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Abstract: An efficient method for the synthesis of nojirimycin- and pyrrolidine-based iminosugar
derivatives has been developed. The strategy is based on the partial reduction in sugar-derived
lactams by Schwartz’s reagent and tandem stereoselective nucleophilic addition of cyanide or a
silyl enol ether dictated by Woerpel’s or diffusion control models, which affords amino-modified
iminosugars, such as ADMDP or higher nojirimycin derivatives.
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1. Introduction

Iminosugars are a large group of carbohydrate analogues that have received a lot of
attention due to their ability to inhibit enzymes responsible for the formation or cleavage of
glycosidic bonds [1–5]. They have been recognized as potent active agents in the treatment
of various diseases, such as diabetes, lysosomal storage disorder, viral infection, and
cancer [1,6–9]. Some drugs based on iminosugars are already in use, while a few others
are in clinical trials. For example, Glyset® is used to treat non-insulin-dependent diabetes,
and Zavesca® is used in Gaucher’s disease treatment. Another piperidine-originated
iminosugar, 1-deoxynojirimycin (DNJ), and its amino derivative (4b), displayed similar
inhibition to α-glucosidase [10]. α-Homonojirimycin is a powerful α-glucosidase inhibitor
and is expected to be a drug candidate for antidiabetic therapy [11].
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1. Introduction 
Iminosugars are a large group of carbohydrate analogues that have received a lot of 

attention due to their ability to inhibit enzymes responsible for the formation or cleavage 
of glycosidic bonds [1–5]. They have been recognized as potent active agents in the treat-
ment of various diseases, such as diabetes, lysosomal storage disorder, viral infection, and 
cancer [1,6–9]. Some drugs based on iminosugars are already in use, while a few others 
are in clinical trials. For example, Glyset® is used to treat non-insulin-dependent diabetes, 
and Zavesca® is used in Gaucher’s disease treatment. Another piperidine-originated 
iminosugar, 1-deoxynojirimycin (DNJ), and its amino derivative (4b), displayed similar 
inhibition to α-glucosidase[10]. α-Homonojirimycin is a powerful α-glucosidase inhibitor 
and is expected to be a drug candidate for antidiabetic therapy [11].  

 
Pyrrolidine-derived iminosugars are also promising drug candidates [1]. For exam-

ple, 2,5-dihydroxymethyl-3,4-di-hydroxypyrrolidine (DMDP) is a known glycosidase in-
hibitor. In turn, 1-aminodeoxy-DMDP (ADMDP), an unnatural product that possesses in-
hibitory activity against n-acetyl-β-glucosamidase [12], as well as other DMDP analogues 
[13–16], have been found to be potential drug candidates for osteoarthritis [13–16] and 
bacterial infections [16,17]. 
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Pyrrolidine-derived iminosugars are also promising drug candidates [1]. For example,
2,5-dihydroxymethyl-3,4-di-hydroxypyrrolidine (DMDP) is a known glycosidase inhibitor.
In turn, 1-aminodeoxy-DMDP (ADMDP), an unnatural product that possesses inhibitory
activity against n-acetyl-β-glucosamidase [12], as well as other DMDP analogues [13–16],
have been found to be potential drug candidates for osteoarthritis [13–16] and bacterial
infections [16,17].
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The high potential of amino-iminosugars has resulted in the development of various 

methods for their synthesis. The first preparation methods of ADMDP and its isomers 
were concerned with the transformation of naturally occurring DMDP (and its stereo an-
alogues) by selective conversion of one of the side-chain hydroxyl groups into an amino 
functionality [13].Other strategies include intramolecular cyclization of C2-symmetric 
amino alcohols [18], transformation of non-racemic γ-lactams [19], nucleophilic ring open-
ing of sugar-derived bis-aziridines [20], and nucleophilic addition of cyanide to sugar-
derived cyclic nitrones, followed by reduction [21,22]. Stocker and colleagues [23] re-
ported the synthesis of ADMDP and analogues by carbamate annulation, whereas the 
group of Ramesh reported their synthesis via deamination of glycals [24]. In our previous 
work, we found that the furanosyl and pyranosyl imines can be obtained from sugar-de-
rived lactams via a Schwartz’s-reagent-mediated partial reduction in amide function [25]. 
Moreover, we demonstrated that these cyclic imines could be directly used (without iso-
lation) in further transformations [25–27], leading to, for example, highly functionalized 
pyrrolidine and piperidine iminosugars via a tandem one-pot reduction/Grignard reagent 
or allyltributyltin addition sequence (Scheme 1a) [25]. This developed protocol was ap-
plied for the preparation of two pyrrolidine derivatives: 6-deoxy-DMDP and radicamine 
B [25]. Developing our group’s program on reductive sugar-derived lactam functionali-
zation [25–27], we report herein the flexible and robust access to amino-iminosugars, such 
as ADMDP and higher derivatives, via a gluco- or arabino-lactam reduction/cyanide ion or 
silyl enol ether addition sequence (Scheme 1b). 

 
Scheme 1. The previous work (a) and this work (b). 

2. Results and Discussion 
Our synthesis of amino-modified iminosugars started with the synthesis of initial 

sugar-derived lactams. We chose gluco-1a and arabino-1b lactam, obtained from the corre-
sponding commercially available glucose and arabinose, as model starting materials for 
further studies (Figure 1) [25,28]. 

  

The high potential of amino-iminosugars has resulted in the development of various
methods for their synthesis. The first preparation methods of ADMDP and its isomers were
concerned with the transformation of naturally occurring DMDP (and its stereo analogues)
by selective conversion of one of the side-chain hydroxyl groups into an amino func-
tionality [13].Other strategies include intramolecular cyclization of C2-symmetric amino
alcohols [18], transformation of non-racemic γ-lactams [19], nucleophilic ring opening of
sugar-derived bis-aziridines [20], and nucleophilic addition of cyanide to sugar-derived
cyclic nitrones, followed by reduction [21,22]. Stocker and colleagues [23] reported the syn-
thesis of ADMDP and analogues by carbamate annulation, whereas the group of Ramesh
reported their synthesis via deamination of glycals [24]. In our previous work, we found
that the furanosyl and pyranosyl imines can be obtained from sugar-derived lactams via
a Schwartz’s-reagent-mediated partial reduction in amide function [25]. Moreover, we
demonstrated that these cyclic imines could be directly used (without isolation) in fur-
ther transformations [25–27], leading to, for example, highly functionalized pyrrolidine
and piperidine iminosugars via a tandem one-pot reduction/Grignard reagent or allyl-
tributyltin addition sequence (Scheme 1a) [25]. This developed protocol was applied for
the preparation of two pyrrolidine derivatives: 6-deoxy-DMDP and radicamine B [25]. De-
veloping our group’s program on reductive sugar-derived lactam functionalization [25–27],
we report herein the flexible and robust access to amino-iminosugars, such as ADMDP and
higher derivatives, via a gluco- or arabino-lactam reduction/cyanide ion or silyl enol ether
addition sequence (Scheme 1b).
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2. Results and Discussion

Our synthesis of amino-modified iminosugars started with the synthesis of initial
sugar-derived lactams. We chose gluco-1a and arabino-1b lactam, obtained from the corre-
sponding commercially available glucose and arabinose, as model starting materials for
further studies (Figure 1) [25,28].
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then heterogeneous mixture turns to a clear solution upon reduction completion (approx-
imately 10 min). Subsequent treatment of the in situ generated imine 2a with trimethylsilyl 
cyanide (2.0 equiv) in the presence of TMSOTf (1.0 equiv) gave a mixture of two nitriles 3a 
and 2-epi-3a in a ratio of 60:40 and with an overall yield of 88% after two steps (Scheme 2). 
Hydrogenation of 3a and 2-epi-3a under the conditions reported by Cheng et al. [22] gave 
ADMDP and its 2-epimer (2-epi-ADMDP) in 73% and 69% yield, respectively (Scheme 2). 
The same approach was successfully applied for the synthesis of the six-membered 
amino-iminosugar. Thus, treatment of gluco-lactam 1b with Schwartz’s reagent, followed 
by TMSOTf-mediated addition of trimethylsilyl cyanide gave nitrile 3b in 65% yield as a 
single isomer. Its hydrogenolysis under the conditions presented above afforded glu-
conojirimycin derivative 4b in 66% yield (Scheme 2). Elsewhere, Cheng et al. [22] reported 
the transformation of nitrile 2-epi-3a to 2-epi-DMDP. We expect that the same strategy 
can be used for the synthesis of DMDP and α-homonojirimycin starting form 3a and 3b, 
respectively (Scheme 2). 
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Figure 1. General route to sugar-derived lactams (1a) and (1b).

With appropriate substrates (1a and 1b) in hand, we investigated a one-pot lactam
reduction/cyanide addition reaction (Scheme 2). Arabino-lactam 1a was treated with
1.6 equiv of Schwartz’s reagent Cp2Zr(H)Cl, leading to appropriate imine 2a in almost
quantitative yield according to the NMR analysis of the crude reaction mixture. The
progress of the reaction can easily be followed thanks to simple direct observation: initially
white, then heterogeneous mixture turns to a clear solution upon reduction completion
(approximately 10 min). Subsequent treatment of the in situ generated imine 2a with
trimethylsilyl cyanide (2.0 equiv) in the presence of TMSOTf (1.0 equiv) gave a mixture
of two nitriles 3a and 2-epi-3a in a ratio of 60:40 and with an overall yield of 88% after
two steps (Scheme 2). Hydrogenation of 3a and 2-epi-3a under the conditions reported by
Cheng et al. [22] gave ADMDP and its 2-epimer (2-epi-ADMDP) in 73% and 69% yield,
respectively (Scheme 2). The same approach was successfully applied for the synthesis of
the six-membered amino-iminosugar. Thus, treatment of gluco-lactam 1b with Schwartz’s
reagent, followed by TMSOTf-mediated addition of trimethylsilyl cyanide gave nitrile
3b in 65% yield as a single isomer. Its hydrogenolysis under the conditions presented
above afforded gluconojirimycin derivative 4b in 66% yield (Scheme 2). Elsewhere, Cheng
et al. [22] reported the transformation of nitrile 2-epi-3a to 2-epi-DMDP. We expect that
the same strategy can be used for the synthesis of DMDP and α-homonojirimycin starting
form 3a and 3b, respectively (Scheme 2).
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Scheme 2. Reagents and conditions: (a) Cp2Zr(H)Cl (1.6 equiv), THF, RT 10 min; (b) TMSOTf
(1.0 equiv), TMSCN (2.0 equiv), THF, −25 ◦C to RT, overall yield for two steps 3a 88% d.r. 60:40,
3b 65% d.r. > 95:5; (c) H2, Pd (OH)2, MeOH, AcOH, RT. ADMDP 73%, 2-epi-ADMDP 69%, 4b 66%.

Configuration of the newly generated stereochemical center in nitriles 3a, 2-epi-3a,
and 3b have been established by NOE experiments. Addition of TMSCN to gluco-imine 2b
proceeded syn to the BnO substituent at the C-3 position. This is a result of conformational
control of the process, according to Woerpel’s model (Figure 2a) [29–34]. In the latter case,
the nucleophilic addition of TMSCN to arabino-imine 2a occurs with low stereoselectivity,
leading to the separable mixture of isomers 3a and 2-epi-3a in a ratio of 60:40.

The same modest diastereoselectivity was observed by Woerpel in the reaction of
TMSCN with cyclic oxocarbenium ions [35]. Woerpel postulated that this effect can be
attributed to the high reactivity of the nucleophilic species involved [36]. The silyl cyanides
require activation by a nucleophile in solution (such as the counterion of the Lewis acid)
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to form a pentacoordinate siliconate ion that transfers the cyano group. This activation
step is slow relative to nucleophilic addition. A detailed, step-by-step description of this
process has been explained by Woerpel in his vital paper from 2006 [35]. It can be assumed
that a similar effect applies in the TMSOTf-mediated addition of TMSCN to arabino-imine
2a (Figure 2b).

Molecules 2021, 26, 5459 4 of 9 
 

 

attributed to the high reactivity of the nucleophilic species involved [36]. The silyl cya-
nides require activation by a nucleophile in solution (such as the counterion of the Lewis 
acid) to form a pentacoordinate siliconate ion that transfers the cyano group. This activa-
tion step is slow relative to nucleophilic addition. A detailed, step-by-step description of 
this process has been explained by Woerpel in his vital paper from 2006 [35]. It can be 
assumed that a similar effect applies in the TMSOTf-mediated addition of TMSCN to arab-
ino-imine 2a (Figure 2b). 

 

Figure 2. Stereocontrol of addition of TMSCN to gluco 2b- (a) and arabino 2a- (b) derived cyclic 
imines. 

Subsequently, other types of nucleophiles, such as silyl enol ethers 5a, 5b, and 5c, were 
examined in the tandem one-pot reduction/nucleophilic addition protocol (Scheme 3). 
Gluco-lactam 1b was selected as a model compound for this part of the study. On the basis 
of previous examples, a solution of gluco-lactam 1b was added to a suspension of 
Schwartz reagent (1.6 equiv) in THF. After the initially white suspension turned clear, the 
enol silyl ether (2 equiv) and Yb (OTf)3 (10 mol%) were added at −25 °C, and the reaction 
mixture was warmed slowly to room temperature. The desired functionalized piperidines 
6a, 6b, and 6c were obtained in 88%, 68%, and 43% yields, respectively, and with a high 
level of stereoselectivity (Scheme 3). The stereochemical structure of piperidines 6a, 6b, 
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at C-2 and the benzyloxy group at C-3 was determined to be in a syn arrangement for all 
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Subsequently, other types of nucleophiles, such as silyl enol ethers 5a, 5b, and 5c,
were examined in the tandem one-pot reduction/nucleophilic addition protocol (Scheme 3).
Gluco-lactam 1b was selected as a model compound for this part of the study. On the basis
of previous examples, a solution of gluco-lactam 1b was added to a suspension of Schwartz
reagent (1.6 equiv) in THF. After the initially white suspension turned clear, the enol silyl
ether (2 equiv) and Yb (OTf)3 (10 mol%) were added at −25 ◦C, and the reaction mixture
was warmed slowly to room temperature. The desired functionalized piperidines 6a, 6b,
and 6c were obtained in 88%, 68%, and 43% yields, respectively, and with a high level of
stereoselectivity (Scheme 3). The stereochemical structure of piperidines 6a, 6b, and 6c were
confirmed by NOE experiments. The stereochemistry between the substituent at C-2 and
the benzyloxy group at C-3 was determined to be in a syn arrangement for all piperidines 6a,
6b, and 6c. We are dealing here with the same model of stereocontrol as shown in Figure 2a.
Obtained compounds 6a–c are attractive building blocks for the syn thesis of functionalized
nojirimycin derivatives.
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Scheme 3. Reagents and conditions: (a) Cp2Zr(H)Cl (1.6 equiv), THF, RT 10 min; (b) Yb (OTf)3

(0.1 equiv) silyl enol ether 5a, 5b, or 5c (2.0 equiv.), THF, −25 ◦C to RT, overall yield for two steps
6a 88% d.r. >95:5, 6b 68% d.r. 75:22; 6c 43% d.r. > 95:5.

3. Conclusions

In conclusion, we have presented a convenient route for the synthesis of amino-
modified iminosugars, such as ADMDP, based on the reductive activation of sugar-derived
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lactones and silyl cyanides. The presented method is one of the shortest preparations of
ADMDP. In contrast to similar strategies based on nucleophilic addition to cyclic nitrones,
our method uses the more easily available and stable lactams. An additional advantage
of the current method over nitrone-based strategies [21,22] is the fact that it can also be
successfully applied to the synthesis of six-membered analogues of ADMDP (4d). The
former method is limited due to the more challenging synthesis and limited stability of
six-membered nitrones compared to their five-membered counterparts [37]. Moreover, we
have presented that other types of nucleophile, such as silyl enol ethers, can be applied,
leading to functionalized nojirimycin derivatives.

4. Experimental Section
4.1. General Information

1H NMR and 13C NMR spectra were recorded on Varian VNMRS 500 and Varian
VNMRS 600 spectrometers, in CDCl3, unless otherwise stated, and with TMS used as
an internal standard. Chemical shifts (δ) were given in ppm and coupling constants (J)
were given in Hertz (Hz). Infrared spectra were recorded on an FT-IR Jasco 6200 and
FT-IR Spectrum 2000 Perkin Elmer spectrophotometer. High-resolution mass spectra were
recorded on an ESI-TOF Mariner Spectrometer, SYNAPT G2-S HDMS, or AMD 604 mass
spectrometer. Optical rotations were measured with a Jasco P-2000 polarimeter. Thin-layer
chromatography was performed on Merck aluminium sheet Silica Gel 60 F254. Column
chromatography was carried out using Merck silica gel (230–400 mesh).

4.2. One-Pot Reduction/TMSCN Addition to Sugar-Lactams 1a and 1b—General Procedure for
The Synthesis of 3a, 2-Epi-3a, and 3b

A solution of sugar lactam 1a or 1b (0.5 mmol) in THF (5 mL) was added dropwise to
a suspension of Cp2Zr(H)Cl (1.6 equiv, 0.8 mmol, 206 mg,) in THF (5 mL) under an argon
atmosphere. The mixture was stirred until the white suspension disappeared (ca. 10 min)
to form a clear solution. Next, the imine solution was cooled to −25 ◦C and TMSOTf was
added (1.0 equiv, 0.5 mmol, 60 µL). The mixture was stirred for 10 min and TMSCN (2.0 equiv,
1.0 mmol, 125 µL) was added dropwise. The mixture was warmed to room temperature
and stirred overnight. The reaction was quenched by addition of aq. NaHCO3 and stirred
for 30 min. After dilution with Et2O (5 mL), the aqueous phase was separated and washed
twice with Et2O (2 × 5 mL). The combined organic solutions were dried over anhydrous
MgSO4, filtered, and solvents were removed under reduced pressure. The residue was
chromatographed on silica gel to afford the corresponding amine derivatives 3a, 2-epi-3a,
and 3b.

(2R,3R,4R,5R)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)pyrrolidine-2-carbonitrile (3a):
(major isomer), colorless oil; 88% (overall, isolated yield for two steps, both isomers); dr 60:40
(determined by 1H NMR of crude reaction mixture); Rf 0.34 (1:2 AcOEt/hexanes); chro-
matography (1:3 AcOEt/hexanes); [α]D +23.6 (c 0.2 CH2Cl2); 1H NMR (600 MHz, CDCl3)
δ: 7.38–7.20 (m, 15H), 4.64 (d, J 11.9 Hz, 1H), 4.59 (d, J 11.9 Hz, 1H), 4.53 (d, J 11.9 Hz, 1H),
4.49 (d, J 11.9 Hz, 1H), 4.48-4.47 (m, 2H), 4.14-4.09 (m, 2H), 3.93–3.89 (m, 1H), 3.60–3.53 (m,
2H), 3.38–3.33 (m, 1H); 13C NMR (151 MHz, CDCl3) δ: 137.8, 137.4, 136.9 128.6, 128.5, 128.4,
128.1, 128.0, 127.95, 127.74, 127.72, 117.6, 83.3, 82.8, 73.3, 72.5, 72.0, 70.4, 62.7, 51.2; IR (film)
v: 3354, 3030, 2924, 2854, 2246, 1495, 1454, 1376, 1364, 1206, 1091, 1072, 733, 695 cm−1; HRMS
(ESI-TOF) m/z calculated for C27H29N2O3 [M+H+] 429.2178, found 429.2184.

(2S,3R,4R,5R)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)pyrrolidine-2-carbonitrile
(2-epi-3a): (minor isomer), colorless oil; Rf 0.45 (1:2 AcOEt/hexanes); chromatography
(1:3 AcOEt/hexanes); [α]D–4.7 (c 0.85, CH2Cl2); 1H NMR (600 MHz, CDCl3) δ: 7.39–7.24
(m, 14H), 4.59 (d, J 11.7 Hz, 1H), 4.55 (d, J 11.9 Hz, 1H), 4.52 (d, J 9.5 Hz, 1H), 4.51–4.45
(m, 3H), 4.3–4.27 (m, 1H), 4.06–4.03 (m, 1H), 3.87–3.83 (m, 1H), 3.62–3.58 (m, 1H), 3.52–3.46
(m, 2H); 13C NMR (151 MHz, CDCl3) δ: 137.7, 137.5, 136.6, 128.6, 128.4, 128.3, 127.99, 128.0,
127.81, 127.78, 127.7, 119.0, 87.2, 84.0, 73.3, 72.6, 72.2, 69.5, 62.1, 51.7; IR (film) v: 3343, 3064,
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3031, 2922, 2863, 2240, 1496, 1454, 1363, 1097, 1028, 738, 698 cm−1; HRMS (ESI-TOF) m/z
calculated for C27H29N2O3 [M+H+] 429.2178, found 429.2189.

(2S,3S,4R,5R,6R)-3,4,5-tris(benzyloxy)-6-(benzyloxymethyl)piperidine-2-carbonitrile
(3b): white crystals, mp 144◦C; 65% (overall, isolated yield for two steps, both isomers);
dr >95:5 (from 1H NMR of the crude reaction mixture); Rf 0.32 (1:5 AcOEt/hexanes); chro-
matography (1:7 AcOEt/hexanes); [α]D + 52.6 (c, 0.78 CH2Cl2); 1H NMR (600 MHz, CDCl3)
δ: 7.45–7.26 (m, 17H), 7.23–7.18 (m, 2H), 4.97 (d, J 10.7 Hz, 1H), 4.85 (d, J 11.1 Hz, 1H), 4.83
(d, J 10.8 Hz, 1H), 4.77 (d, J 11.9 Hz, 1H), 4.68 (d, J 11.9 Hz, 1H), 4.51–4.46 (m, 2H), 4.41
(d, J 11.9 Hz, 1H), 4.08 (d, J 5.6 Hz, 1H), 3.87–3.81 (m, 1H), 3.69 (dd, J 9.4, 2.4 Hz, 1H), 3.59
(dd, J 9.4, 5.6 Hz, 1H), 3.36 (dd, J 9.2, 7.3 Hz, 1H), 3.27–3.19 (m, 2H); 13C NMR (151 MHz,
CDCl3) δ: 138.4, 138.0, 137.6, 137.5, 128.6, 128.5, 128.41, 128.40, 128.1, 128.0, 127.97, 127.90,
127.87, 127.77, 127.7, 117.5, 84.2, 79.0, 78.6, 76.0, 75.1, 73.3, 73.2, 69.9, 55.6, 49.7; IR (film) v: 2909,
2861, 2230, 1453, 1072, 745, 696 cm−1; HRMS (ESI-TOF) m/z calculated for C35H36N2NaO4
[M+Na+], 571.2573, found 571.2581.

Copies of 1H-, 13C-NMR, spectra for new compounds: 3a, 2-epi-3a, and 3b are avail-
able in the Supplementary Materials.

4.3. Deprotection/Nitrile Reduction—General Procedure for: ADMDP, 2-Epi-ADMDP, and 4b

A mixture of 3a, 2-epi-3a, or 3b (0.5 mmol), palladium hydroxide (20 mg), and a
catalytic amount of acetic acid in methanol (5 mL) was stirred under a hydrogen atmosphere
for 48 h. The reaction mixture was filtered through Celite and the filtrate was concentrated.
The residue was purified by chromatography on silica gel to afford the corresponding
product ADMDP, 2-epi-ADMDP, and 4b.

11-Amino-1,2,5-trideoxy-2,5-imino-D-mannitol (ADMDP): colorless oil; isolated yield 73%;
Rf 0.01 (DCM/MeOH/EtOH/30% aq. NH3, 5/2/2/1); chromatography (25% aq. NH4OH (37%)
in propanol); [α]D +44.1 (c, 0.35 H2O); agreement with the literature data12b; 1H NMR (500 MHz,
2% DCl in D2O) δ: 4.08 (t, J 7.0 Hz, 1H), 4.04 (t, J 7.0 Hz, 1H), 3.89 (dd, J 12.7, 3.9 Hz, 1H), 3.79
(dd, J 12.7, 7.0 Hz, 1H), 3.73 (td, J 7.2, 7.0 Hz, 1H), 3.61 (td, J 7.0, 3.9 Hz, 1H,), 3.36 (d, J 7.2 Hz, 2H);
13C NMR (125 MHz, 2% DCl in D2O) δ: 76.4, 73.9, 63.4, 58.4, 58.0, 38.6; IR (film) v: 3209, 2925, 1603,
1503, 1406, 1123, 1065, 1034, 813 cm-1; HRMS (ESI-TOF) m/z calculated for C6H14N2O3 [M+H+],
163.1077, found 163.1082.

2-epi-ADMDP: yellow syrup; isolated yield 69%; Rf 0.05 (DCM/MeOH/EtOH/30% aq.
NH3, 5/2/2/1); chromatography (25% aq. NH4OH (37%) in propanol); [α]D+12.1 (c, 0.65 H2O);
agreement with the literature data [12b]; 1H NMR (600 MHz, D2O) δ: 3.09 (dd, J 6.3, 13.1 Hz, 1H),
3.13 (q, J 5.5 Hz, 1H), 3.24 (dd, J 6.0, 13.1 Hz, 1H), 3.59 (q, J 6.1 Hz1H), 3.64 (dd, J 6.5, 11.6 Hz1H),
3.74 (dd, J 4.5, 11.6 Hz, 1H), 3.90 (dd, J 3.8, 5.3 Hz, 1H), 4.20 (dd, J 3.8, 5.8 Hz, 1H); 13C NMR
(151 MHz, D2O) δ: 77.9, 76.8, 64.0, 62.2, 55.9, 39.2; HRMS calculated for [C6H14N2O3 +H+]
163.1077, found 163.1079.

1-Amino-1-deoxy-2,6-dideoxy-2,6-imino-D-glycero-D-ido-heptopyranose (4b): thick
oil; isolated yield 66%; Rf 0.06 (DCM/MeOH/EtOH/30% aq. NH3, 5/2/2/1); chromatog-
raphy (25% aq. NH4OH (37%) in propanol); [α]D +3.1 (c, 0.65 H2O); agreement with the
literature data [38]; 1H NMR (500 MHz, D2O) δ: 3.99 (dt, J 7.5, 5.3 Hz, 1H), 3.94 (dd, J 9.0,
5.4 Hz, 1H), 3.91 (dd, J 13.0, 4.8 Hz, 1H), 3.86 (dd, J 13.0, 3.3 Hz, 1H), 3.68 (t, J 9.0 Hz, 1H),
3.67 (dd, J 14.0, 7.5 Hz, 1H), 3.58 (dd, J 10.0, 9.0 Hz, 1H), 3.37 (dd, J 14.0 Hz, 5.4 Hz, 1H), 3.26
(ddd, J 10.0, 4.8, 3.3 Hz, 1H); 13C NMR (125 MHz, D2O) δ: 72.8, 69.3, 68.2, 57.9, 57.0, 52.9, 36.7;
IR (film) v: 3384, 1618, 1100, 1033, 900, 838 cm-1; HRMS calculated for [C7H16N2O4+H+]
193.1188, found 193.1182.

4.4. One-Pot Reduction/Enol Silyl Ether Addition to Sugar-Lactams 1b—General Procedure for
the Synthesis of 6a, 6b, and 6c

A solution of sugar lactam 1b (0.5 mmol) in THF (5 mL) was added dropwise to a
suspension of Cp2Zr(H)Cl (1.6 equiv, 0.8 mmol, 206 mg) in THF (5 mL) under an argon
atmosphere. The mixture was stirred until the white suspension disappeared (ca. 10 min)
and a clear solution was formed. Next, the imine solution was cooled to −25 ◦C and Yb
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(OTf)3 (10 mol%, 0.05 mmol, 31 mg) was added. The mixture was stirred for 10 min and
a solution of enol silyl ether (2.0 equiv 1.0 mmol) in THF (5 mL) was added dropwise.
The mixture was gradually warmed to ambient temperature and stirred overnight. Then,
the reaction was quenched by the addition of aq. NaHCO3 and stirred for 30 min. After
dilution with Et2O (5 mL), the aqueous phase was separated and washed twice with
Et2O (2 x 5mL). The combined organic layers were dried over anhydrous MgSO4, filtered,
and the solvents were removed under reduced pressure to afford the residue, which was
chromatographed on silica gel to afford the corresponding product 6a, 6b, or 6c.

(E)-ethyl-4-((2R,3S,4R,5R,6R)-3,4,5-tris(benzyloxy)-6-(benzyloxymethyl)piperidin-2-yl)
but-2-enoate (6a): colorless oil; 88% (overall, isolated yield for two steps, both isomers); dr >95:5
(determined by 1H NMR of crude reaction mixture); colorless oil; Rf 0.22 (1:3 AcOEt/hexanes);
chromatography (1:3 AcOEt/hexanes); 1H NMR (600 MHz, CDCl3) δ: 7.36–7.26 (m, 18H),
7.20–7.18 (m, 2H), 6.95 (ddd, J 15.3, 8.5, 6.4 Hz, 1H), 5.90 (d, J 15.6 Hz, 1H), 4.94 (d, J 10.9
Hz, 1H), 4.85 (d, J 10.8 Hz, 1H), 4.80 (d, J 10.9 Hz, 1H), 4.69 (d, J 11.6 Hz, 1H), 4.64 (d,
J 11.6 Hz, 1H), 4.50 (d, J 9.2 Hz, 1H), 4.48 (d, J 8.1 Hz, 1H), 4.41 (d, J 11.9 Hz, 1H), 4.22–4.13
(m, 2H), 3.73–3.68 (m, 2H), 3.65–3.62 (m, 1H), 3.54 (dd, J 9.0, 5.8 Hz, 1H), 3.43–3.38 (m, 1H),
3.34–3.28 (m, 1H), 2.98–2.91 (m, 1H), 2.66–2.59 (m, 1H), 2.52–2.44 (m, 1H), 1.27 (t, J 7.1 Hz, 3H);
13C NMR (151 MHz, CDCl3) δ: 166.3, 146.5, 138.8, 138.3, 138.0, 128.43, 128.40, 128.36, 128.02,
127.92, 127.81, 127.76, 127.73, 127.70, 127.63, 127.56, 123.6, 83.1, 81.8, 80.2, 75.6, 75.2, 73.2, 72.8,
69.9, 60.2, 53.4, 52.8, 29.7, 28.8, 14.2; IR (film) v: 2922, 2860, 1717, 1454, 1096, 1068, 736, 697 cm−1;
HRMS (ESI-TOF) m/z calculated for C40H48NO6 [M+H+] 636.3325, found 636.3329.

(S)-5-((2R,3S,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-(benzyloxymethyl)piperidin-2-yl)
furan-2(5H)-one (6b): (major isomer), colorless oil; 68% (overall, isolated yield for two
steps, both isomers); dr 75:25 (determined by 1H NMR of crude reaction mixture); colorless
oil; Rf 0.43 (1:1 AcOEt/hexanes); chromatography (1:3 AcOEt/hexanes than
1:1 AcOEt/hexanes); 1H NMR (600 MHz, CDCl3) δ: 7.68–7.66 (m, 1H), 7.36–7.24 (m,
18H), 7.20–7.17 (m, 2H), 6.06 (dd, J 5.7, 1.8 Hz, 1H), 5.48 (d, J 7.7 Hz, 1H), 4.94 (d, J 10.9 Hz,
1H), 4.86 (d, J 7.3 Hz, 1H), 4.84 (d, J 7.4 Hz, 1H), 4.76 (d, J 11.5 Hz, 1H), 4.60 (d, J 11.5 Hz,
1H), 4.53–4.49 (m, 2H), 4.43 (d, J 12.0 Hz, 1H), 3.87 (d, J 8.7 Hz, 1H), 3.84 (d, J 5.6 Hz, 1H),
3.60 (dd, J 9.5, 2.5 Hz, 1H), 3.48 (dd, J 9.5, 6.0 Hz, 1H), 3.43 (t, J 9.1 Hz, 1H), 3.23–3.20 (m,
1H), 3.19–3.15 (m, 1H); 13C NMR (151 MHz, CDCl3) δ: 172.6, 156.6, 138.4, 138.1, 137.8, 137.6,
128.5, 128.42, 128.40, 128.3, 128.0, 127.95, 127.94, 127.88, 127.86, 127.72, 127.70, 127.68, 120.8,
83.3, 81.2, 80.2, 79.8, 75.6, 75.0, 73.8, 73.1, 69.8, 58.2, 54.3; IR (film) v: 3030, 2865, 1757, 1454,
1091, 738, 698 cm−1; HRMS (ESI-TOF) m/z calculated for C38H40NO6 [M + H+] 602.2856,
found 606.2856; (2-epi-6b) (minor isomer) selected signals: 1H NMR (600 MHz, CDCl3) δ:
7.70 (d, J 5.4 Hz, 1H), 6.10 (dd, J 5.7, 1.9 Hz, 1H), 5.30 (d, J 6.5 Hz, 1H); 13C NMR (151 MHz,
CDCl3) δ: 173.0, 156.2, 138.1, 138.0, 137.9, 137.7, 121.4, 55.2, 54.8.

1-(4-Fuorophenyl)-2-((2R,3S,4R,5R,6R)-3,4,5-tris(benzyloxy)-6-(benzyloxymethyl)
piperidin-2-yl)ethanone (6c): colorless oil; 43% (overall, isolated yield for two steps,
both isomers); dr > 95:5 (determined by 1H NMR of crude reaction mixture); Rf 0.32
(1:3 AcOEt/hexanes); chromatography (1:4 AcOEt/hexanes); 1H NMR (600 MHz, CDCl3)
δ: 8.03 7.89 (m, 2H), 7.4–7.23 (m, 18H), 7.20–7.16 (m, 2H), 7.11–7.05 (m, 2H), 4.96 (d, J 10.8 Hz,
1H), 4.85 (d, J 10.5 Hz, 1H), 4.82 (d, J 10.9 Hz, 1H), 4.66 (d, J 11.5 Hz, 1H), 4.63 (d, J 3.8 Hz,
1H), 4.50–4.41 (m, 3H), 4.10–4.05 (m, 1H), 3.80–3.76 (m, 1H), 3.74–3.69 (m, 1H), 3.61 (dd, J 9.1,
2.3 Hz, 1H), 3.53–3.49 (m, 1H), 3.45–3.39 (m, 1H), 3.33 (dd, J 16.9, 3.5 Hz, 1H), 3.18 (dd, J 16.9,
9.5 Hz, 1H), 3.00–2.94 (m, 1H); 13C NMR (151 MHz, CDCl3) δ: 197.6, 165.75 (d, J = 254.8 Hz),
138.7, 138.2, 138.1, 137.9, 130.75 (d, J = 9.3 Hz), 128.41, 128.37, 128.34, 128.0, 127.9, 127.84, 127.77,
127.75, 127.71, 127.65, 127.57, 115.64 (d, J = 21.9 Hz), 75.6, 75.3, 73.2, 72.9, 53.5, 50.6, 34.5; IR (film)
v: 3031, 2918, 2862, 1681, 1597, 1453, 1230, 1095, 1068, 737, 698 cm−1; HRMS (ESI-TOF) m/z
calculated for C42H43NO5F [M+H+] 660.3125, found 660.3124.

Copies of 1H-, 13C-NMR, spectra for new compounds: 6a, 6b, and 6c are available in
the Supplementary Materials.
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Supplementary Materials: The followings are available online, Copies of 1H-, 13C-NMR, spectra for
new compounds: 3a, 2-epi-3a, 3b, 6a, 6b, 6c.
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