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Abstract: Increased secretion of proinflammatory cytokines, such as tumor necrosis factor-alpha
(TNFα), is often associated with adipose tissue dysregulation, which often accompanies obesity. High
levels of TNFα have been linked to the development of insulin resistance in several tissues and organs,
including skeletal muscle and the liver. In this study, we examined the complex regulatory roles of
TNFα in murine hepatocytes utilizing a combination of global proteomic and phosphoproteomic
analyses. Our results show that TNFα promotes extensive changes not only of protein levels, but
also the dynamics of their downstream phosphorylation signaling. We provide evidence that TNFα
induces DNA replication and promotes G1/S transition through activation of the MAPK pathway.
Our data also highlight several other novel proteins, many of which are regulated by phosphorylation
and play a role in the progression and development of insulin resistance in hepatocytes.
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1. Introduction

Tumor necrosis factor-alpha (TNFα) is primarily secreted by a hyperplastic and hyper-
trophic adipose tissue, typically associated with obesity [1]. The overexpression of TNFα
also disrupts insulin signaling by decreasing insulin receptor (IR) autophosphorylation,
dampening the signaling cascade, and culminating in decreased glucose uptake [2]. Al-
though the molecular mechanisms underlying the regulatory effects of TNFα in adipocytes
and adipose tissue during obesity are well-studied, there is little information about the
molecular consequences of hepatocytes in response to TNFα exposure, despite its upregu-
lation in obesity [3].

The direct stimulation of glucose uptake and metabolism is mediated by insulin. In-
sulin is the single hormone responsible for the regulation of blood glucose concentration,
acting through activation of the canonical glycolytic pathway in target cells [4]. Insulin
resistance occurs when normal circulatory insulin concentration become insufficient for
promoting glucose uptake and subsequent intracellular glucose homeostasis [5]. The
insulin resistance phenotype is primarily observed in skeletal muscle, liver, and in adi-
pose tissue. Hepatic insulin resistance is, however, particularly concerning, as it leads to
hyperglycemia [6].

Hepatocytes have been shown to be particularly sensitive to Free Fatty Acids (FFAs).
Elevated circulatory levels of FFAs have been demonstrated to induce a dysregulation
of the canonical insulin signaling pathway, diminishing the phosphorylation of insulin
receptor substrates 1 and 2 (IRS1 and 2) [7]. Elevated levels of FFA in rat liver tissue have
been shown to promote the activation of the IKK/IκB/NF-κB pathway in hepatocytes. The
downstream activation of NF-κB induces the transcription of proinflammatory cytokines,
including TNFα and interleukine-6 (IL-6) [8].

Characterizing the downstream effectors of TNFα signaling in hepatocytes and eluci-
dating subsequent biological implications is fundamental for a systemic understanding
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of obesity-associated pathologies including the development of T2DM. In this study, we
used global proteomics and phosphoproteomics approaches to identify key proteins that
are significantly regulated by, or in response to, TNFα exposure. Our data reveal that
TNFα inhibits fatty acid and lipid metabolism, likely contributing to the accumulation of
FFAs, which further contribute to insulin resistance. Moreover, we show that cell cycle
proteins are significantly regulated and activated by TNFα treatment. Our data suggest
that TNFα acts as a stimulator for entry in G1/S of the cell cycle. These results introduce
a novel perspective on the functional roles of TNFα on hepatocytes, and can serve as a
future reference for the development of therapeutic targets aiming to alleviate hepatic
insulin resistance.

2. Results
2.1. Time-Resolved Quantitative Proteomic Analysis

To date, the molecular implications of TNFα-mediated inflammation in hepatocytes
remain largely unexplored. Previous reports have, however, suggested that TNFα induces
a sharp decrease in glucose uptake within as little as 1 h of treatment. Indeed, we observed
a significant decrease in glucose uptake in AML12 murine hepatocytes after 2 and 8 h
of 10 ng/uL TNFα treatment, with a recovery of glucose uptake at 24 h of single TNFα
treatment compared with 0 h of treatment (Figure S1A).

To explore the progressive effects of TNFα in the proteome of hepatocytes, AML12
murine hepatocytes were treated with 10 ng/uL TNFα and collected at 2 h (2H), 8 h (8H),
and 24 h (24H) after initial treatment (0H). AML12 cells were subsequently homogenized
and total protein was prepared as previously described [9]. A total 1 µg of peptides
was used for global proteomic analysis, and the remainder was enriched for phospho-
peptides with Polymer-based Metal-ion Affinity Capture (PolyMAC) spin tips (Tymora
Analytical) prior to LC–MS/MS analysis. Raw LC–MS/MS data were searched for in the
MaxQuant platform against the Uniprot Mus musculus database. Statistical analysis was
then performed in the Perseus software [10,11] (Figure 1A).

In our global analysis, we identified a total of 3553 proteins, assigned from 33,704 pep-
tides. From those, 2609 were considered quantified (LFQ > 0 in at least two biological
replicates of the same time point). Quantified proteins only were used for the subsequent
analyses presented herein, and represent the most comprehensive dataset to date for
characterizing protein regulations in AML12 in response to TNFα (Tables S1 and S5).

2.2. TNFα Treatment Induces an Extensive Modulation of the Proteome Profile of Hepatocytes

To visualize our global data, while obtaining a large-scale perspective of the regulatory
patterns of the proteins quantified, a correlation map of our global dataset was generated.
Hierarchical clustering based on “one minus Pearson correlation” metric was applied, in
which clear clusters were observed. The distinct areas of high and low correlation values
indicate a noteworthy variance of LFQ values relative to the identified proteins (Figure 1B).

Despite the protein-dependent variations in LFQ values observed, 2126 of the 2609 pro-
teins identified were quantified in all four time-points studied, indicating highly consistent
data acquisition across all samples analyzed (Figure 1C). This consistency is further ev-
idenced by the uniformity of LFQ value distribution evidenced by Violin plot analysis.
The shape of each plot reveals a normal-like distribution of the data, again confirming the
reliability of data acquisition (Figure S1B).

To explore the time-resolved molecular and biological ramifications of TNFα treatment,
we focused on the statistically significant proteins curated from our global dataset.

We selected all quantified proteins that showed a significant variation in at least one-
time point (p < 0.05) using the ANOVA test. From the 2609 quantified proteins, a total
of 357 met our p-value cutoff (Figure 2A). It is important to note that these significantly
regulated proteins showed a high degree of similarity in their expression levels between
0H and 2H of treatment, contrasted with 24H, which had the highest distinction among the
studied time points, suggested by the relative distances in PCA plot analysis (Figure 2B).
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Thus, we can infer that TNFα treatment induces a gradual, yet complex regulation of the
proteome of AML12 hepatocytes.

Figure 1. Global proteomic analysis of TNFα-treated murine hepatocytes. (A) Schematic representation of the exper-
imental workflow. Cells were collected at 0H, 2H, 8H, and 24H, proteins were extracted and subsequently digested
with Lys-C/Trypsin. A fraction of the total peptides was utilized for global proteomics, and the remainder was used for
phosphoenrichment. Raw LC–MS/MS data were searched for with the MaxQuant software, and analyses were performed
in the Perseus platform. (B) Pearson’s correlation profile of all quantified proteins. Red hue indicates higher correlation
scores, while blue hue corresponds to lower correlation values. (C) Venn diagram representation of all quantified proteins
identified in each time point. A total of 2126 proteins were quantified in all four time points, indicating a highly consistent
data acquisition and sample reproducibility.

2.3. Exposure to TNFα Regulates Protein Synthesis and Cell Cycle Progression

TNFα is a key molecule linking obesity and insulin resistance. For the past decades,
TNFα has been at the forefront of several studies investigating the patho-biochemistry of
chronic, low-grade inflammation that accompanies obesity [12]. The downstream effectors
and molecular consequences of the TNFα signaling pathway, and their influence in the
development of insulin resistance, are well-characterized in the context of the adipose
tissue [12–14]. Moreover, our group recently shed light on the changes in the proteome of
murine adipocytes during chronic TNFα exposure, offering a glimpse into the extensive
regulatory effects of TNFα at cellular and molecular levels [15]. However, the effects of
TNFα on the cellular proteome of hepatocytes remain largely unexplored.
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Figure 2. Significant proteins are distinctly regulated at the 24H time point. (A) Number of significant
proteins compared with the total number of quantified proteins. From the total 2609 quantified
proteins, 357 were significantly (p < 0.05) upregulated according to the ANOVA test. (B) PCA plot
representation of each replicate used in this study based on significant proteins’ LFQ values. The
PCA plot shows a clear segregation of replicates based on the treatment duration, with 8H and 24H
showing the greatest distance based on PC1 and PC2, indicating distinct protein expression levels.
(C) Circle plot representation of enriched biological processes (red), molecular function (green), and
cellular component (blue) of all significantly regulated proteins. (D) Heat map representation of
Z-scored Log2(LFQ) values of all significant proteins in each replicate. K-means clustering was used
to generate clusters. Each cluster has been given a number, and they are indicated by different colors.
Red hue indicates upregulated proteins, and blue hue indicates downregulated proteins.

To elucidate the functional roles of the significant proteins identified in our dataset, we
performed a Gene Ontology (GO) analysis [16,17] of all significant proteins simultaneously.
The biological processes with highest enrichment were “positive” and “negative regulation
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of transcription”, “cell cycle”, “apoptotic process”, and “fatty acid metabolic process”.
In accordance, most proteins were shown to be localized to the cytoplasm and nuclear
cellular components, with noteworthy “ATP”, “RNA”, and “DNA binding” molecular
functions (Figure 2C). These results are in line with a previous report that demonstrated
TNFα induces primary murine hepatocytes to enter S-phase at 14 h of treatment [18].

To unveil the dynamics of the protein landscape of AML12 cells during TNFα ex-
posure, we plotted a heatmap of all significant proteins across the time points studied.
To characterize the expression patterns observed, the plotted proteins were clustered by
k-means, in which proteins with similar regulatory profiles were clustered together. This
method allows for the grouping of proteins that are likely involved in similar functional
roles, thus allowing for a more thorough analysis of the underlying functional links of the
identified proteins. Eight distinct clusters were observed in our dataset, numbered 1 to 8,
of which cluster “1” had a considerably larger number of proteins compared with the other
clusters (Figure 2D).

From the eight clusters identified in our heatmap, we decided to focus on four specific
clusters that showed a clear time-dependent trend in their expression levels; namely, clus-
ters “1”, “4”, “7”, and “8” were selected, and gene ontology was subsequently performed
with the proteins from each cluster.

Cluster “1” showed a distinct downregulation at the 24H time point, with little
variation between 0H and 8H of treatment. Unsurprisingly, the proteins grouped in this
cluster were primarily involved in metabolic processes, with the “monocarboxylic acid
metabolic process”, “flavonoid glucuronidation”, and “cofactor metabolic process” being
highly enriched (Figure 3A). Our results suggest a decrease in the activity of fatty acid
catabolic pathways, which, in turn, culminate in an accumulation of FFA. Overproduction
of FFA has been directly tied with deficient insulin release by pancreatic β-cells, and inhibits
insulin-stimulated glucose uptake in myocytes and hepatocytes [19–21], leading to the
development of insulin resistance and type 2 diabetes. It is worth reiterating that the
downregulation of such pathways is only observed at the 24H time point, which suggests
that, although FFA may enhance the insulin resistant phenotype, it is likely not the main
driver for the decreased glucose sensitivity in AML12 cells, as we observe decreased uptake
of glucose from as early as 2H of treatment.

The upregulation of translation is the primary pathway enriched from proteins in
cluster “2” (Figure 3B). Notably, cluster “2” is mostly composed by ribosomal proteins,
particularly, S and L ribosomal proteins. Our results indicate that TNFα induces protein
synthesis, despite previous reports indicating an inhibitory effect of TNFα in translation
initiation through the modulation of EIF-4E availability in muscle and heart cells [22]. Our
data, however, show an increase in the expression levels of EIF-4G1 and EIF-4G2 at 24H
compared with the 0H time point. The EIF-4G proteins associate with EIF-4E to promote
ribosome recruitment and the initiation of translation [23]. Thus, TNFα in hepatocytes
likely has a stimulatory, not inhibitory, effect in protein synthesis.

Although the regulatory patterns of clusters “7” and “8” are distinct, with cluster “7”
showing decreased expression levels at 8H followed by overexpression at 24H, compared
with the linear increase in expression levels observed in cluster “8”, both have overlap-
ping biological processes. Clusters “7” and “8” contain proteins involved in cell cycle
progression, with “mitotic cell cycle progression”, “DNA strand elongation involved in
DNA replication”, and “pre-replicative complex assembly involved in nuclear cell cycle
DNA replication” being the most prominent (Figure 3C,D). Among the proteins identified
in cluster “7”, MCM2 together with MCM4, MCM5, and MCM6 identified in cluster “8”
are of particular interest. MCM proteins (MCM2-7), which belong to the minichromosome
maintenance protein family (MCM), are essential proteins in DNA replication that act
as a helicase and promote replication fork progression [24]. These finding support the
observation that TNFα promotes murine hepatocytes to enter S-phase and subsequently
undergo mitosis.
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Figure 3. Protein clustering is correlated with protein function. (A–D) Protein dynamic regulation patterns and correspon-
dent biological processes. Individual proteins from specific clusters were plotted based on their Z-scored Log2(LFQ) at each
time point, and points were connected by a line. The top five enriched biological processes with the highest –Log(P) values
are shown for the proteins present in each cluster.

Interestingly, clusters “2”, “3”, “5”, and “6” are also involved in DNA replication,
translation, and metabolic processes (Figure S2A–D). Taken together, our data point to a
proreplicative effect of TNFα, with increased nuclear protein expression involved in DNA
synthesis, DNA damage repair, and cell cycle progression.
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2.4. Time-Resolved Phosphoproteome Analysis Reveals Differential Regulation of Nuclear Proteins
in Response to TNFα

Phosphorylation events are fundamental in protein signaling and key regulators in
diverse cellular pathways, including glucose uptake in response to insulin [25]. TNFα
disrupts the insulin signaling pathway by disrupting such phosphorylation events, specifi-
cally by inhibiting the phosphorylation of IR substrate 1, leading to a subsequent decreased
glucose uptake, and eventual insulin resistance [26]. However, the activation of the TNFα
signaling pathway has cascading effects that may disrupt the phosphorylation events of
several downstream effectors, and may induce the phosphorylation of several target pro-
teins. To gain a perspective on the broad effects in the phosphoproteome profile of AML12
cells in response to TNFα exposure, we conducted a time-resolved phosphoproteomic
analysis of murine hepatocytes treated with TNFα subsequent to our global analysis.

Our phosphoproteome dataset consisted of a total of 3287 proteins, mapped from
13,563 peptides, containing 12,798 phospho (STY) sites. When analyzing protein phospho-
rylation data, it is crucial that the modified site remains distinct, as protein regulation is
site-dependent, and different phosphorylation sites often have different consequences in
protein functionality and localization. Thus, for this dataset, we utilized intensity values of
each phospho STY site for downstream analysis. Briefly, class I sites (sites with localization
probability ≥ 0.75) were selected. We identified a total of 5638 unique class I sites, from
which 235 unique phosphorylated sites are reported here for the first time (Figure 4A,
Table S4). It is interesting to note that three specific consensus sequences were present
in at least 500 different phosphosites across all the class I sites identified, which could
suggest the preferential activation of a subset of kinases or a subset of proteins that share
synergistic effects (Figure S3A). Additionally, 3825 phosphosites identified in this study
were not reported in adipocytes chronically treated with TNFα in our previous study [15]
(Figure S3B), suggesting an increased depth of phosphoproteome coverage in the current
study (Tables S2, S4 and S5).

For downstream data processing, we conducted a statistical analysis in a similar
fashion to that described in our global study. Significantly regulated class 1 phospho (STY)
site intensities were considered as sites with p-values lower than 0.05 by ANOVA test. A
total of 649 sites passed our criteria, and their z-score values were plotted as a heatmap
(Figure 4B). A clear cluster of sites, indicated by a green stripe on the graph, showed
remarkably similar phosphorylation patterns across the time points studied, in which
phosphorylation events were progressively upregulated at 8H and 24H. Since this trend
was the most prevalent, we hypothesize that these sites are the most likely to be regulated
by TNFα treatment. We decided, therefore, to further explore these specific sites.

To unveil the roles of such proteins and the cellular processes they are involved in, we
performed a GO analysis, specifically focusing on biological processes. Twenty different
GO terms were significantly (p < 0.05) enriched, the majority being related to protein
transcription and translation, and cell cycle progression (Figure 5A). Among them, “mRNA
metabolic processes”, “cell division”, and “positive regulation of cell cycle” are particularly
noteworthy, and are in direct accordance with the biological processes enriched at the
protein level. We also observed a large overlap among the enriched processes, indicated by
the cluster correlation network (Figure 5B). Thus, these data further support the hypothesis
that TNFα promotes cell cycle progression in hepatocytes.

Since the phosphorylation trends for phosphosites in this cluster were particularly
similar, we asked if specific phosphorylation motifs were shared between such proteins.
To investigate, we performed a Fisher exact test to enrich for shared motifs. We identified
12 kinase motifs significantly enriched for this cluster (Figure 4C). Of particular interest,
the phosphosites in this cluster are suggested to be regulated primarily by the ERK1 and
2 kinases and their downstream effectors CDK kinases, CDK1, 2, 4, 5, and 6, which are key
cell cycle regulators [27,28]. Cyclin D1 was not only significantly upregulated, but CDK4
was also phosphorylated at S300.
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Figure 4. Phosphoproteomic analysis of TNFα-treated hepatocytes. (A) Number of novel phospho-
sites (red) identified in this study relative to the total number of phosphosites identified. Phosphosites
were categorized as “novel sites” based on the PhosphoSitePlus database. (B) Heatmap representa-
tion of Z-scored Log2(LFQ) values of significantly regulated phosphosites. Significant phosphosites
(p < 0.05 by ANOVA) were clustered based on “one minus Pearson correlation”, and the cluster of
interest is highlighted by a green bar located on the left of the cluster. Red hue represents upregulated
sites, while blue hue represents downregulated sites. (C) Substrate motif enrichment analysis of
phosphosites identified in the highlighted cluster, shown in Figure 4B.

Although not significant, our data also revealed an increase in phosphorylation in the
MAP kinases RAF1, MEK1, and ERK2. The phosphorylation of ERK2 was upregulated in
two different phosphosites—specifically, Y185 and T183—while the protein levels remained
unchanged throughout the course of the experiment, thus further corroborating MAP
kinase activation (Figure 5C). We also mapped several phosphorylated sites in the protein
Rb, which is a key regulator of cell cycle progression [29]. Taken together, our results
suggest that, in hepatocytes, TNFα likely induces G1/S transition through the activation of
the MAPK signaling pathway.

The promyelocytic leukemia (PML) protein was also upregulated in our data at 24H,
compared with 0H of treatment. PML is a key component of subnuclear structures known
as PML Nuclear Bodies (PML-NB) [30]. PML-NBs have been shown to be key regulators of
several cellular processes, including responses to TNFα and IFNα [31]. Our results indicate
that PML is not only upregulated at 24H of TNFα, but several phosphorylation sites were
also upregulated.
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Figure 5. TNFα upregulates phosphorylation of proteins involved in DNA replication and cell cycle control. (A) Gene
ontology analysis of biological processes regulated by proteins upregulated by TNFα at 24H compared with 0H. Here,
analyzed proteins are represented in the cluster highlighted by the green line in Figure 4B. (B) String representation of
functional classifications upregulated by TNFα at 24H compared with 0H. Specific clusters for relevant GO terms are
observed, represented by different colors. (C) Fold-change analysis between site intensities at each time point relative to 0H
(orange) compared with the fold-change in total protein levels at each time point relative to 0H (black). Phosphosites are
labeled according to the phosphorylated residue, and its position and multiplicity.

2.5. Key Cell Cycle Regulator Proteins Are Predicted Modulators of Phosphorylation

Although the phosphoproteomics approach gives important insight on effector pro-
teins and their potential functional roles, we gain little information on the secondary
proteins that act as regulators and interactors, which often play key roles modulating
cellular events. To expand our horizon, we utilized the PHOTON method [32] to contex-
tualize our phosphorylation data within their signaling pathways, by utilizing STRING
protein–protein interaction networks. This method allows for the identification of func-
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tional phosphosites correlated with proteins and subsequent pathway activation [32]. After
filtering for class I phosphosites, our data, together with the STRING protein interaction
data for Mus musculus, were processed with the PHOTON tool. Statistical analysis was
then performed on functionality scores of the resulting output matrix. ANOVA significant
(p < 0.05) proteins were selected for subsequent analyses (Figure 6A, Table S3).

Figure 6. Photon software expands the analysis of proteins regulated by TNFα based on our phospho-
proteomics results. (A) Photon analysis workflow. Processed data were used in the Photon software,
using highly confident (0.9) protein–protein interactions to expand our phosphoproteomics analysis.
(B) Photon results show that several kinases are significantly enriched based on the phosphorylated
proteins identified in our results. Illustration reproduced courtesy of Cell Signaling Technology, Inc.
(www.cellsignal.com, accessed on 1 September 2021). (C) Heatmap representation of functionality
score values of significantly regulated proteins after photon analysis. Significant proteins (p < 0.05 by
ANOVA) were clustered by k-means, and given an arbitrary color and number. Red hue represents
upregulated sites, while blue hue represents downregulated sites.

Expectedly, several of the significant proteins enriched by the PHOTON analysis were
kinases. To visualize and categorize the different kinases identified, we plotted all kinases
present in our dataset in a kinome phylogenetic tree (Figure 6B). In accordance with our
previous results, serine/threonine kinases from the CMGC family, which include the CDKS

www.cellsignal.com
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and ERKS, consisted of a large portion of the proteins mapped. We also observed several
CAMK family proteins in our dataset. CAMK kinases, or Ca2+ calmodulin-dependent
protein kinases, are serine/threonine kinases that have their activity modulated by intra-
cellular levels of Ca2+. Upon activation, the CAM kinase-signaling cascade culminates in
the phosphorylation of CaMKIV, a nuclear kinase that phosphorylates a diverse array of
transcription factors. CaMKIV has been demonstrated to control a myriad of biological
processes including cell cycle regulation and inflammation [33–35].

To shed light on the biological implications of the significant proteins enriched by
PHOTON analysis, we generated a heatmap with k-means clustering to group proteins
with similar functionality score patterns. We again hypothesized that proteins with similar
dynamics were likely synergistic. Eight distinct clusters, numbered cluster “1” to “8”, were
observed (Figure 6C). To gain a better perspective of the changes in functionality score as
a function of TNFα treatment time point, all eight clusters were separately plotted and
four clusters showed a clear trend in their functionality scores relative to the elapsed TNFα
treatment, namely, clusters “2”, “4”, “5”, and “7”.

The proteins grouped in cluster “2” showed a constant functionality score between
0H and 8H of TNFα treatment, with a significant increase at 24H, indicating a late response
to the TNFα exposure (Figure 7A). To unveil the cellular processes these proteins partake
in, we performed a GO enrichment analysis. Most of the significantly enriched biological
processes were related to cell division. Due to the comprehensive PHOTON analysis,
we were able to identify a much larger number of proteins involved in each enriched
pathway, and, as a consequence, the enrichment p-value was much lower, indicating a
more precise result.

The biological process with the highest enrichment was “DNA replication”, which
contains DNA Polymerase Alpha 1 and 2 (POLA1 and 2), Origin Recognition Complex
Subunits (ORCS), MCM proteins, and several CDKs. All these proteins individually
showed a significantly higher functionality score at 24H when compared with 0H of TNFα
treatment (Figure S5A). “DNA synthesis involved in DNA repair” was another process
that was significantly higher at 24H of TNFα exposure (Figure S5B). Furthermore, several
proteins in this cluster were involved in the same pathway, and directly interacted, as
evidenced by protein–protein interaction analysis (Figure S5C).

Cluster “4” was characterized by a significant increase in the functionality score of its
proteins at 2H of treatment, and remain constant thereafter. This cluster had the greatest
variety of enriched biological processes, ranging from “exocytosis” and “toxin transport”
to “wound healing” (Figure S4A). In a similar fashion, the proteins from cluster “5” were
significantly upregulated at 2H of TNFα exposure, but showed a linear decrease in their
functionality scores at 8H and 24H. These proteins were primarily involved in vesicle
trafficking, endocytosis, and metabolic processes (Figures S4B and S6A,B).

Proteins that constituted Cluster “7” showed a linear increase in their functionality
score with respect to the duration of TNFα treatment (Figure 7B). GO analysis revealed
that the most significant process enriched was “translation”, which contained mostly L
ribosomal proteins, all upregulated at 24H (Figure S7A,G). Among the enriched processes,
DNA replication and cell-cycle-related pathways stand out. The GO terms “G1/S transition
of mitotic cell cycle”, “regulation of telomere maintenance”, “DNA replication-independent
nucleosome assembly”, and “negative regulation of chromosome organization”, specifically,
are very consistent with our phosphoproteome data and all proteins individually show
a significant increase in their functional score at 24H compared with that at 0H of TNFα
exposure (Figure S7B–F).

To verify the functional values obtained by the PHOTON method, we compared the
trends of functionality scores for each of the four clusters with the Log2 (fold-change) of
the same proteins identified in our global data. With the exception of cluster 4, most of the
overlapping proteins showed a similar regulation at the protein level, as predicted by the
PHOTON analysis (Figure S8A–D).
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Figure 7. Clustered proteins show time-dependent regulation after TNFα treatment. (A,B) Proteins in clusters 2 and 7 are
plotted based on their functionality score at each time point. Significantly (p < 0.05) regulated biological processes for
these proteins are shown next to the graph. (C) Summary of our results. TNFα treatment induces the phosphorylation of
proteins involved in the MEK/ERK kinase pathway, inducing the phosphorylation of several cell cycle regulators, including
Cyclin-dependent kinases and transcription factors such as the Rb protein.
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3. Discussion

Insulin resistance is a major health concern that is often linked to adipose tissue hy-
pertrophy and hyperplasia, common in obese patients. In obesity, the adipose tissue often
takes on dysfunctional paracrine and endocrine roles, marked by chronic secretion of pro-
inflammatory adipokines, including TNFα [36]. Hepatic cells are sensitive to circulatory
TNFα and can impair the canonical insulin signaling pathway, inhibiting glucose uptake
and leading to the development of insulin resistance, which precedes type 2 diabetes melli-
tus [37–39]. The mechanisms underlying insulin resistance are, however, very complex, and
the activation of TNFα signaling pathway has extensive ramifications on the intercellular
environment that remain largely unexplored. In this study, we shed light on the dynamic
changes of the hepatocyte proteome and phosphoproteome on TNFα treatment by utilizing
an omics strategy.

Our results strongly indicate that cell cycle proteins are extensively upregulated
by TNFα. Specifically, the expression level of these proteins increases at the 24H time
point compared with the earlier time points studied, suggesting that TNFα promotes
G1/S entry in hepatocytes. This finding is in line with a previous report that showed an
accumulation of hepatocytes in S-phase after 14 h of TNFα treatment by flow cytometry
analysis [18]. Indeed, we found many cell cycle regulators, necessary for S-phase entry,
that were significantly regulated. Particularly, proteins such as proliferating cell nuclear
antigen (PCNA), MCM proteins, and Cyclin-dependent kinase 4 were highly expressed
at 24H. Since we used an asynchronous cell population, in which the number of cells
in S-phase is roughly the same at any moment [40], the changes in the levels of these
cell-cycle-dependent proteins is likely induced by TNFα treatment.

In mammalian cells, PCNA acts as a DNA polymerase processivity factor, stimulating
DNA synthesis by enhancing DNA polymerase binding to DNA. PCNA expression is
drastically increased at late G1 and S-phase, serving as a marker for cell cycle progres-
sion [41,42].

MCM proteins (MCM 2-7) form a protein complex that, in late G1, localize to origin
recognition complex (ORC) sites on the chromatin and act as helicases, unwinding DNA
and promoting the formation of replication forks, thus acting upstream of PCNA [43].

The localization and subsequent activation of MCM proteins is dictated by phosphory-
lation events, regulated by CDK2/Cyclin E activity [44]. Indeed, in our phosphoproteomics
dataset, we were able to confirm that TNFα led to MCM family protein phosphorylation,
further suggesting that TNFα acts as a driver for S-phase entry. It is important to note that
while several residues of MCM proteins were significantly upregulated during the course
of TNFα treatment relative to the 0H time point, they were several times greater than the
changes in the global protein levels of these specific MCM proteins. Thus, the increase
in the measured phosphosite is again validated (Figure S9A–D). Furthermore, consensus
motifs for CDK family kinase proteins, such as CDK1, CDK2, CDK4, and CDK6 were
significantly enriched in proteins phosphorylated at 24H after TNFα exposure, indicating
that the phosphosites identified in our analysis are downstream effectors of the CDKs and
act to promote cell cycle progression. Our results also show that ERK1 and ERK2 substrate
motifs were significantly enriched, strongly suggesting that G1/S transition is driven by
the MAPK signaling pathway.

Consistent with our omics results, PHOTON analysis predicted the involvement of
several kinases in the activation and modulation of the identified kinases—particularly,
the CMGC family kinases, of which ERK and CDK are prominent members. Similarly, the
significant enrichment scores of pathways involved in DNA strand elongation and mitotic
processes further support our hypothesis that TNFα not only leads to insulin resistance,
but also induces cell cycle progression.

As a whole, our data suggest that TNFα promotes cell cycle progression through the
activation of the MAPK/ERK pathway, which leads to the activation of cell cycle regulators.
Our data reveal that TNFα exposure leads to the phosphorylation of RAF, MEK1/2, and
ERK proteins. We also report overexpression and phosphorylation of cyclins and CDKs;



Molecules 2021, 26, 5472 14 of 17

specifically, Cyclin D and E, which stimulate the expression of Rb, hyperphosphorylated in
our results, culminating in the transition from G1 into S-phase. We also identified several
MCM proteins being differentially phosphorylated and upregulated in response to TNFα,
reinforcing the stimulatory roles of TNFα on DNA replication and cell cycle progression
(Figure 7C).

4. Materials and Methods
4.1. Cell Culture

Murine AML12 (CRL-2254) hepatocytes (ATCC, Manassas, VA, USA) were cultured
in DMEM:F12 (ATCC) supplemented with FBS (ATCC), Insulin-Transferrin-Selenium and
dexamethasone (Thermo-Fisher Scientific, Waltham, MA, USA). Three biological replicates
(n=3) were treated with additional 10 ng/mL TNFα, for a total of 0H, 2H, 8H, or 24H [45–47].
At 2H before collection, medium was replaced with 10 ng/mL TNFα in serum-free medium.
Cells were harvested and total cell lysate was used for proteomics analysis.

4.2. Metabolic Assay

Glucose uptake assay was performed using the Glucose Uptake-Glo (Promega, Madi-
son, WI, USA). Assay was performed following manufacturer’s recommendations.

4.3. Protein Extraction

Cells were washed three times with 1 × PBS (4 ◦C), collected by scraping and sub-
sequentially resuspended in 100 mM ammonium bicarbonate (ABC) supplemented with
protease and phosphatase inhibitors. Samples were homogenized for 90 s at 6500 rpm
using Precellys CK28 homogenization vials (Bertin Technologies SAS, Paris, France). Pro-
tein concentration was subsequently calculated by bicinchoninic acid (BCA) assay (Pierce
Chemical Co., Rockford, IL, USA). Four volumes of cold acetone were used to precipitate
500 µg of total protein at −20 ◦C overnight. Samples were then centrifuged at 17,300× g
for 15 min, supernatant was removed, and pellets were dried in a vacuum centrifuge for
one min.

4.4. Sample Preparation for MS Analysis

Samples were fully resuspended in 50 µL of 10-mM DTT in 8-M urea and incubated in
a thermomixer for 1 h at 37 ◦C. A total 50 µL of alkylation reagent mixture (97.5% acetonitile
(ACN), 0.5% triethylphosphine, 2% iodoethanol) was added to each sample, and again
incubated for 1 h in a thermomixer at 37 ◦C. After alkylation, samples were dried in a
vacuum centrifuge and resuspended in 200 µL of 0.05 µg/uL Lys-C/Trypsin (Promega)
dissolved in 25-mM ABC. Samples were transferred to a barocycler (50 ◦C, 60 cycles; 50 s
at 20 kPSI and 10 s at 1 ATM), in which proteolysis was carried out. Peptides were desalted
with the Pierce Peptide Desalting Spin Columns (Thermo Fisher Scientific, USA). A total
of 20 µg of peptides from each sample were saved for global analysis. The remainder
was used for phosphopeptide enrichment, performed with PolyMac spin tips (Tymora
Analytical, West Lafayette, IN, USA), following manufacturer’s recommendations.

4.5. Mass Spectrometry Analysis

Dried samples were reconstituted in 3% ACN, 0.1% Formic Acid (FA) and separated
using an Acclaim PepMap 100 C18 analytical column (75 µm ID × 50 cm) packed with
2-µm, 100-Å PepMap C18 medium (Thermo Fisher Scientific) by reverse-phase using
a Dionex UltiMate 3000 RSLC coupled with the Orbitrap Fusion Lumos Tribrid Mass
Spectrometer (Thermo Fisher Scientific). A 160-min gradient was used for the separation
of peptides for global analysis. Sample injection was carried out using 2% mobile phase
solution B (80% ACN with 0.1% FA in water). Mobile phase solution B was increased in a
linear fashion until 27% B was reached at 110 min, 40% B at 125 min, and 100% B at 135 min.
At this point, concentration of B was held constant for 10 min before returning back to
2% B and maintained at 2% B until the end of the run. Phosphopeptides were separated
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using 120-min gradient. Samples were injected at 2% B. For LC separation, solution B
was increased linearly, reaching 30% B at the 80 min mark, followed by an increase of B
to 45% B at 91 min and then 100% B at 93 min, at which point it was held constant for
5 min before reverting back to 2% B until the end of the run. MS analysis were performed
with the orbitrap detector, with a MS1 resolution of 120,000 and MS2 resolution at 1500.
Quadrupole isolation and a scan range of 375 to 1500 m/z were used. Data-dependent
acquisition MS/MS was performed, with a dynamic exclusion duration of 60 s. HCD was
used for fragmentation, with HCD collision energy set to 30%.

4.6. Protein Identification and Quantification

Raw MS/MS data were searched against the Uniprot Mus musculus database using
the MaxQuant platform (Ver). Lys-C/Trypsin enzymes were selected for specific digestion,
with 2 missed cleavage allowance. Variable modifications were set for “methionine oxi-
dation” and for phosphoproteomics “STY phosphorylation”; “Iodoethanol” was selected
as fixed modification. False discovery rate (FDR) of peptides and proteins identification
was set to a standard value of 1%. Additionally, 10 ppm was selected as the main search
peptide tolerance value. Peptide quantitation was performed using “unique plus razor
peptides”. The proteomics results were processed and analyzed using the Perseus bio-
statistics platform for subsequent statistical analysis. “Contaminants”, “reverse”, and
“only identified by site” proteins were filtered out, and LFQ intensity values were Log2
transformed. Proteins were then filtered based on 2 minimum valid values in at least one
treatment group. Missing values were imputed based on the normal distribution of LFQ
values. Intensity values and probability scores were used for phosphoprotein analysis.
The raw phospho STY data file was filtered for proteins with a localization probability
≥ 0.75, and 2 valid intensity values in at least one time point. Missing values were again
imputed with values drawn from the normal distribution. PHOTON analysis was then
performed in Perseus, following the developer’s recommendations. Briefly, the STRING
mouse protein–protein interaction network was imported, and only high confidence inter-
actions (>0.9) were selected for PPI network construction. The network was then annotated
with the phosphor STY site table, and the resulting signaling functionality scores were
used for the downstream statistical analysis. Statistical significance was inferred based on
ANOVA test. Proteins with a p-value ≤ 0.05 were considered significantly regulated. Gene
ontology (GO) was performed using Metascape [48] online software, with only Biological
Processes (GO) selected for annotation, membership, and enrichment.

Supplementary Materials: The following are available online. Figure S1: TNFα-induced regulation
of glucose uptake and protein LFQ distribution. Figure S2: Protein clustering is correlated with
protein function. Figure S3: Analysis of all quantified phosphosites. Figure S4: Clustered proteins
show time-dependent regulation after TNFα treatment. Figure S5: Expanded view of GO biological
processes highlighted in cluster 2. Figure S6: Expanded view of GO biological processes highlighted
in clusters 4 and 5. Figure S7: Expanded view of GO biological processes highlighted in cluster 7.
Figure S8: Protein functionality scores determined by the Photon analysis correlate with the LFQ
values detected in our proteomics. Figure S9: Site-specific phosphorylation of MCM proteins is
modulated by TNFα. Table S1: Global proteomics. Table S2: Phosphosites. Table S3: PHOTON
analysis. Table S4: New phosphosites. Table S5: Peptide lists.
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