensile strength as the paraffin wax with high plasticity could fill
the voids. With PDA coating for 3 h, the compressive and tensile strengths increased, com-
pared with the corresponding PBX-low melting point paraffin wax (LPW) and PBX-HPW.
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The composites with PDA coating time of 6 h exhibited improvements in compressive
strength and tensile strength of 6.9% and 13.31%, respectively. With the further increase
in PDA coating time to 9 h, the compressive and tensile strengths slightly decreased. The
preparation of the HMX-based core@double shell composite proved the superiority of
core–shell structure that a synergistic effect of the remarkable desensitization of the paraffin
wax and the strong interfacial adhesion of PDA could be achieved simultaneously.
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3.1.2. TATB-Based CSEs

TATB is a moderately powerful, thermally stable and insensitive explosive [15,107–109].
TATB crystals consist of graphite-like sheets with considerable intermolecular interactions
between layers [34,58]. However, TATB crystals suffer from large deformation when ex-
posed to the thermal physical environment due to their unique structure, which restricts
long-term storage and transport. PDA was adopted as shell material to prepare TATB-
based CSE via the in situ polymerization method. Lin et al. [52] conducted a systematic
study on the mechanical properties such as the storage modulus, creep resistance and
compression behavior, of TATB and TATB-based CSEs. The compressive and Brazilian tests
revealed improved compressive strength (48–61% increase), compressive fracture energy
(79–105% increase), tensile strength (39–73% increase), and tensile fracture energy (100–
219% increase) for the TATB@PDA composites, compared with the virgin explosives. In
addition, plenty of functional groups including amino, hydroxyl and catechol groups, were
integrated at the PDA coating surface, which could behave as heterogeneous nucleation
centers for adhesion of binders [110].

A further study was reported by taking the PDA-modified surface as a secondary
reaction platform for the grafting of three polymer binders: GAP, PEG, and PTMEG [58].
The composites demonstrated superior mechanical performance over virgin TATB, espe-
cially for the PTMEG-grafting CSE (Figure 8). The Brazil strength of PTMEG-grafted PBX
increased by 40.9%, and the compressive strength increased by 40.1% as compared with
TATB-based PBX. In terms of thermal stability, the grafting of the polymers induced a slight
lower shift of peak decomposition temperature ranging from 3.7 to 4.6 ◦C, which may be
attributed to the lower relative decomposition temperature of the polymers compared with
TATB. He et al. [55] conducted similar work by in situ grafting of HBPs on a polydopamine
(PDA) surface via the “grafting from” strategy to fabricate TATB. A similar mechanical
enhancement was observed. Compared with the pTATB (TATB@PDA) structure, the graft-
ing of hyperbranched polyurethane (HBPU) on PDA shell leads to a stronger interfacial
interaction and more robust adhesion capability with fluoropolymer than the neat PDA
shell. A physical “interlocking block” model formed by the rough and fractal interface was
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proposed, and is displayed in Figure 9. When HBPU was attached to TATB surface bridged
through PDA film, more anchor points were created in the rough and fractal interface
surfaces, which further played a coordinated role in enhancing the interfacial interaction.
In summary, the preparation of core–shell structure by bio-inspired PDA material and
further polymer grafting provides an efficient route for the interfacial and mechanical
enhancement of TATB.
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Figure 8. Stress–strain curves of (a) Brazil test, (b) compression test, (c) leakage strength, and
(d) storage modulus for TATB-based polymer-bonded explosive (PBX) with and without graft-
ing. (TF: TATB/F2314, TPGF: TATB@PDA@GAP/F2314, TPEF: TATB@PDA@PEG/F2314, TPPF:
TATB@PDA@PTMEG/F2314). Reproduced under the terms of the CC-BY Creative Commons Attribu-
tion 4.0 International Licence (https://creativecommons/licenses/by/4.0, accessed on 19 August
2021). Reproduced with permission from [58], copyright 2019, MDPI.

3.1.3. CSEs Based on Other Explosives

CL-20 is one of the explosive elements with the highest energy level so far [111]. CL-20
possesses four crystal forms: ε, α, β and γ form at ambient temperature, and the energy
density of ε-CL-20 is the highest with the lowest sensitivity [112–114]. The phase transition
of CL-20 (ε→γ) under thermal stimulation leads to an expansion in volume, which may
stimulate hot spots and lead to explosive deflagration [115,116]. Inspired by the strong
chemical adhesion of mussels, PDA was adopted to construct CL-20-based CSEs [57].
As shown in Figure 10a, the PDA coating has a remarkable improvement effect on the
phase transition temperature of CL-20. The transformation of CL-20 crystal was retarded
by 22.7 ◦C, denoting an enhanced thermal stability of CL-20 composite. Meanwhile, the
friction sensitivity of the CSE composite decreased from 96% to 48% compared with raw
CL-20. However, the coating did nothing for the impact sensitivity, which was attributed
to the rigid PDA shell and the irregular crystal shape and defects. Wang et al. [78] reported
a novel CL-20@CAB CSE by premix membrane emulsification method. CAB possesses
good leveling and film-forming properties, causing a successful thin film deposition on the
surface of CL-20. It can be observed from Figure 10b that the decomposition temperature
of the composite decreases gradually with increasing weight ratios of CAB, indicating
that the reaction activity increases, and the reaction rate accelerates. One can find that the

https://creativecommons/licenses/by/4.0
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impact sensitivity decreases with the increasing content of CAB. The fact that the particle
size reduces as the CAB content increases may be responsible for this.
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RDX is another attractive secondary explosive applied to CSEs due to its good en-
ergetic performance and reasonable cost [87,95,102,117]. A representative RDX@PMMA
CSE [118] was prepared by Jia et al. via water suspension and emulsion polymerization
method. Both of the methods provided a successful coating of PMMA on the surface of
RDX, and the composite produced by the emulsion polymerization method possessed a
more uniform size distribution and a narrower grain size. With the addition of the PMMA
shell, the peak decomposition temperature showed a slight increase for the composites. In
terms of impact sensitivity, the drop height (H50) values of RDX/PMMA particles prepared
by the two methods increased by 8.6 cm and 15.4 cm, respectively. The desensitization
effect of emulsion polymerization is more significant in that the uniform dispersed particles

https://creativecommons/licenses/by/4.0


Molecules 2021, 26, 5650 19 of 28

reduce the stress concentration between the particles and efficiently prevent the formation
of local hot spots. Spray drying method was used to fabricate RDX@polyvinyl acetate
(PVAc) and RDX@vinyl resin (VMCC) CSEs [86]. The crystallization of the small RDX
crystals and formulation are achieved simultaneously during the process. SEM images
show that most of the particles are below 1 µm as compared with the virgin RDX particles
(5–30 µm). Both of the RDX-based composites feature reduced shock sensitivity, which
may be attributed to the small crystal size as well as small void size (~250 nm).

3.2. CSEs with Explosive as Shell

High energy density is always a primary goal for explosives. To reduce the energy
loss as much as possible during the coating process, there is an elegant method to tune the
performance of explosives by constructing core–shell structure with insensitive explosives
as the shell material. TNT, NTO, and TATB are used to coat various sensitive explosives,
such as CL-20, HMX and RDX. Given the weak intermolecular interaction among explo-
sives, the key challenge is to prepare core–shell composites with high surface coverage and
strong coating strength with an appropriate fabrication process.

HMX@NTO composite is a typical explosive@explosive CSE fabricated by crystalliza-
tion coating in alcohol or water-N-methyl-2-pyrrolidone (NMP) solvent [82]. The growth
rate of the HMX coating increased with rising concentration of NTO, but then began to
decrease due to high agglomeration. It was found that high supersaturation was in favor of
uniform particle deposition on the surface of HMX. The impact sensitivity of HMX@NTO
CSE was 8.2 J with a coating thickness of 3 µm, superior to that of HMX (4.6 J), indicating
that the safety has been improved observably for HMX-based composite. To improve the
safety of RDX, an energetic polymer (HP-1) together with TNT were introduced to coat
RDX by combining the solvent–nonsolvent and water suspension methods [50]. HP-1
reduced the surface tension of coating materials and improved the adhesive ability on
the surface of RDX. After coating with 2.5 wt% TNT and 0.5 wt% HP-1, the drop height
(H50) was increased by 57%, and the friction probability reduced by 54%. Meanwhile, the
thermal stability of the coated composites improved slightly. Remarkably, the influence of
coating on the energy performance of RDX is negligible because its estimated explosion
heat is only reduced by 0.93%.

HMX@TATB CSE is another representation worthy of mention. So far, there are four
approaches reported to coat sensitive high explosive with the TATB shell, including in situ
coating, water suspension, ultrasonic, and spray drying approaches. In situ coating of HMX
crystals with TATB was carried out by amination of 1,3,5-trichloro-2,4,6-trinitrobenzene
(TCTNB) with dry ammonia gas [119]. The impact sensitivity and friction sensitivity of
HMX@TATB CSE with 10% shell content were 24% and 0%, respectively. The thermal de-
composition peak temperature of HMX@TATB CSE (285.6 ◦C) was higher than the physical
mixed sample (283.3 ◦C), indicating that the compact core–shell structure contributed to
high thermal stability. The fact that the formation of core–shell structure induces a modest
cage effect may be responsible for the improved thermal stability after coating. However,
the coating has little effect on the thermal decomposition performance of HMX, which
may be caused by the impurities during the process and a relatively low utilization of raw
materials. A series of studies [52,58,68,88,92,93] reveal that the particle size of TATB plays
a key role in the effectiveness of coating. Sub micro-TATB was utilized to coat CL-20 via a
water suspension process [51]. Due to the cushioning and lubricating effects of TATB shell,
the H50 value of the composite increased to 49.6 cm, more than three times higher than
the 16 cm of the original CL-20, implying that the desensitization strategy by core–shell
coating is effective. Ultrasonic approach was utilized to prepare HMX@nano-TATB mi-
croparticles [93]. The impact and friction sensitivity of HMX@TATB composites with 10%
shell content are 75 cm and 8%, respectively, evidently better than those of HMX and the
physical mixture. It can be concluded that ultrasonic method creates an effective core–shell
structure, hence the CSEs are less sensitive to mechanical stimuli. In addition, the thermal
decomposition temperature became lower with the increase in shell content. This result
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implies that the evolution of coverage degree of core–shell structure is accompanied by an
opposite trend in decomposition temperature. Facile, continuous, and large-scale produc-
tion of core–shell HMX@TATB composites was achieved by a spray drying process [88].
The utilization of TATB shell was evidently decreased from the previously reported 15 wt%
to 8 wt%, thus ensuring the energetic performance of the explosive. More importantly,
the impact and friction sensitivity results showed that the prominent stability of these
core–shell microparticles with low shell content can be maintained.

As shown in Figure 11, there are three methods of characterizing impact sensitivity.
Special attention must be paid to performance comparisons of certain CSEs since the
performance of the composite is determined by the particle size, morphology, the shell
content and preparation method. The differences may influence the thermal stability and
sensitivity of the composites significantly, and therefore it is difficult to conduct a more
intuitive comparison among different CSE systems. Despite that, the data do provide
certain basic characteristics of CSEs and the inherent correlations between different CSE
systems. Table 3 summarizes some important CSEs in terms of their preparation method
and property improvements. It is obvious that rGO and MF coatings could achieve
outstanding desensitization effect with minimal shell content among the listed CSEs under
the same experimental conditions.
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Table 3. Preparation methods and properties improvement of some CSEs.

Product Preparation Methods Shell Content/%
Increment of Phase

Transition
Temperature/◦C

Increment of Peak
Decomposition
Temperature/◦C

Improvement
Percentage of H50/%

Improvement
Percentage of E50/% Contributor

HMX@PDA In situ polymerization 0.5 26 0.2 0 [64]
HMX@MF In situ polymerization 2.9 18.7 3.2 83 [60]
HMX@UF In situ polymerization 4.3 15.9 −15.6 246 [61]

HMX@MUF In situ polymerization 5.0 NA NA 240 [62]
HMX@PANI In situ polymerization 3.1 17.2 −2.4 189 [63]

HMX@TPEE Emulsion solvent
evaporation 5.0 NA −1.4 57 [76]

HMX@HPW@PDA Water suspension and in
situ polymerization 2.0 11.3 0 117 [66]

RDX@MF In situ polymerization 3.0 2.7 85 [60]
RDX@PVAc Spray drying 17.0 NA 60 (Shock sensitivity) [86]

RDX@VMCC Spray drying 17.0 NA 32 (Shock sensitivity) [86]
RDX@PMMA Water suspension 3.0 0.37 35 [118]

RDX@PMMA Emulsion
polymerization 3.0 2.38 63 [118]

CL-20@MF In situ polymerization 3.0 16.7 6.1 163 [60]
CL-20@PDA In situ polymerization 1.6 22.7 NA 0 [57]
CL-20@UF In situ polymerization 3.9 NA −16 350 [61]

CL-20@CAB Premix membrane
emulsification 3.0 NA −13.7 102 [78]

HMX@NTO Crystallization coating 6.0 NA NA 78 [80]
RDX@TNT/HP-1 Water suspension 2.5/0.5 0.6 57 [50]

HMX@TATB Ultrasonic 15 NA NA >348 [93]
HMX@TATB Spray drying 8.0 NA NA >239 [88]
HMX@TATB In situ coating 10.0 NA NA 75 [119]
CL-20@TATB Water suspension 5.0 NA NA 210 [51]

35.0 10.4 0.5 272
CL-20@rGO In situ reduction 2.0 18.48 0.5 171 [39]
HMX@Viton Water suspension 5.0 NA 0.8 143 [48]

HMX@Viton/GO Water suspension 4/1 NA −0.2 237 [48]
HMX@rGO/G In situ reduction 2.0 NA −0.2 92 [43]
HMX@MPNs In situ polymerization 1.8 42.3 NA [65]

RDX@CuO Vapor deposition 54 −24.8 [99]
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3.3. CSEs with Novel Materials as Shell

Apart from polymers and conventional explosives, some novel materials, such as
CuO, graphene (G), graphene oxide (GO) and carbon nanotubes (CNTs) were introduced
to prepare CSEs due to their unique electrical, thermal, mechanical and structural prop-
erties [70,99,103,120,121]. rGO together with G were selected as shell materials to coat
HMX through an in situ chemical reduction coating method [43]. The differential thermal
analysis (DTA) results showed that the thermal peaks of HMX changed little, indicating
that the added G and rGO were compatible with HMX. The impact sensitivity of raw HMX
decreased from 100% to 8% and the friction sensitivity reduced from 100% to 0% with the
addition of 1.0 wt% GO and 1.0 wt% G, implying that rGO sheets along with graphene are
promising to be utilized as co-desensitizers for nitramine explosives. Subsequently, the
research group conducted a study in terms of various explosive systems to tune their ther-
mal stability and sensitivity, including insensitive HMX@G composites [121], HMX@GO
composites [103], CL-20@rGO composites [39] and HMX@Viton/GO composites [48]. All
the results indicate that these carbon materials can be utilized to desensitize the explosives
significntly with a low additive amount.

Many kinds of nanomaterials have been developed and tested for catalytic decom-
position of explosives, and thereby improve the combustion efficiency and performance
of propellants. CuO was deposited onto the surface of superfine RDX particles to form
RDX@CuO CSE through RF magnetron sputtering technology [99]. It was found that
intimate interfacial contact was realized with a thin film of 50 nm, and morphology or size
change of RDX was avoided. CuO can catalyze the thermal decomposition of RDX and
lead to decreased decomposition temperature by 24.8 ◦C.

Metal-phenolic networks (MPNs) are an emerging class of supramolecular coatings
formed through coordination chemistry, which have strong adhesive attachment to diverse
organic surfaces [44]. Tannic acid (TA)-based MPNs were utilized to coat HMX via in situ
noncovalent decoration of polyphenols and FeIII as shown in Figure 12 [65]. HMX surface
was regularly coated through layer-by-layer deposition and the thickness of coating could
be controlled by tuning the coating cycles. The phase transition (β→δ) temperature of
HMX was significantly improved by 42.3 ◦C with a low shell content of 1.8 wt%. This
surface modification strategy features high efficiency and mild preparation conditions,
which provide the potential for large-scale fabrication of high explosives.
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3.4. Challenges and Prospects

As mentioned above, a variety of polymers, insensitive explosives and some novel
materials have been developed as suitable shell materials for CSEs. Thermal stability,
sensitivity and mechanical properties are the greatest concerns for CSEs. The preparation
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of core–shell structures can imporove the comprehensive performance of the explosives
significantly. For polymorphic explosive crystals like CL-20 and HMX, the inclusion of
coating materials, such as PDA, MF resin and TATB, contributes to the retardation of
phase transition and thereby improves the thermal stability of the explosives. As shown in
Table 3, most CSEs with polymers or heat-resistant insensitive explosives as the shell could
achieve pronounced desensitization with no more than 5% shell content while preserving
the energy output of explosives. It should be noted that PBXs based on some of the CSE
particles display improved roughness, storage modulus, as well as creep resistance due to
the strong interfacial adhesion. TATB@PDA CSE is a very typical example.

However, several challenges remain to be resolved. For example, how best can the
performance of these micro-CSEs, including power, stability, and mechanical properties
be integrated? Incorporating the merits of different methods may provide opportunities
to solve the contradictions. The ultrasonic technique is an efficient method for explosive
surface pre-treatment, and preparation of desirable core–shell structures together with
other methods, such as in situ polymerization, emulsion and spray drying. In addition,
the performance studies of CSEs mainly focus on thermal stability and sensitivity, whereas
the mechanical strength and detonation performance data are still lacking. The limitations
include the great quantity of testing samples required, special equipment required, and
the safety concerns of explosion and mechanical strength tests. High precision calculation
methods as well as experimental measurements of detonation performance are urgently
needed. The relationships between the microstructure of CSEs and their detonation per-
formance could be explored further in future studies. The mechanical properties tests for
explosives are based on PBXs formula currently, thus the standard component percentage
and measurement method need to be clarified. To clearly solve these questions, there is
still much work to be done.

4. Conclusions

The core–shell strategy gives an alternative approach to solve the contradiction of
energy and safety for explosives. The most attractive advantage of CSEs is that high surface
coverage and strong coating strength can be achieved with minimized content of shell
materials. Owing to this merit, thermal stability, mechanical strength and insensitivity
of explosives can be improved remarkably, and the energy output can be maintained.
Close contact is the essential difference between CSEs and physical mixing composites. In
the past decade, many enticing CSEs have been discovered, and so far, the preparation
and characterization procedures for CSEs are slowly being established. The preparation
methods were summarized herein and the advantages and disadvantages of different
techniques were revealed. In addition, the most typical examples of CSEs in terms of
their compositions and characteristics were introduced. The preparation method greatly
depends on the components of CSEs in view of the compatibility of the components and
the requirements of CSEs, and a mild or solution preparation method is preferred generally.

Even though much has been achieved regarding the preparation and properties of
CSEs, there are still some fundamental issues waiting for solutions. The balance of high
energy, low sensitivity and good mechanical strength remains a challenge for CSEs, and
other shell materials should be explored. The formation mechanism of many types of
CSEs prepared by different methods needs to be clarified. Further studies are expected
to simulate and calculate the interfacial interactions between core and shell materials, to
analyze the formation mechanism and further guide the design of the formulation of CSEs.
The influence of the micro-structure of CSEs on their mechanical strength and detonation
performance should be further explored systematically. Additionally, the inclusion of
additives, such as the surface surfactant, stabilizer and emulsifier, during the coating
process brings a potential risk for the shell materials to be integrated with the additives.
Special attention should be paid to the impurities and their effects on the performance
of the composites. The future of this field still poses many challenges, but there is no
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denying that the core–shell strategy will certainly play a very important role in assuring
the development of explosives, pyrotechnics, and propellants.
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