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Abstract: During forced degradation, the intrinsic stability of active pharmaceutical ingredients (APIs)
could be determined and possible impurities that would occur during the shelf life of the drug substance
or the drug product could be estimated. Vildagliptin belongs to relatively new oral antidiabetic drugs
named gliptins, inhibiting dipeptidyl peptidase 4 (DPP-4) and prolonging the activities of the endogenous
incretin hormones. At the same time, some gliptins were shown as prone to degradation under specific
pH and temperature conditions, as well as in the presence of some reactive excipients. Thus, forced degra-
dation of vildagliptin was performed at high temperature in extreme pH and oxidative conditions. Then,
selective LC-UV was used for quantitative determination of non-degraded vildagliptin in the presence of
its degradation products and for degradation kinetics. Finally, identification of degradation products of
vildagliptin was performed using an UHPLC-DAD-MS with positive ESI. Stability of vildagliptin was
also examined in the presence of pharmaceutical excipients, using mid-IR and NIR with principal compo-
nent analysis (PCA). At 70 ◦C almost complete disintegration of vildagliptin occurred in acidic, basic,
and oxidative media. What is more, high degradation of vildagliptin following the pseudo first-order
kinetics was observed at room temperature with calculated k values 4.76 × 10−4 s−1, 3.11 × 10−4 s−1,
and 1.73 × 10−4 s−1 for oxidative, basic and acidic conditions, respectively. Next, new degradation
products of vildagliptin were detected using UHPLC-DAD-MS and their molecular structures were
proposed. Three degradants were formed under basic and acidic conditions, and were identified as
[(3-hydroxytricyclo- [3.3.1.13,7]decan-1-yl)amino]acetic acid, 1-{[(3-hydroxytricyclo[3.3.1.13,7]decan-1-
yl)amino]acetyl}-pyrrolidine-2-carboxylic acid and its O-methyl ester. The fourth degradant was formed
in basic, acidic, and oxidative conditions, and was identified as 1-{[(3-hydroxytricyclo[3.3.1.13,7]-decan-1-
yl)amino]acetyl}pyrrolidine-2-carboxamide. When stability of vildagliptin was examined in the presence
of four excipients under high temperature and humidity, a visible impact of lactose, mannitol, magne-
sium stearate, and polyvinylpirrolidone was observed, affecting-NH- and CO groups of the drug. The
obtained results (kinetic parameters, interactions with excipients) may serve pharmaceutical industry to
prevent chemical changes in final pharmaceutical products containing vildagliptin. Other results (e.g.,
identification of new degradation products) may serve as a starting point for qualifying new degradants
of vildagliptin as it is related to substances in pharmacopoeias.

Keywords: vildagliptin and stability; pH and oxidative conditions; high temperature and humidity;
kinetics of degradation; interactions with excipients; LC-UV; UHPLC-DAD-MS; mid-IR and NIR
with PCA
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1. Introduction

Gliptins constitute a class of drugs increasingly used for the treatment of type 2 diabetes
mellitus, inhibiting dipeptidyl peptidase 4 (DPP4), the enzyme that inactivates the incretin
hormones such as glucagon-like peptide 1 (GLP1) and glucose dependent insulinotropic
polypeptide (GIP). GLP1 and GIP serve as important prandial stimulators of insulin
secretion and regulators of blood glucose concentration. Thus, inhibition of DPP4 by
gliptins prolongs the activities of endogenous GLP1 and GIP, decreasing the elevated blood
glucose in diabetic patients [1]. The DPP-4 inhibitors can be divided as peptidomimetics
which mimic the DPP-4 enzyme and no peptidomimetic agents. Vildagliptin is a substrate-
mimicking inhibitor containing cyanopyrrolidine motif [2]. It is rapidly absorbed and
quickly cleared from plasma, and required to be administered twice daily as compared
to once daily dosing for some other gliptins [3]. The chemical structure of vildagliptin is
depicted in Figure 1.

Figure 1. Chemical structure of vildagliptin ((2S)-1-{[(3-hydroxytricyclo[3.3.1.13,7]-decan-1-
yl)amino]acetyl}pyrrolidine-2-carbonitrile).

A few HPLC and LC/MS methods were described in the literature for determination
of vildagliptin in one-component formulations [4,5] or plasma [6,7]. Besides, HPLC and
LC/MS methods were developed for determination of vildagliptin in the presence of other
drugs in two- or three-component mixtures [8–11] and biological fluids [11–14]. Only a
few authors performed forced degradation of vildagliptin as a part of validation of HPLC
or LC/MS procedures to confirm stability-indicating properties of these methods [15–17].
What is more, in the literature there is no any report on kinetic aspects of stability of
vildagliptin which are very important in the pharmaceutical industry [18]. Thus, the first
goal of the present study was to determine the drug stability over time, taking into account
the impact of extreme pH and oxidative conditions using a sufficiently selective LC-UV
method. Additionally, identification of degradants and understanding the degradation
pathways of active pharmaceutical ingredients (APIs) play a crucial role in the rational
drug design, and are extremely important for their safety and potency [19]. Thus far, just a
few papers on degradants or impurities of vildagliptin were published [15,20–22]. In the
study of Barden [15], the basic and oxidative conditions were applied and one degradation
product was characterized using LC-MS. Recently, Arar et al. [20] reported six degradation
products of vildagliptin in acidic, basic and oxidative conditions. Besides, the groups of
Kumar [21] and Al-Sabti and Harbali [22] reported some impurities due to the production of
vildagliptin itself. Bearing in mind a small number of published papers in this area and the
necessity of detecting all possible degradants of vildagliptin, the second goal of the present
study was to performed accelerated degradation of vildagliptin and deeply analyze the
stressed samples using UHPLC-DAD-MS method. In addition, many guidelines emphasize
the importance of testing stability of APIs in final pharmaceutical formulations. Now, it
is well known that active substances can react with excipients, mainly due to hydrolysis
and redox reactions [23,24]. In the literature, some papers on visible interactions of other
gliptins, e.g., sitagliptin, with pharmaceutical excipients were published [25]. Meanwhile,
chemical stability of vildagliptin in the presence of excipients was not studied extensively
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so far. Only one paper in this area was found in the literature [26], where compatibility of
vildagliptin with silicon dioxide, carbopol, microcrystalline cellulose, polyvinylpyrrolidone,
and magnesium stearate was studied. Thus, the next goal of the present study was to
examine stability of vildagliptin in the presence of four excipients of different reactivity,
i.e., lactose (LAC), mannitol (MAN), magnesium stearate (MGS) and polyvinylpirrolidone
(PVP). The solid mixtures were stressed with high temperature and high humidity, and
analyzed using mid-IR and NIR methods together with chemometric assessment using
Principal Component Analysis (PCA).

2. Results and Discussion
2.1. Optimization and Validation of LC-UV Method for Quantitative Measurements of Vildagliptin

Optimization and validation of quantitative LC-UV method was performed, involving
robustness, selectivity, linearity, precision, and accuracy. The most important parameters
of validation are shown in Table 1. It was found that simple mobile phase containing
2 mM ammonium acetate and acetonitrile at 80:20 (v/v) ratio was sufficiently effective
for separation of the peaks of interest in a reasonable time, as well as, for reduction of
the peak tailing. The chromatograms showed that the peaks of vildagliptin were free
from interferences of these from degradation products. All detailed results from these
experiments were presented in Supplementary Materials.

Table 1. Parameters of LC-UV method for the quantitative determination of vildagliptin.

Parameter Results

Linearity range (µg/mL) 40–190
Slope (n = 6) 0.00618

SD of the slope 0.000075
Intercept (n = 6) 0.02613

SD of the intercept 0.005617
R2 (n = 6) 0.9997

SD of the R2 0.00013
LOD (µg/mL) 2.99
LOQ (µg/mL) 9.09

Accuracy (% Recovery) (n = 6) 99.86
SD of the Recovery 1.36

Intra-day precision (% RSD) (n = 3) 0.26–0.55
Inter-day precision (% RSD) (n = 9) 0.64–1.46

2.2. Degradation of Vildagliptin in Solutions and Degradation Kinetics

According to the literature, the highest degradation of vildagliptin occurred in 6%
H2O2 at room temperature (degradation above 25% after 30 min) [17]. It was also observed
that vildagliptin was sensitive to degradation in 0.01 M NaOH at 60 ◦C (above 10% of
degradation after 30 min), but rather stable in 1M HCl at 60 ◦C (degradation below 5%
after 2 h). Our study showed that vildagliptin could degrade in wider pH range, as well as,
in oxidative conditions, especially at high temperature. At 70 ◦C its degradation in 1M HCl
was almost 85% after 210 min. What is more, the drug was completely degraded in 1M
NaOH and 3% H2O2 after 60 min. Therefore, our experiment was performed once more,
using the same solutions (1M HCl, 1M NaOH and 3% H2O2) at controlled room temperature
(23 ◦C). Under these conditions, degradation of vildagliptin was shown as 59.28% (1M
HCl) and 84.33% (1M NaOH) after 240 min. In 3% H2O2 the level of degradation gained
87.04% after 180 min, showing the lowest stability of vildagliptin in oxidative conditions
(Table 2). Kinetic parameters were calculated for all degradation conditions at 23 ◦C and
acidic conditions at 70 ◦C. The logarithm of concentration of no degraded vildagliptin
was stronger correlated than the concentrations of no degraded vildagliptin with time
of degradation, confirming the pseudo-first-order kinetics for these processes with all R2

values above 0.96. At 23 ◦C, the calculated rate constants of degradation (k) were at the
level of 10−4 s−1, while the degradation time of 50% (t0.5) varied from 1.11 h in 1M HCl
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through 0.62 h in 1M NaOH to 0.40 h in 3% H2O2, confirming the quickest degradation of
the drug in oxidative medium. In 1M HCl at 70 ◦C, the calculated k value was also at the
level of 10−4 s−1, while corresponding t0.5 equaled 0.72 h (Table 2). The obtained results
were also depicted as the xy diagrams in Figure 2. Due to the lack of other scientific data in
this area, the results presented here are a valuable supplement to the literature resources.

Table 2. The percentage level of degradation and kinetic parameters for the degradation of
vildagliptin in solutions.

Stress
Conditions

Degradation
after 240 min

[%]

Linear Equation
y = ax + b R2 k

[s−1]
t0.5
[h]

23 ◦C
1M HCl 59.28 y = −0.0045x + 4.7194 0.9882 1.73 × 10−4 1.11

1M NaOH 84.33 y = −0.0081x + 4.7577 0.9907 3.11 × 10−4 0.62
3% H2O2 87.04 * y = −0.0124x + 4.8789 0.9887 4.49 × 10−4 0.40

70 ◦C
1M HCl 84.78 ** y = −0.007x + 4.2775 0.9687 2.69 × 10−4 0.72

1M NaOH 100 - - - -
3% H2O2 100 - - - -

* degradation after 180 min; ** degradation after 210 min; k = degradation rate constant; t0.5 = degradation
time of 50%.

Figure 2. Pseudo first-order plots of degradation of vildagliptin in solutions at 23 ◦C (mean ± SD,
n = 3 for each time point).

2.3. Identification of Vildagliptin Degradation Products by UHPLC-DAD-MS

In the literature, four degradation products related to production of vildagliptin were
described as IMPs A–D [27]. Besides, a new degradant was detected during purification
of crude vildagliptin with ethyl methyl ketone, i.e., IMP E, which easily decomposed to a
stable IMP F [21]. In the study of Barden et al. [15], the oxidative and basic degradation
of vildagliptin was reported. When LC-MS analysis was applied for the stressed samples,
the main degradation product was detected at m/z 154 (DP 1). Recently, Arar et al. [20]
reported six degradants of vildagliptin, i.e., IMP B and five new compounds (DP 2–6) which
were formed in acidic, basic or oxidative conditions. The related substances of vildagliptin
which were previously described in the literature are presented in Table 3.
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Table 3. Related substances of vildagliptin described in the literature.

Compound/Stress
Conditions

Structures of Related
Substance

[M + H]+

m/z [Ref.]

IMP A - [27]

IMP B
1M NaOH, 3% H2O2

322.1 [20,27]

IMP C - [27]

IMP D - [27]

IMP E - [21]

IMP F - [21]
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Table 3. Cont.

Compound/Stress
Conditions

Structures of Related
Substance

[M + H]+

m/z [Ref.]

DP 1
0.1M NaOH, 0.3% H2O2

154 [15]

DP 2
1M HCl 304.0 [20]

DP 3
0.1M NaOH 338.2 [20]

DP 4
1M NaOH 323.6 [20]

DP 5
3% H2O2

241.0 [20]

DP 6
3% H2O2

184.3 [20]

Our UHPLC-DAD-MS experiments allowed to separate and identify four degradants
of vildagliptin, namely Compounds A–D. Only one of which, i.e., Compound B was
described previously as IMP B [20,27]. The chemical structures and m/z values for all
degradants identified in the present study are presented in Table 4.
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Table 4. Degradation products of vildagliptin detected by our UHPLC-DAD-MS method.

Degradant/Stress
Conditions Structures and Chemical Names [M + H]+

m/z

Compound A
1M HCl, 1M NaOH 226

[(3-hydroxytricyclo[3.3.1.13,7]decan-1-yl)amino]
acetic acid

Compound B = IMP B
1M HCl, 1M NaOH,

3% H2O2

322

1-{[(3-hydroxytricyclo[3.3.1.13,7]decan-1-yl)amino]
acetyl} pyrrolidine-2-carboxamide

Compound C
1M HCl, 1M NaOH 323

1-{[(3-hydroxytricyclo[3.3.1.13,7]decan-1-yl)amino]
acetyl} pyrrolidine-2-carboxylic acid

Compound D
1M HCl, 1M NaOH 337

2-O-methyl
1-{[(3-hydroxytricyclo[3.3.1.13,7]decan-1-yl)amino]

acetyl} pyrrolidine-2-carboxylate

Compound A was detected when vildagliptin was stressed in acidic and basic con-
ditions at both, room (23 ◦C) and high (70 ◦C) temperature, and showed a molar mass
225.29 g/mol (m/z 226 as [M + H]+). It was supposed that the pyrrolidine-2-carbonitrile
motif was left from the structure of vildagliptin to produce the corresponding carboxylate
(Figure 3). As far as Compound B was concerned, it was detected in basic and oxidative
conditions, similarly to the results from the literature [20] and for the first time, in acidic
conditions as well. It showed a molar mass 321.42 g/mol (m/z 322 as [M + H]+) and was
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probably formed by hydrolysis of cyano group of vildagliptin into the amide one. Thus,
our results pointed to hydrolysis of the cyano group of vildagliptin in basic, oxidative, as
well as, acidic conditions. Further hydrolysis of the amide group of Compound B afforded
the corresponding carboxylic acid, leading to Compound C which showed a molar mass
322.41 g/mol (m/z 323 as [M + H]+). Since methanol was present in our stressed samples,
methyl ester of respective acid was also detected (Compound D).

Figure 3. Products of degradation of vildagliptin in acidic, basic and oxidative conditions.

It was interesting to observe that other degradants of vildagliptin that had been
reported previously [15,20], were not observed in the present study. In addition, it seemed
reasonable to discuss more deeply the structures of our Compound C and the degradant
DP 4 from the literature [20]. DP 4 with pseudomolecular ion at m/z 323.6 was detected
in the samples of vildagliptin stressed in basic conditions. Bearing in mind its retention
time (tR) in respective LC chromatograms, it was relatively more polar than IMP B. In the
present study, Compound C with m/z 323 was detected in the samples of vildagliptin
stressed in basic, as well as, acidic conditions. On the contrary to DP 4, Compound C was
shown to be relatively less polar than Compound B (IMP B), because of its longer tR during
our LC-MS experiments. Thus, the chemical structure of Compound C, different than that
that described for DP 4 was proposed. Respective UHPLC data of the detected Compounds
A–D are given in Table 5. Chromatograms (ion current, BPC MS+) of the analyzed samples
and vildagliptin pure standard are presented in Figure 4. MS and UV/VIS spectra of the
detected Compounds A–D are shown in Figures 5–9.
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Table 5. UHPLC-DAD-MS2 data of the detected compounds in the analyzed samples.

Compound tR
[min]

UV/VIS
[nm]

[M + H]+

m/z MS2 Ions

A 1.3 214 226 159b
B 7.6 212 322 304b, 172, 155
C 8.7 212 323 306, 173b, 116

Vildagliptin 8.9 214 304 154b, 97
D 9.9 214 337 319, 187b, 130

Imp 1 12.0 215 340 322b, 209
Imp 2 13.6 216 453 435b, 322, 209
Imp 3 14.7 216 566 548b, 435, 322, 209

tR = retention time.

Figure 4. BPC MS+ chromatograms of the analyzed samples. V=vildagliptin, A, B, C, D = Compounds
A–D (degradation products of vildagliptin) and Imps 1–3.
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Figure 5. MS and UV/VIS spectra of vildagliptin (V).

Figure 6. MS and UV/VIS spectra of Compound A.
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Figure 7. MS and UV/VIS spectra of Compound B.

Figure 8. MS and UV/VIS spectra of Compound C.
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Figure 9. MS and UV/VIS spectra of Compound D.

There are some other minor peaks at our BPC chromatograms of the analyzed samples,
namely Imps 1–3 (Table 5), probably from impurities present in our vildagliptin standard.
Their MS and UV/VIS spectra are shown in Supplementary Materials in Figures S1–S3.

2.4. Stability of Vildagliptin in the Presence of Excipients

It is known that APIs can react with excipients in final pharmaceutical formula-
tions [23,24]. Thus, stability of vildagliptin was also examined in the presence of four
excipients of different reactivity, i.e., lactose (LAC), mannitol (MAN), magnesium stearate
(MGS) and polyvinylpirrolidone (PVP), under high temperature and high humidity (60 ◦C
and 70% RH). Finally, the mixtures were analyzed using mid-IR and NIR spectroscopy
together with chemometric assessment. In details, we used Principal Component Analysis
(PCA) to identify specific wavenumbers discriminating the changes of vildagliptin due
to interactions with excipients and accelerated degradation. PCA is very useful when IR
spectra are analyzed, because contribution of each original spectral variable to each PC
becomes visible in the loadings’ spectra. As a consequence, it allows identifying important
spectral bands accounting for the most significant differences between samples.

From the obtained mid-IR and NIR spectra it was seen that vildagliptin itself did not
visibly change at high temperature and high humidity. Also, the spectra of individual
excipients did not show changes after the stress (Table 6).

When mid-IR and NIR spectra were analyzed by PCA, visible separation of individual
vildagliptin and each individual excipient was observed. In addition, the stressed mixtures
were separated from the no stressed ones as well as from all individual compounds
(Figure 10A–D and Figure 11A–D).
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Table 6. Mid-IR characteristics of vildagliptin, lactose (LAC), mannitol (MAN), magnesium stearate (MGS) and polyvinylpir-
rolidone (PVP).

Wavenumber [cm−1] Vibrations

Vildagliptin LAC MAN MGS PVP

3100–3500 O-H stretching
3200–3300 O-H stretching

3294 O-H stretching
3294 N-H stretching
2954 C-H stretching
2910 C-H stretching C-H stretching
2900 C-H stretching C-H stretching
2850 C-H stretching
1658 C=O stretching
1650 C=O stretching

1577 C=O stretching
(COOH)

1505 C-H stretching
1495 N-H bending
1450 C-H bending
1410 C-H bending
1400 C-C stretching
1300 C-H bending
1250 C-O stretching
1155 C-O stretching
1090 C-O stretching
1040 C-O stretching
1010 C-O stretching
1000 C-O stretching

Figure 10. (A–D) PCA scores plots of mid-IR spectra of vildagliptin (Pure Drug) and the mixtures of
vildagliptin with Excipients: (A) lactose (LAC), (B) mannitol (MAN), (C) magnesium stearate (MGS)
and (D) polyvinylpirrolidone (PVP).
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Figure 11. (A–D) PCA scores plots of NIR spectra of vildagliptin (Pure Drug) and the mixtures of
vildagliptin with Excipients: (A) lactose (LAC), (B) mannitol (MAN), (C) magnesium stearate (MGS)
and (D) polyvinylpirrolidone (PVP).

2.4.1. Vildagliptin and LAC

After mixing vildagliptin and LAC, the signals of N-H and O-H vibrations of vildagliptin
at 3294 cm−1 were overlapped with a broad peak of LAC at 3000–3400 cm−1. In addition,
the peak of vildagliptin at 1040 cm−1 disappeared (Figure 12A). Additive changes were seen
in the mixture after accelerated degradation, e.g., disappearance of the peak corresponding
to N-H bending vibrations of vildagliptin at 1495 cm−1. Thus, it was supposed that
-NH- group of vildagliptin could interact with LAC at high temperature and humidity.
Previously, similar interactions with LAC were observed for sitagliptin [25] and for many
APIs containing primary and secondary amine groups [28]. In addition, a sharp band of CO
group from vildagliptin at 1658 cm−1 changed its shape and was extended from 1500 cm−1

to 1700 cm−1 in the stressed mixture (Figure 12B). When mid-IR spectra were analyzed
by PCA, PC1 and PC2 explained 51.50 and 29.60% of variability. The loading spectrum of
PC1 was dominated by the bands at 980–1050 cm−1 and 3000–3300 cm−1. These bands
mainly showed spectral differences between vildagliptin and LAC themselves, but to some
extent, differences due to degradation involving the amine group of the drug as well. In
addition, other regions of variability were observed at 2800–2950 cm−1 (both PC1 and
PC2 bands were negative) and 1450–1350 cm−1 (PC1 band was negative while PC2 band
was positive). These bands visibly showed differences due to accelerated degradation
of vildagliptin in the presence of LAC. What is more, the band at 1550–1630 cm−1 in the
PC2 loading spectrum served as evidence of interactions involving the carbonyl group of
vildagliptin (Figure 12C).
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Figure 12. (A–C) Vildagliptin and lactose (LAC): mid-IR spectra of no stressed mixture (A), stressed
mixture (B) and PCA loadings of the spectra (C); PC1 loadings are marked black while PC2 loadings
are marked red; most visible differences in the spectrum of the stressed mixture are indicated
with circles.

When NIR spectra were analyzed by PCA, PC1 explained 99.30% of variability while
PC2 0.494%. PC1 variability was mainly connected with obvious spectral differences
between vildagliptin and LAC but some interactions with this excipient could also be
confirmed in respective spectra (Figure 13A,B). According to PC1 values, the main source
of variability was connected with an increase of absorbance in the region 6000–7000 cm−1
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(the first overtones of C-H, N-H and O-H) with a characteristic decrease at 6400 cm−1. In
addition, an increase of absorbance in the region 4700–5200 cm−1 (the first and second
overtones of C=O and the C-H and O-H combinations) was observed. When PC2 loadings
were considered, the main source of variability was connected with the wavenumbers
5300 cm−1, 4700 cm−1 (the N-H and O-H combinations) and 6500 cm−1 which could reflect
changes due to interactions of vildagliptin with LAC (Figure 13C).

Figure 13. (A–C) Vildagliptin and lactose (LAC): NIR spectra of no stressed mixture (A), stressed
mixture (B) and PCA loadings of the spectra (C); PC1 loadings are marked black while PC2 loadings
are marked red; most visible differences in the spectrum of the stressed mixture are indicated
with circles.
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2.4.2. Vildagliptin and MAN

After mixing vildagliptin with MAN, the signal of N-H and O-H vibrations of
vildagliptin at 3294 cm−1 were overlapped with respective peaks of MAN (3200–3300 cm−1).
In addition, a band of MAN at 1090 cm−1 deteriorated to 1076 cm−1, probably due to hydro-
gen bond formation between its -OH groups and -NH- group of vildagliptin (Figure 14A).
After stressing with high temperature and humidity, the peak corresponding to a sharp
band of CO from vildagliptin at 1658 cm−1 changed its shape (Figure 14B). For the mid-IR
spectra, PC1 and PC2 explained 63.30 and 21.50% of variability. The loading spectrum of
PC1 was dominated by a broad band at 3000–3500 cm−1 showing spectral differences that
occurred in the mixture of vildagliptin and MAN in these regions of the spectra. On the
other hand, the bands at 1450–1350 cm−1 where PC1 was positive and PC2 was negative,
and the broad band at 1650–2000 cm−1 in PC2 loading spectrum indicated some changes
due to accelerated degradation of vildagliptin in the presence of MAN (Figure 14C).

When NIR spectra were analyzed, a decrease of characteristic bands at 6500 cm−1

and 4700 cm−1 was observed, as a result of interactions of vildagliptin with MAN at high
temperature and humidity (Figure 15A,B). Inspecting PC values, it was concluded that
PC1 explained 99.30% of variability while PC2 0.641%. According to PC1 loadings, the
main source of variability was connected with an increase of absorbance in the region 5900–
7000 cm−1 and a characteristic decrease at 6400 cm−1. When PC2 value was considered,
the main source of variability was seen in the 5000–5800 cm−1 region (the first and second
overtones of C=O and the first overtones of C-H) (Figure 15C).

2.4.3. Vildagliptin and MGS

After mixing vildagliptin and MGS, a broad band of vildagliptin at 3294 cm−1 was
still clearly seen. Similarly, the band due to -COO- stretching of MGS at 1577 cm−1 was
not affected. Thus, the lack of interactions via hydrogen bonding between -NH- group
of vildagliptin and -COO- group of MGS was confirmed (Figure 16A). When the mixture
was stressed with high temperature and humidity, the peak due to the secondary amine of
vildagliptin did not change. However, other characteristic bands changed their shapes or
disappeared. It was clearly observed for bands of vildagliptin due to C=O vibrations at
1658 cm−1 and OH vibrations at 1404 cm−1. It was also observed that the bands of MGS
at 1577 cm−1 and 1505 cm−1 changed their shaped or disappeared (Figure 16B). When
mid-IR spectra were examined by PCA, the loading spectra of PC1 (50.80% of variability)
and PC2 (25.20% of variability) were dominated by the bands at 1400–1600 cm−1 and
2800–3000 cm−1, reflecting the differences in the spectra of individual vildagliptin and
MGS. The major difference between these PCs was that the intensities of the PC1 bands
were correlated positively while PC2 negatively. In addition, PC2 plot showed a new region
of variability from 1600 cm−1 to 1700 cm−1. It confirmed the changes due to degradation
involving CO group of vildagliptin. On the other hand, compatibility of vildagliptin with
MGS after storing at 25–40 ◦C/60–75% RH for four weeks was observed in the study of
Sravani et al. [26]. These discrepancies could be, at least in part, due to milder experimental
conditions and shorter degradation time in these previous experiments.

It was observed that the peaks of vildagliptin at 6500 cm−1 and 4700 cm−1 visibly
disappeared in the NIR spectrum of the stressed mixture (Figure 17A,B). Inspecting PCs
values for NIR spectra it was concluded that PC1 explained 99.60% of variability while
PC2 0.303%. According to PC1 value, the main sources of variability were connected
with increases of absorbance in the regions 4100–4300 cm−1 and 7100–7300 cm−1 (the first
overtones of N-H and O-H). However, there was a difference within the regions 4000–
4900 cm−1 (the combinations of NH and O-H) and 6000–6800 cm−1 (the first overtones of
N-H and C-H) where the PC1 values were negative. At the same time, visible differences
in these regions were seen in the spectra of the stressed mixture (Figure 17B). When PC2
values were considered, the main source of variability was connected with the region
4880–5300 cm−1 (the first and second overtones of C=O) (Figure 17C). At the same time,
the peaks of vildagliptin at 6500 cm−1 and 4700 cm−1 visibly disappeared in the spectrum
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of the stressed mixture (Figure 17B). Thus, some parts of variability in the stressed mixture
could be explained by both PC1 and PC2 values.

Figure 14. (A–C) Vildagliptin and mannitol (MAN): mid-IR spectra of no stressed mixture (A),
stressed mixture (B) and PCA loadings of the spectra (C); PC1 loadings are marked black while
PC2 loadings are marked red; most visible differences in the spectrum of the stressed mixture are
indicated with circles.
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Figure 15. (A–C) Vildagliptin and mannitol (MAN): NIR spectra of no stressed mixture (A), stressed
mixture (B) and PCA loadings of the spectra (C); PC1 loadings are marked black while PC2 loadings
are marked red, most visible differences in the spectrum of the stressed mixture are indicated
with circles.
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Figure 16. (A–C) Vildagliptin and magnesium stearate (MGS): mid-IR spectra of no stressed
mixture (A), stressed mixture (B) and PCA loadings of the spectra (C); PC1 loadings are marked
black while PC2 loadings are marked red, most visible differences in the spectrum of the stressed
mixture are indicated with circles.
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Figure 17. (A–C) Vildagliptin and magnesium stearate (MGS): NIR spectra of no stressed mixture (A),
stressed mixture (B) and PCA loadings of the spectra (C); PC1 loadings are marked black while
PC2 loadings are marked red; most visible differences in the spectrum of the stressed mixture are
indicated with circles.

2.4.4. Vildagliptin and PVP

After mixing vildagliptin and PVP, the band due to signals of OH and NH groups
of the drug at 3294 cm−1 was still clearly seen. However, the signal of C=O group of
vildagliptin at 1658 cm−1 was overlapped with the peak of PVP at 1650 cm−1 (Figure 18A).
When the mixture of vildagliptin and PVP was treated with high temperature and humidity,
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the changes concerning the peak at 3294 cm−1 were observed (Figure 18B). Based on these
changes we supposed that the amine group of vildagliptin could be affected in the presence
of PVP. In addition, the overlapped band of C=O stretching vibration of vildagliptin at
1658 cm−1 was visibly broadened. Thus, the carbonyl group of vildagliptin could also
be affected in the presence of PVP and accelerated degradation. The loading spectra
of PC1 (50.60% of variability) and PC2 (39.50% of variability) were dominated by the
bands at 2800–2950 cm−1 that scored positively for PC2 and negatively for PC1 values.
In addition, the bands in the 3300–3600 cm−1 and 1200–1330 cm−1 regions were clearly
seen (Figure 18C). All these PCs showed differences between the spectra of individual
vildagliptin and individual PVP. However, PC2 plot showed news regions of variability
at 3000–3300 cm−1 and 1600–1700 cm−1 (Figure 18C). Thus, some changes concerning the
amine and carbonyl groups of vildagliptin due to the presence of PVP and accelerated
degradation were supposed. On the other hand, compatibility of vildagliptin with PVP
was confirmed previously [26]. However, much lower temperature and shorter time
was then used for accelerated degradation and probably, some interactions had not been
occurred previously.

When the degraded mixture was analyzed by NIR method, visible changes occurred at
6400–6500 cm−1 and 5000–5100 cm−1 (Figure 19A,B). Inspecting PCs values for vildagliptin
and P it was concluded that PC1 explained 99.60% of variability while PC2 0.320%. PC1
and PC2 loadings plots were dominated by the bands at 4600–4700 cm−1, 4100–4400 cm−1

and 1600–1700 cm−1 where PC1 scored negatively while PC2 scored positively, and at
4700–5300 cm−1 where both PCs scored positively. The most of variability showed spectral
differences between vildagliptin and PVP themselves. However, characteristic bands in
PC loadings confirmed the changes due to chemical interactions, concerning vildagliptin
(6500 cm−1) and PVP (5150 cm−1).
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Figure 18. (A–C) Vildagliptin and polyvinylpirrolidone (PVP): mid-IR spectra of no stressed
mixture (A), stressed mixture (B) and PCA loadings of the spectra (C); PC1 loadings are marked
black while PC2 loadings are marked red; most visible differences in the spectrum of the stressed
mixture are indicated with circles.
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Figure 19. (A–C) Vildagliptin and polyvinylpirrolidone (PVP): NIR spectra of no stressed mixture (A),
stressed mixture (B) and PCA loadings of the spectra (C); PC1 loadings are marked black while
PC2 loadings are marked red; most visible differences in the spectrum of the stressed mixture are
indicated with circles.

3. Materials and Methods
3.1. Reagents and Chemicals

Vildagliptin, lactose (LAC), mannitol (MAN), magnesium stearate (MGS) and
polyvinylpirrolidone (PVP) from Sigma-Aldrich (St. Louis, MO, USA) and phenacetin (I.S.
for LC-UV method) from Marcmed (Lublin, Poland) were used. Solvents for chromatogra-
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phy were of HPLC or LC-MS grade, and were purchased from Merck KGaA (Darmstadt,
Germany) or Sigma-Aldrich. Deionized water was produced at our laboratory with a
Simplicity UV Water Purification System from Merck-Millipore (Burlington, MA, USA).
Other chemicals were of analytical grade and were supplied by POCh (Gliwice, Poland)
and Sigma-Aldrich. Galvus® tablets containing 50 mg of vildagliptin were produced by
Novartis Europharm (Basel, Switzerland).

3.2. Stability of Vildagliptin in Solutions
3.2.1. Accelerated Degradation

Equal volumes of 1 mL from the stock solutions of vildagliptin (1 mg/mL) were
dispensed to small glass dishes with matching glass stoppers and mixed with 1 mL of
respective stressors (1M HCl, 1M NaOH and 3% H2O2). The dishes were tightly closed
and stored in an air-conditioned room at 23 ◦C or placed in a thermo-stated water bath
set at 70 ◦C. The samples were analyzed subsequently after 30, 60, 90, 120, 150, 180, 210
and 240 min.

3.2.2. Kinetics

The concentrations of no degraded vildagliptin remaining after each time of degra-
dation or logarithms of these concentrations were plotted against time of degradation,
in order to obtain the equations y = ax + b and the determination coefficients R2, and in
consequence to determine the reaction order. The slopes of the obtained linear equations
were used for calculate further kinetic parameters, i.e., degradation rate constant (k) and
degradation time of 50% (t0.5).

3.3. LC-UV Method for Quantitative Measurements
Chromatographic Conditions

The analysis was performed with a model 515 pump, a Rheodyne 20 µL injector and a
model 2487 UV DAD detector controlled by Empower 3 software, all from Waters, Elstree,
England). The separation was carried out on a Purospher® RP-18 endcapped column
(125 × 4.0 mm, 5 µm) from Merck. The mobile phase was a mixture of 2 mM ammonium
acetate-acetonitrile (80:20, v/v) with the flow rate of 1.2 mL/min. The UV detection was set
at 210 nm. Selectivity of the method was examined by the determination of no degraded
vildagliptin in the presence of its degradation products as well as by the determination of
vildagliptin in the presence of excipients from the powdered tablets.

3.4. Analysis of Stressed Samples by LC-UV Method

After acidic, basic and oxidative degradation, the samples were immediately cooled,
neutralized if necessary and diluted to 3.0 mL. Then, 1.5 mL volumes were dispensed to
5 mL volumetric flasks, mixed with 0.20 mL volumes of the I.S. stock solution (1 mg/mL),
diluted to the mark with methanol and analyzed using the LC-UV method described
above. Concentrations of the remaining (no degraded) vildagliptin were calculated from
the mean calibration equation while percentage degradation was calculated from the initial
concentration of the drug.

3.5. UHPLC-DAD-MS Analysis

UHPLC-DAD-MS/MS was performed using a Dionex Ultimate 3000RS device (Dionex,
Sunnyvale, CA, USA). The chromatograph was coupled with a Bruker Amazon SL ion trap
mass spectrometer (Bruker Daltonik, Bermen, Germany) without splitting. The separation
was carried out using a Kinetex XB-C18 column (150 × 2.1 mm, 1.7 µm) from Phenomenex
(Torrance, CA, USA). The column was eluted with A: 0.1% formic acid in deionized water
and B: 0.1% formic acid in acetonitrile. The two-step gradient was used from 0% B to 30% B
in 13 min and 30% B to 65% B up to 20 min. The column temperature was maintained
at 25 ◦C with the flow rate set to 0.3 mL/min. The UV/VIS signal was recorded from
190 to 450 nm. The eluate was introduced directly to the mass spectrometer. The mass
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spectrometer was equipped with an ESI interface working in a positive ion mode with
settings as follows: capillary voltage 4500 V, endplate offset 500 V, nebulizer pressure 40 psi,
drying gas temperature 145 ◦C and gas flow rate 9 L/min. The instrument was used with
the smart parameter setting (SPS) fixed at 450 amu. The scan range was from m/z 70 to
m/z 2200. The MS/MS was switched on and two the most abundant ions were subjected
to fragmentation.

3.6. Stability of Vildagliptin in the Presence of Excipients

Solid mixtures of vildagliptin and four excipients, i.e., LAC, MAN, MGS and PVP were
prepared by mixing the components in an agate mortar at 1:1 ratio (w/w). The prepared
mixtures were dispersed as ca. 20 mg portions to standardized small flat vessels (the
thickness of the layer was approximately 3 mm) and placed in a climate chamber KBF-LQC
(Binder GmbH, Tuttlingen, Germany) at 60 ◦C and 70% RH for 60 days.

Mid-IR spectra were recorded on a Nicolet 6700 spectrometer (Thermo Scientific,
Waltham, MA, USA), equipped with a Smart iTR accessory. Reflectance NIR spectra were
measured using a Near IR Integrating Sphere from Thermo Scientific. After recording
background spectra, the samples weighing ca. 2 mg were analyzed over the range 4000–
800 cm−1 as mid-IR spectra and over 10,000–4000 cm−1 as NIR measurements. Each
spectrum was an average of four scans with a resolution of 4 cm−1.

All chemometric computations were performed using a free GNU R environment,
version 3.4.0. (R Foundation for Statistical Computing, Vienna, Austria). The spectra were
standardized with Standard Normal Variate (SNV) algorithm to remove random shifts and
random intensity changes, and to preserve only the shape information. PCA was done
without scaling because it is a standard strategy during spectral data analysis.

4. Conclusions

The results presented here complemented the current knowledge about chemical
stability of important antidiabetic drug vildagliptin. Due to the lack of respective data, the
results presented here are a valuable supplement to the literature resources. To reach more
definite conclusions, a few analytical techniques, i.e., LC-UV, UHPLC-DADS-MS, mid-IR
and NIR spectroscopy with chemometric assessement (PCA) were applied. For the first
time, kinetic parameters were calculated for degradation of vildagliptin in solutions of
different pH and oxidative conditions. In addition, three new degradants of vildagliptin
were detected. It could be especially important because vildagliptin and its related com-
pounds had not been mentioned in any of pharmacopoeias so far. Finally, the stability
of vildagliptin was examined in the presence of four excipients with different chemical
properties and all excipients were showed to be reactive. Thus, the final pharmaceutical
formulations containing vildagliptin should be projected and manufactured with special
regard to optimal choice of excipients, as well as storage conditions.

Supplementary Materials: The following are available online. Figure S1: Chromatograms from our
LC-UV method: (A) vildagliptin (tR = 1.948 min) and I.S. (8.182 min) in the calibration solution;
(B) vildagliptin and I.S. in the presence of vildagliptin degradation products after degradation in al-
kaline medium at 23 ◦C; (tR = retention time); Figure S2: MS and UV/VIS spectra of Imp 1.; Figure S3:
MS and UV/VIS spectra of Imp 2; Figure S4: MS and UV/VIS spectra of Imp 3; Table S1: Results for
the robustness study of our LC-UV method for the determination of vildagliptin (V); (n = 3).
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