
molecules

Review

Glycosaminoglycan-Based Cryogels as Scaffolds for Cell
Cultivation and Tissue Regeneration

Annika Wartenberg *, Jürgen Weisser and Matthias Schnabelrauch *

����������
�������

Citation: Wartenberg, A.; Weisser, J.;

Schnabelrauch, M.

Glycosaminoglycan-Based Cryogels

as Scaffolds for Cell Cultivation and

Tissue Regeneration. Molecules 2021,

26, 5597. https://doi.org/

10.3390/molecules26185597

Academic Editor: Shan-hui Hsu

Received: 17 August 2021

Accepted: 12 September 2021

Published: 15 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Biomaterials Department, INNOVENT e.V., Pruessingstrasse 27B, 07745 Jena, Germany; jw1@innovent-jena.de
* Correspondence: aw@innovent-jena.de (A.W.); ms@innovent-jena.de (M.S.);

Tel.: +49-3641-2825-29 (A.W.); +49-3641-2825-12 (M.S.)

Abstract: Cryogels are a class of macroporous, interconnective hydrogels polymerized at sub-zero
temperatures forming mechanically robust, elastic networks. In this review, latest advances of
cryogels containing mainly glycosaminoglycans (GAGs) or composites of GAGs and other natural
or synthetic polymers are presented. Cryogels produced in this way correspond to the native
extracellular matrix (ECM) in terms of both composition and molecular structure. Due to their
specific structural feature and in addition to an excellent biocompatibility, GAG-based cryogels have
several advantages over traditional GAG-hydrogels. This includes macroporous, interconnective
pore structure, robust, elastic, and shape-memory-like mechanical behavior, as well as injectability
for many GAG-based cryogels. After addressing the cryogelation process, the fabrication of GAG-
based cryogels and known principles of GAG monomer crosslinking are discussed. Finally, an
overview of specific GAG-based cryogels in biomedicine, mainly as polymeric scaffold material in
tissue regeneration and tissue engineering-related controlled release of bioactive molecules and cells,
is provided.

Keywords: cryogels; cell scaffolds; tissue engineering; glycosaminoglycans; hyaluronan; chondroitin
sulfate; heparin; drug delivery

1. Introduction

Cryogels are three-dimensional, sponge-like network structures with interconnecting
pores [1–5]. The gel-like structures are commonly synthesized by a crosslinking process
from reactive monomers and/or polymeric precursors at sub-zero temperatures. While
the crosslinking process takes place, ice crystals, formed from the liquid phase, acting as
pore-forming agents (porogens). As a result of this process, a material architecture quite
similar to the native structure of the extracellular matrix can be formed [6].

With the help of this rather simple and easily reproducible process, soft but also
mechanically rigid networks can be generated. Those networks contain a system of inter-
connecting micro- and macro-pores ranging between 1 and 200 µm [7,8].

Potential applications of cryogel materials in biomedicine cover numerous biological
processes of immobilization, separation, release of active biomolecules, molecular imprint-
ing and sensing, and last but not least, tissue regeneration and engineering [6–9]. In the
early years of cryogel research, the focus of interest was mostly on synthetic polymers [10].
Currently, natural polymers known for their high cell compatibility and hydrophilic prop-
erties have received increased attention.

It is the aim of this work to first provide a current overview of the synthesis of
glycosaminoglycan (GAG)-based cryogels. Own activities for the preparation of photo-
cross-linkable cryogels will also be included. Furthermore, specific features of GAG-
containing cryogels will be considered and potential applications of these materials as
scaffolds in soft tissue engineering and related fields will be discussed.
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2. Principles of the Cryogelation Process

In a typical cryogelling process [5,9], an aqueous gel solution is cooled down to −5
to −20 ◦C. At this temperature range, most of the solvent crystallizes and only a small
part remains in the liquid phase. In this liquid phase, dissolved monomers/macromers are
concentrated and form physically or chemically linked network structures, mainly through
chemical crosslinking. After a suitable period of gelation, i.e., crosslinking reaction, the
mixture is thawed to room temperature, forming the three-dimensional, porous, and highly
interconnective architecture of the cryogel. The whole process is schematically shown in
Figure 1.
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Figure 1. General scheme of the cryogelling process.

Since the procedure usually takes place in water or aqueous solution, there is no
need for time-consuming, complete removal of porogens. This is a major advantage
since used porogens are often incompatible or even cytotoxic for cells. Compared to
conventional hydrogels, which have long been discussed as carrier materials for soft tissue
engineering, cryogels have the advantage that the macroporous interconnecting structure
is an essential prerequisite to facilitate angiogenesis or to enable vascularization from
endothelial precursor cells, their supply with nutrients, and the removal of waste products
from the cells [7,9].

Although the production of cryogels is a rather simple technology requiring compar-
atively little time and effort, there are numerous parameters that determine the physical
and, consequently, the related biological properties [9,11]. These variables include the gel
composition (type of cross-linkable educts, concentration), the type, degree, and rate of
crosslinking, the temperature of gelation, and the rate of freezing [6].

Natural polymers, including polysaccharides such as agarose, alginate, chitosan, and
dextran, as well as proteins such as gelatin, collagen, or silk, have already been widely used
in cryogel production for biomedical applications due to their excellent biocompatibility
with eliciting minimal immune response [6–9].

3. Overview of GAG-Based Cryogels

With regard to applications as cell matrices or scaffolds in tissue engineering and
regeneration, highly porous cryogels containing inter-connective macropores with diam-
eters mostly above 50 µm are of special interest. Further essential requirements of cell
scaffolds are a high cytocompatibility of the cryolgels, a sufficient mechanical stability or at
least mechanical integrity, the possibility to sterilize the scaffold prior to use, and for most
applications, also a controlled degradability over time.

Glycosaminoglycans (GAGs) are a family of natural, negatively charged unbranched
heteropolysaccharides composed of disaccharide repeating units. Glycosaminoglycans
(GAG) and many of their derivatives are known for their innate cytocompatibility. Besides
other macromolecules such as proteins, GAGs are part of the extracellular matrix (ECM)
providing structural and biochemical support to the embedded and surrounding cells.
Structurally, the ECM forms a three-dimensional network of nm-sized protein fibers, mainly
based on collagens and elastin, that are surrounded by and embedded in a hydrogel mainly
consisting of GAGs and proteoglycans, a group of protein-linked GAGs [12]. As three-
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dimensional polymeric scaffolds, GAG-based cryogels can perfectly mimic the ECMs of
different tissues or at least their gel-like basic hydrogel “ground substance”.

The entire GAG family includes hyaluronan (HA) as the only non-sulfated member,
as well as chondroitin sulfate (CS), dermatan sulfate, keratin sulfate, heparan sulfate, and
heparin (HE). Due to the limited accessibility of individual GAG members, only cryogels of
HA, CS, and HE have been described so far, which will be discussed in more detail below
(see Figure 2 for chemical structures).
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Figure 2. Chemical structures of GAGs used for the preparation of cryogels.

Due to the polyfunctional character of GAGs, they have numerous functional and
easily modifiable groups at their polymer backbone for the introduction of cross-linkable
and cell adherence and cell proliferation stimulating moieties. A further advantage of
GAGs is their hydrophilic character, allowing them to absorb high volumes of tissue fluids
and facilitate cell penetration. Consequently, numerous cryogels based on different GAGs
or GAG-derivatives have been described in recent years for applications as polymeric
scaffold materials. An overview of different cryogels prepared on the basis of HA, CS, and
HE and their derivatives, respectively, is provided in Tables 1 and 2.

Table 1. Overview on relevant publications using hyaluronan (HA)-based cryogels.

GAG Further Polymer Crosslinking Properties Applications References

HA - EGDE Large, interconnected macropores
(diameters > 100 µm)

Structure-property
study

[13,14]

Collagen (Col) Decreased swelling with higher
Col portion

Dermal fibroblast
cultivation

[15]

HA Halloysite nanotubes
(HNTs, Al2Si2
O5(OH)4·nH2O)

Divinyl sulfone Pores size from 50 to 500 µm. Increase in
HNT-content enhances mechanical
stability, haemocompatible, promoting cell
viability, and proliferation

Cell carrier for
mesenchymal stem
cells and different
cancer cells

[16]

HA
-

EDC
Average pore size 18 to 87 µm (large
macropores); wide range of elasticity,
porosity > 90%, high extensibility,
moderate toughness

Soft tissue
engineering

[17]

Gelatin (Gel) Adipose tissue
engineering

[18]

Gel (+glucosamine,
GlcN)

GlcN affects proliferation, and
chondrogenic phenotype

Cartilage tissue
engineering

[19]

HA - Genipin Interconnected macropores (~100 µm),
elastic, low cytotoxicity

Cell culture
scaffold, wound
healing

[20]

HA Chitosan PEC formation Highly interconnected pore network,
porosity: 87%, average pore size: 77 µm,
Young’s modulus: 0.2 MPa (dry state)

Mimic of
glioblastoma micro-
environment
ECM

[21]

Glutar dialdehyde Porosity > 90%, mean pore size 150–200
µm, high swelling ratio, highly elastic,
cytocompatible

Cell culture
scaffold

[22]

HA Atelocollagen PCl-di-NCO Dimensionally stable, elastic, high
porosity (>93%), hemocompatible

Wound healing [23]
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Table 1. Cont.

GAG Further Polymer Crosslinking Properties Applications References

HA-
methacrylate - Electron

beam-initiated
polymerization

Interconnected pores (~70 µm),
mechanically stable

Soft tissue
engineering

[24,25]

HA-acrylate Main pore size 70–120 µm, high elasticity,
excellent swelling

Skin regeneration,
wound healing

[26]

HA-
methacrylate

-/Gel-methacrylate
Free radical
polymerization
(APS/TEMED)

Maintaining shape for 30 days in vitro and
in vivo

Skin sculpting,
injectable
shape-memorizing
filler

[27]

Gel-methacrylate Macroporous, injectable, improved cell
adhesion of biocomposite

Cell carrier [28]

Gel-methacrylate,
N, N-
dimethylacrylamide

Mechanically robust,
high frictional resistance

Biomedical
application

[29]

Gel-methacrylate,
4arm-PEG-acrylate

Mechanically robust, injectable, printable Adipose tissue
engineering

[30]

Dextran-
methacrylate

Mechanically robust,
Porosity: 80–93%, pore size: 50–135 µm

Tissue engineering
scaffold

[31]

HA-
methacrylate

-/Gel-methacrylate UV-Photo-
crosslinking (365 nm,
Irgacure 2959)

Macroporous, highly permeable gel
structure

Cell encapsulation
(chondrocytes,
hMSCs)

[32]

HA-
furfurylamide

PEG-bis(maleimide)
(+mono/disaccharides)
(+dyes, bioactive
ligands)

Diels-Alder reaction Mean pore sizes 10–30 µm, optically
transparent cryogels, Immobilization of
dyes, bioactive molecules

Biomimetic cell
culture models
with 3D spatial
control of cellular
response

[33,34]

EDC: 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide; EGDE: ethylene glycol diglycidyl ether; APS/TEMED: ammonium
persulfate/N,N,N′,N′-tetramethylethylenediamine.

Table 2. Overview on relevant publications using chondroitin sulfate (CS)- and heparin (HE)-based cryogels.

GAG
Further
(Co)Polymer Crosslinking Properties Applications References

CS HA/Gel EDC Open connected pore morphology
(diameter: 100–350 µm)

Cartilage tissue
engineering

[35]

HA/Gel/Chitosan Chitosan incorporation increases elastic
modulus (stiffness) and toughness; pore
diameter: 100–500 µm; cultivation of
chondrocytes from rabbit knee
articular cartilage
Dynamic cultivation of porcine
chondrocytes and adipose-derived stem
cells under cyclic loading

[36]

CS HA/Gel/
Chitosan/PVA

Glutar dialdehyde Unidirectional freeze-drying (pore size:
10–210 µm vertical and 20–160 µm
transverse section, respectively), porosity
93–98%

Tracheal scaffold
fabrication

[37]

CS-methacrylate Gel-methacrylate Free radical
polymerization
(APS/TEMED)

Inter-connected macroporous structure;
pore diameters about 89 µm; compressive
modulus about 38 kPa; supports
chondrocyte phenotype and cellular
distribution; subcutaneous implantation
of cell-laden cryogel in mice led to dense
deposition of cartilage-specific
ECM molecules

Cartilage tissue
engineering

[38]

CS-methacrylate PEG-diacrylate Free radical
polymerization
(APS/TEMED)

Formation of penetrating polymer
network (IPN); ChS-based cryogel showed
elevated elastic modulus compared to
HA-based system; pore diameter of about
63 µm

Cartilage tissue
engineering

[39]

HE 4arm-PEG-NH2 EDC/Sulfo-NHS

Macroporous, interconnective
3D-architecture, pore size ranges between
10 and 80 µm; cryogels behave
mechanically comparable to the native
ECM of soft tissue, showing locally a high
resistance to mechanical stress but low
bulk stiffness

Endothelial cell
cultivation

[40]

Carrier for
pancreative islets

[41]

Cancer
immunotherapy

[42]

Cytokine release to
the brain

[43]

stem cell culture;
RGD-modification-mediated cell adhesion

Neural cell
cultivation

[44,45]



Molecules 2021, 26, 5597 5 of 21

Table 2. Cont.

GAG
Further
(Co)Polymer Crosslinking Properties Applications References

HE Gel EDC/Sulfo-NHS Microporous, interconnective architecture
stable against enzymatic degradation;
injectable

Neovascularization;
cell carrier

[46]

Gel/Whitlockite stem cell differentiation Bone tissue
engineering

[47,48]

HE Chitosan;
PVA;
Hydroxyapatite
(HA)

Glutar dialdehyde Large continuous interconnected pores,
slowly degradable network, with 10% HA
mechanically stable for bone implantation

Scaffold for growth
factor (e.g., BMP-2)
delivery

[49]

HE-methacrylate Alginate-
methacrylate;
PEG-acrylate-
RGD

APS/TEMED Interconnected porous structure, increase
in shape recovery of coated hybrid grafts,
enabling cell adherence and growth

Cryogel coating of
prosthetic grafts

[50]

PVA: Poly(vinyl alcohol): PEG: Poly(ethylene glycol); Sulfo-NHS: N-hydroxysulfosuccinimide; RGD: Trimeric cell attachment sequence
(Arg-Gly-Asp).

4. Preparation of GAG-Based Cryogels
4.1. Physical Crosslinking

GAG are typical polyanions enabling polyelectrolyte complex (PEC) formation with
polycations such as chitosan or other cationic amino-group-containing synthetic polymers.
Although physical crosslinking normally results in rather weak interactions, the described
physical crosslinking between polymeric HA and chitosan chains leads to a dimensionally
stable construct even after one week of incubation [22]. Physical crosslinking is also known
for other ionic polysaccharides such as pectin [51], and even non-charged polysaccharides
such as cellulose [52].

4.2. Chemical Crosslinking

Due to the known disadvantages of physical crosslinking, such as poor mechanical
stability, difficult adjustability of the pore size, and the often-rapid degradation behav-
ior, many researchers use chemical methods of crosslinking [53,54]. Several common
low-molecular crosslinking agents such as diepoxides [15], glutar dialdehyde [23,37,49], di-
vinylsulfone [17], or water-soluble carbodiimides (e.g., 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide) [18–20,35,36], mostly in the presence of N-Hydroxysulfosuccinimide (Sulfo-
NHS) [40–48], have also been used for the preparation of GAG-based cryogels. Besides those
low-molecular-weight crosslinkers, also oligomeric bifunctional crosslinkers, for example a
polycaprolactone-based diisocyanate (PCl-di-NCO) and poly(ethylene glycol)bis-maleimide
(PEG-bis(maleimide)), have been used to initiate crosslinking by urethane formation [23] and
a Diels−Alder click-crosslinked reaction with a furan-modified HA [33,34], respectively.

Due to their polyfunctional character, the introduction of reactive, network-forming
groups such as acrylic or methacrylic moieties into the different GAG molecules is a rather
simple modification reaction, providing (macro)monomers able to undergo free radical
polymerization reactions, yielding crosslinked derivatives. Figure 3 shows an example
for the introduction of reactive functional groups into the HA backbone. In the upper
reaction, acrylate groups are used, which are able to initiate a free radical polymerization
reaction [55], and in the lower reaction, furan groups are inserted, able to undergo a
Diels–Alder reaction with activated dienophils [33,56].
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Figure 3. Introduction of reactive functional groups into GAGs, shown exemplarily with HA.

The free radical polymerization is a three-step process covering an initiation step,
the propagation (increasing the polymeric chain length), and termination (ceasing the
reactive intermediate in the chain propagation step) within the nonfrozen liquid phase
surrounding ice crystals. In a classical way, the polymerization is initiated by adding a
radical-forming substance such as a peroxide or an azo compound. To promote an efficient
radical formation, normally, temperatures above room temperature are required.

In the case of cryogelation at sub-zero temperatures, promoters such as tertiary amines
have to be added to accelerate radical formation. A commonly used initiation system is
ammonium persulfate/N,N,N′,N′-tetra-methylethylenediamine (APS/TEMED) [57,58],
often also used in GAG cryogelation [27–30,38,39,50]. Problems with this approach are that
the reaction may start as soon as the initiator is added to the solution, which may result in
inhomogeneous cryogel structures. The used amine promoter may also cause cytotoxic
effects and has to be completely removed from the final product. The use of electron-beam
irradiation to initiate radical formation is another method avoiding the use of radical-
forming chemicals. The preparation of cryogels based on synthetic polymers [59], but also
on polysaccharide- [60] and GAG-methacrylates [24–26], by this fast and efficient method
has been reported. Photoinitiated free radical polymerization using UV (200–400 nm) or
visible (400–800 nm) light is another option to crosslink (meth)acrylated polymers and
is often used in the preparations of tissue engineering scaffolds [61,62]. In recent years,
considerable work has been investigated in the development of water-soluble, non-toxic
photo-initiators [63].

4.3. Specific Structural Features of GAG-Based Cryogels

With regard to the polyfunctional character of GAGs with different functional groups
(especially OH-, NHCOCH3-, COOH-, SO3-groups), a three-dimensional network is formed
by hydrogen bonding, contributing to a mechanical stabilization of the formed cryogel
networks [64] (for possible formations of hydrogen bonds in HA, see Figure 4). Proper
adjustment of the pH value of the aqueous solution during the cryogel preparation is
therefore an important fabrication parameter.
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There exist several pathways for cryogel functionalization: (i) by direct synthesis from
monomers or prepolymers, (ii) by introducing functional groups into cryogels after their
formation, or (iii) by fabrication of composite cryogels containing different co-comonomers
and/or nanofillers [65]. In terms of GAG-containing cryogels, they need the generation of
hydrophilic and highly functional networks that are particularly compatible with living
cells and have a strong ability to interact with biomolecules, especially with peptides
and proteins.

As already summarized by Gun’ko et al. [66], cryogelation from polymers dissolved
in water is based particularly on the effect that the freezing water forms pure ice crystallites
and results in a more concentrated phase containing the organic components, that does
not freeze up to −30 ◦C. Polymerization in this phase forms the walls of the cryogel, and
the amount of water in the crystallites determines the porosity, ranging from nanopores
(<0.1 µm) over micropores to macropores (>100 µm) [66]. Due to the presence of inter-
connected macropores, full hydration is achieved rather quickly in sponge-like cryogels
compared to non-porous hydrogels. After complete hydration, the pores of a cryogel
become rounded, despite the sharp-edged nature of the solvent crystals that formed them,
due to surface tension at the liquid/pore wall interface [1].

Compared to other techniques providing porous scaffold materials, including salt/
particle leaching [67], phase separation processes [68], gas foaming [69], or solid freeform
fabrication [70], cryogelation tends to be a time- and resource-efficient method.

4.4. Fabrication Aspects

From a technical point of view, depending on the gel preform, cryogels can be pro-
duced in different sizes, shapes, and dimensions, as shown in Figure 5. However, fabri-
cation of a continuous structure of very large shape by the cryogelation process is rather
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difficult to achieve, and the problem of limited control over the morphology of large cryogel
structures exists [71]. Furthermore, cryogel mixtures can also be used as coatings for im-
plant devices such as prosthetic grafts to deliver biologics combined with an antithrombotic
agent [50].
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5. Adjustable Application Properties of GAG-Based Cryogels

A number of different process parameters in cryogel synthesis can be easily controlled
with regard to the desired properties of the resulting cryogel materials. The most important
adjustable parameters and their impact on cryogel features and properties are summarized
in Table 3.

Table 3. Adjustable process parameters of cryogel synthesis and their effects on cryogel features [8,9].

Parameter Effect References

Polymer content/
polymer molecular weight

Gel solutions of lower molecular weight polymers result in
the formation of larger pores compared to gel solutions of

larger molecular weight polymers.
Solutions of higher polymer concentration give a smaller

average pore size.

[72–75]

Crosslinking

Affecting both the stiffness of the cryogel and also the
degree of swelling, which in turn impacts on the elastic and

mechanical properties.
Physical crosslinking: Normally, cryogels with small pore

sizes (<100 µm) are formed, and their mechanical strength is
inversely correlated with the thawing rate—takes place

during the thawing stage.
Chemical crosslinking: Commonly larger pore size

(>100 µm), improving mechanical stability—occurs during
the storage of the solution at the given temperature.

[8,9,76,77]

Cryo-concentration (reaction
constituents)

Decreasing the cryo-concentration lowers the critical
concentration required for gelling. Increased

cryo-concentration increases elasticity
[78]

Cryogelation temperature Lowering the cryogelation temperature leads to smaller
pores, and to thinner and smaller pore walls [79–82]

Cooling rate
If the rate of crosslinking proceeds slower than the solvent

crystallization, polymerization will generate cryogels of
larger pore size; preparation of aligned pore structures

[46,83–86]

Charge density Increasing the charge density results in a decreased pore size [10]

5.1. Porosity and Interconnectivity

For cell culture materials, pore sizes in the range of 50–200 µm are advantageous. By
varying the freezing temperature and thawing process as well as the concentration of the
starting materials, the pore size and density can be controlled in a targeted manner.
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In our own work, we synthesized various cryogels from acrylated HA (HA-A),
methacrylated CS (CS-MA), and methacrylated dextran (Dex-MA), as well as mixtures
of HA-A and Dex-MA with polyethylene glycol diacrylate (PEGDA) and CS-MA with
Dex-MA (for chemical structure, see Figure 6). Pure PEGDA cryogels were prepared
in comparison. We used LAP (lithium phenyl-2,4,6-trimethyl-benzoyl-phosphinate) for
crosslinking, which is a non-toxic, water-soluble, easy-to-use photo-initiator in the UV and
also visible light range [87]. Cryogels with a diameter of 1.2 cm and a height of 1 cm were
manufactured.
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Figure 6. Chemical structures of GAG, polysaccharide (dextran), and crosslinker components used
for cryogel preparations.

The values for the pure density and open and closed cell content of the different
prepared cryogels have been measured using a gas pycnometer. Results are provided in
Table 4.

Table 4. Comparison of pure density and open and closed cell content of different types of cryogels.

Cryogel Type
Cryogel

Concentration
(% w/w)

Pure Density
(g/cm3)

Open Cell
Content (%)

Closed Cell
Content (%)

PEGDA 10 1.14 90.20 9.80
HA-A (DSA

1 = 0.2) 2.5 1.49 97.04 2.96
HA-A/PEGDA (1:4) 10 1.91 93.67 6.33

Dex-MA (DSMA
1 = 0.5) 10 2.37 94.81 5.19

Dex-MA/PEGDA (1:4) 10 1.82 92.95 7.05
CS-MA (DSMA

1 = 0.5) 20 2.43 95.64 4.36
CS-MA/Dex-MA (1:1) 10 2.2 95.69 4.31

1 DSA, DSMA: Average degree of substitution (DS) with acrylate (DSA) or methacrylate (DSMA) groups related to
an anhydrosugar repeating unit.

The percentage of closed cell content was between 3% and 10% for all cryogels with a
starting material concentration of 10% w/w, whereas the percentage of open cell content
was correspondingly at 90–97%. A higher initial concentration of the same material led to
a higher pure density and a higher proportion of closed cell content. The pure density of
the cryogels varied between 1.1 and 2.4 g/cm3, with the biopolymers Dex-MA and CS-MA
clearly being the highest. The largest proportion of open cell content was found in the
HA-A gel, as the initial concentration was lowest here at 2.5% w/w. Theoretically, the
proportion of closed cell content in the gel made of 20% w/w CS-MA should be higher than
in the gels with 10% w/w material concentration. However, the geometric volume of these
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CS-MA gels was significantly larger than the volume of the other gels, despite the same
production process. This might have led to the loosening of the pores and thus to a lower
proportion of closed cells. These gels also showed the highest swelling values.

Using scanning electron microscopy, the morphology of the cryogels can be visualized
and the mean pore size estimated (see Figure 7). It was found that the internal pore
structure of the individual gels varied greatly. For example, pure PEGDA gels showed
symmetrical pores in the interior in the range of 20–80 µm. On the surface, however,
only small pores of 10–20 µm were visible. In contrast, the pore sizes of pure biopolymer
cryogels were difficult to be determined because the gels were compressed during cutting.
Figure 7 shows that the cryogel surfaces of PEGDA and Dex-MA contained only a few
small pores. In contrast, HA-A and CS-MA gel surfaces were as porous as the fracture
surfaces and had a sponge-like basic structure with pore sizes of 10–60 µm.
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5.2. Mechanical Properties

The mechanical properties of cryogels are mainly influenced by parameters such as
the degree of crosslinking, the porosity/pore size, and the use of additives to fabricate
composite cryogels. With regard to conventional hydrogels of comparable composition,
cryogels often exhibit superior mechanical properties [8]. For applications requiring higher
mechanical resilience or improved elasticity, it is possible to prepare polymeric cryogel
blends from various GAG and other natural or synthetic polymers [39,88]. This is especially
important for injectable cryogels. Furthermore, hybrid cryogels can also be generated from
GAG and nanoscopic fillers [16,48].

In Figure 8, the compressive strength at 50% deformation of cryogel cylinders pre-
pared from different GAG and dextran compositions respectively (see Table 4), has been
determined. It was confirmed that cryogels with higher crosslinking density (higher DS)
or higher monomer concentration also showed higher mechanical strength. By adding
PEGDA, the pure biopolymer gels became softer and partially showed shape memory
properties. Depending on the starting polymer, the compressive strengths were in the range
of 20–1300 kPa, with compression modules of 30 to 4700 kPa. The greatest compressive
stresses as well as Young’s moduli of freshly produced cryogels were found with Dex-MA.
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Figure 8. Mechanical strength at 50% deformation and compression modules of GAG-based cryo-
gels in comparison to polysaccharide and synthetic polymer-based cryogels are shown. PEGDA
= polyethylene glycol diacrylate; HA-A = hyaluronan acrylate; Dex-MA = dextran methacrylate;
CS-MA = chondroitin sulfate methacrylate.

5.3. Anisotropic Morphology

Numerous biological gel-like tissues possess an anisotropic hierarchical morphology,
resulting in extraordinary mechanical properties. In contrast, those isotropic morphologies
can only hardly be mimicked by synthetic hydrogel materials. During recent years, several
strategies, including ionotropic gelation [89], 3D-bioprinting [90], electrospinning [91], and
even unidirectional freezing [37,92], have been presented to prepare polysaccharide-based
cryogels with anisotropic properties. A custom-designed device showing the fabrication
process of biopolymer scaffolds with an oriented pore system by unidirectional freezing is
shown in Figure 9. It has to be mentioned that the unidirectional freezing process can be
used not only for biopolymers such as proteins, various polysaccharides, and GAGs, but
also for different synthetic polymers such as waterborne polyurethanes [93].
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5.4. Stimuli-Responsive Behavior

Another attractive feature already known from hydrogels is the stimuli-responsive
behavior of cryogels, which can be initiated by an external physical or chemical trigger such
as biological stimuli (e.g., antigens, ligands, enzymes, or small-molecule concentrations
such as glucose, nucleic acids), changes in the environment (pH, ionic strength, or molecular
species), or physical signals such as temperature, pressure, light, electric, or magnetic
fields [94–96]. Bond cleavage, bond formation, swelling/deswelling, and conformational
changes are common responses of such gels. In recent years, there has been a growing
interest for stimuli-responsive cryogels based on polysaccharides and also GAGs for the
development of drug delivery systems [97] and scaffolds for tissue engineering [8,71].

6. Applications of GAG-Based Cryogels as Scaffolds in Cell Culture and
Tissue Engineering

The compositional and structural similarity of GAG-based cryogels to the native ECM
combined with their excellent biocompatibility of GAGs and most GAG derivatives make
cryogels promising scaffold materials for tissue regeneration and engineering. Previous
sections of this manuscript have already referred to relevant reviews. Despite the multitude
of work on cryogels, we would like to highlight here the major fields of application and
the specific advantages of GAG-based cryogels as scaffolds in cell cultivation and tissue
engineering. It should be mentioned that in numerous described applications, composite
cryogels made of GAG components with protein-based materials are used [98–100].

6.1. Cell Culture

It was recently demonstrated by the group of Bencherif [28] that cryogels based on
hyaluronan (HA) and gelatin provide a mechanically robust, cell-responsive, macroporous,
and injectable platform for the cultivation of various cell types. In this study, fibroblasts
and bone marrow-derived dendritic cells have been used. In addition to the known GAG
properties, a remarkable advantage of the cryogel system lays in the injectability of a
cuboid-shaped cryogel material through a conventional 16-gauge needle. After injection,
the deformed cryogel returned to its original shape and surrounding water was reabsorbed
into the gel [28]. HA-co-gelatin cryogels have also been used for the cultivation of chondro-
cytes and human mesenchymal stem cells (hMSCs) respectively [27], and also of specific
epithelial cells [101].
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Furthermore, cryogels based on HA and heparin (HE) also represent biomimetic
ECMs to study cancer cell invasion and cell–cell as well as cell–matrix communications
of migration in the context of remodeling of the cancer cell microenvironment [102,103].
This understanding, in combination with drug screening experiments, may support the
discovery of more efficacious drug targets [102].

6.2. Cartilage Tissue Engineering

Due to the absence of vascularization and its limited self-repair ability, cartilage is
an important target for tissue engineering. Cartilage injuries are caused by trauma, ag-
ing, congenital diseases, or tumor removal. Osteoarthritis, a common joint disorder, is
causing tremendous disruption in the patients’ livelihood and daily activities, with many
millions of cases worldwide [8]. Although several strategies in cartilage repair, including
autologous chondrocyte implantation [104], are currently successfully employed, some
drawbacks such as donor-site morbidity, lack of integration, and unmatched properties
of the repaired regions limit their application [8]. Biodegradable scaffolds, especially
those composed of ECM-containing components such as GAGs have been continuously
investigated for cartilage development due to their unique biophysical and biomechanical
properties [105]. Recently, both HA- [19] and chondroitin sulfate (CS)-based [35,36,38,39]
cryogel scaffolds for cartilage tissue engineering have been fabricated. The addition of
glucosamine into HA-co-gelatin cryogels can serve as a biological cue for maintaining the
chondrogenic phenotype [19]. In another attempt, chitosan was added to HA/CS-co-gelatin
scaffolds to enhance the mechanical stability of cryogels under dynamic compression con-
ditions during cultivation [35,36]. Han et al. developed ECM-based macroporous cryogels
from either methacrylated chondroitin sulfate (CS-MA) or methacrylated HA (HA-MA)
crosslinked with gelatin methacrylate or poly(ethyleneglycol) diacrylates (PEGDA) [38,39].
Applying the methacrylated components, the mechanical stability of the cryogels could
be significantly improved. Concerning the PEGDA-crosslinked cryogels, expression of
cartilage-related genes and accumulation of respective proteins was observed, and after
implantation of the scaffolds in mice, led to the formation of a densely interpenetrating net-
work supporting homogeneous cell distribution. Together with the found cartilage-specific
ECM productions, the great potential of these cryogel scaffolds becomes clear [8,39].

6.3. Skin Regeneration and Wound Healing

In the skin, GAGs are the main components of the ECM in the epidermal, dermal,
and hypodermal layers, mainly responsible for the mechanical strength and resistance
against wounding. They act in a complex three-dimensional network with other molecules
of the connective tissue such as collagen and elastin [106]. The presence of natural macro-
molecules such as GAGs and various proteins makes the use of such biopolymers useful
for the fabrication of scaffolds in skin engineering and wound healing carriers. Some
commercially available skin substitutes such as Hyalomatrix®, Hyalofill®, or Integra®

also contain GAG components, such as HA-ester and CS. During the fabrication of the
collagen-CS membrane of Integra®, a cryogelation step was also employed to provide the
porous structure of this membrane [107].

During recent decades, several cryogel matrices with both HA and heparin (HE) as
GAG components have been proposed for skin regeneration using crosslinking
methods [15,20,23,40]. (Meth)acrylated HA derivatives [26,27] have also been developed.
In the work of Thönes et al. [26], crosslinking was performed by E-beam initiation, omitting
the addition of any toxic polymerization initiator or amine accelerator. Sterile, highly elastic
scaffolds with adjustable pore size, excellent swelling, and low flow resistance properties
have been obtained. Human dermal fibroblasts have been cultivated for at least 28 days
throughout the cryogels, finding deposition of their own matrix in the pores. Moreover,
key modulators of dermal fibroblasts during wound healing such as TGF-β and PDGF
efficiently stimulated the expression of wound healing-relevant genes [26].
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6.4. Nerve Reconstruction and Tissue Engineering

GAGs and other natural polymers have enjoyed widespread application in neural
tissue engineering, supporting neurite outgrowth, differentiation, and proliferation on
different substrates [108,109]. HA hydrogels enhance the survival rates and proliferation of
neural precursors, holding great promise for peripheral nerve regeneration therapies [110]
and therapeutic approaches to the central nerve system [111]. Due to the current limitations
of autologous and autologous grafts, including morbidity, neuroma formation, scarring,
sensory loss, and pro-inflammatory immune response [8], tissue engineering approaches
based on hydrogels, and also cryogels that enable nerve regeneration or replacement at the
site of injury, are gaining increasing attention [112].

It is already known that GAG-based hydrogels influence the adhesion and differentia-
tion of neural progenitors, opening a new path for therapies targeting neurodegenerative
diseases [108]. From this point of view, recently synthesized conductive hydrogels and
cryogels [113,114] also represent a new therapeutic approach.

In recent years, a cryogel platform made of HA [115] and HE [44,45] respectively, and
starPEG was created covering several aspects of neural regeneration, spanning from nerve
guidance conduits for mediating axonal recovery to cell scaffolds for neural, muscle, or
stem cells, up to spatiotemporal release of therapeutic agents to support the recovery of
damaged CNS tissue [116].

6.5. Further Cryogel Applications in Soft Tissue Regeneration

Due to the constant clinical need for reconstruction of soft tissue defects caused
by trauma, burns, and tumor resection, autologous fat tissue flaps and commercially
available artificial fillers are a major solution for soft tissue augmentation and reconstruc-
tion [117]. Mechanically robust and elastic composite scaffolds based on (meth)acrylated
HA, gelatin [36], and PEG, as well as CS/HA-co-gelatin-co-chitosan [30] components, have
been loaded with human white adipocyte progenitor cells and human adipose-derived
mesenchymal stromal cells and used in a dynamic cell culture approach.

Degeneration of the intervertebral disc, more precisely the nucleus pulposus (NP), is
one of the primary causes of back pain worldwide, increasing along with the increasing
average age of the world population [118]. Current solutions most widely performed are an
invasive, financially costly spinal fusion surgery, or alternatively, disc replacement, also ex-
pensive and often connected with problems in the adjacent vertebrae [118]. Cryogels using
synthetic materials such as PVA and gelatin/poloxamer composites are already under inves-
tigation. Recent nature-based compositions, for example, HA-co-Gelatin cryogels [28,119],
offer an injectable, mechanically adjustable, cell-adhesive, and cyto-compatible potential
platform for this topic.

6.6. Tissue Engineering-Related Drug and Cell Release
6.6.1. Drugs and Bioactive Molecules

While high porosity and interconnectivity is an excellent prerequisite for the controlled
release of cells from cryogel scaffolds, the controlled delivery of bioactive molecules and
drugs is rather problematic and often results in a very rapid but poorly controllable rate of
delivery [8]. The adaptation of the release behavior of cryogels according to the respective
application demands requires a specific design. In principle, diffusion, swelling, erosion,
and stimulus-controlled release profiles can be realized by modifying the cryolgel structure
and/or incorporating further structural elements [8,120–124].

With regard to GAG-based cryogels, several papers reported the controlled release
of bioactive molecules [125], such as growth factors (e.g., bone morphogenetic proteins
(BMP) [47,49], human epidermal growth factor (EGF) [33], vascular endothelial growth fac-
tor (VEGF) [46,48], timely release of VEGF and BMP [125], heparin encapsulated interleukin-
13 (IL-13) [43], glial cell line-derived neurotrophic factor (GDNF) [44], and nerve growth
factor (NGF) [126]).
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6.6.2. Cells

In addition to delivering cell growth- or cell differentiation-promoting bioactive
molecules and therapeutics to provide an optimal 3D environment for cell culture, cryogels
can also be used to deliver cells [8,122]. Concerning GAG-based scaffolds, HA-co-gelatin
elastic cryogels have been used as transplantation vehicles to transplant adipose-derived
stem cells both in a nude mouse and a porcine model [18]. Recently, HE-co-starPEG
scaffolds, covalently modified with adhesion peptides, have been used for the housing
of pancreatic islets in 3D co-culture, with adherent mesenchymal stromal cells (MSC) as
accessory cells to improve islet survival and function [41].

GAG-based cryogels have also been applied in several immunotherapeutic
approaches [127,128]. One concept is based on the activation of specific T cells by tu-
mor antigen-presenting dendritic cells. Although insufficient survival and localization of
transferred cells often limit the clinical efficacy, immune cells’ transplantation within macro-
porous cryogels may result in better results [8,129]. Another innovative immunotherapeutic
approach uses an organoid by housing human mesenchymal stromal cells, gene-modified
for the secretion of an anti-CD33-anti-CD3 bispecific antibody, in a biocompatible HE-co-
starPEG cryogel scaffold as a transplantable and low invasive therapeutic machinery for
the treatment of acute myeloid leukemia [42]. This therapeutic device may result as a
promising and safe alternative to the continuous administration of short-lived immuno-
agents and paves the way for effective bispecific antibody-based therapeutic strategies for
future tumor treatments.

7. Concluding Remarks

Cryogels are a class of macroporous hydrogels polymerized at sub-zero temperatures,
forming mechanically robust, elastic networks. The focus of this review was on cryogels
containing mainly glycosaminoglycans (GAGs) or composites of GAGs and other natural
polymers. The cryogels produced in this way largely correspond to the native extracellular
matrix (ECM) in terms of both composition and molecular structure. As a result, such net-
works are characterized by an excellent biocompatibility and a controllable biodegradation
behavior. Besides their excellent biological properties, cryogels, in general, have several
advantages over traditional hydrogels. A major advantage of cryogels is the adjustability
of their property profiles via the choice of manufacturing conditions, such as monomer
selection, solution concentration, crosslinking density, temperature, and cooling rate. Due
to the multi-functionality of GAGs, there are many possibilities for their functionalization
into different monomers, which ultimately lead to cryogels with different properties. Vice
versa, the functionalization of GAG molecules represents a challenge for the synthetic
chemist with regard to a selective reaction control and high-yield monomer products.

Overall, cryogels have received a great deal of interest in the biomedical field, ranging
from their use in bioseparation and molecule fractionation to the bioreactor applications
to advanced tumor treatment methods. The unique macroporous architecture of cryogels
mimicking the native ECM, combined with their physical, especially mechanical and
osmotic stability, their shape memory properties, and the often-possible injectability, make
GAG-based cryogels promising candidates for polymeric scaffolds in tissue reconstruction
and related drug and cell delivery processes. Most recently, GAG-based cryogels have been
developed as vehicles for advanced immunotherapies.

Despite numerous technological advances that have been achieved in cryogel research,
important questions remain to be answered that will allow this class of materials to be
broadly translated into the clinic. From a chemical point of view, such questions concern
the exploration of new selective reaction pathways for the functionalization of GAGs and
the identification of a reproducible scale-up technology. From a biological perspective,
further studies are required on the influence of pore size, volume, and interconnectivity, as
well as mechanical parameters on cell physiology and cell differentiation. In conclusion,
cryogels, and in particular the GAG-based ones presented here, are versatile biomaterials
with a growing future application potential in the biomedical area.
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