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Abstract: Due to its high sensitivity and resolving power, gas chromatography-ion mobility spec-
trometry (GC-IMS) is a powerful technique for the separation and sensitive detection of volatile
organic compounds. It is a robust and easy-to-handle technique, which has recently gained atten-
tion for non-targeted screening (NTS) approaches. In this article, the general working principles
of GC-IMS are presented. Next, the workflow for NTS using GC-IMS is described, including data
acquisition, data processing and model building, model interpretation and complementary data
analysis. A detailed overview of recent studies for NTS using GC-IMS is included, including several
examples which have demonstrated GC-IMS to be an effective technique for various classification
and quantification tasks. Lastly, a comparison of targeted and non-targeted strategies using GC-IMS
are provided, highlighting the potential of GC-IMS in combination with NTS.

Keywords: gas chromatography ion mobility spectroscopy (GC-IMS); volatile organic compounds
(VOCs); non-targeted screening (NTS) using machine learning

1. Introduction

Quality control and early detection of hazard chemicals, allergens, or biological con-
taminants are critical to ensure product safety. Environmental pollutants, pesticides, or
toxins, among others, can compromise food safety and pose a public health risk [1]. Fur-
thermore, food adulteration and food fraud, accelerated by globalization, continue to cause
economic losses and customer dissatisfaction and emphasize the need for robust, inexpen-
sive, and fast analytical methods [2]. While new scientific findings continuously identify
potential hazardous or allergenic compounds [3], commonly employed methods, which
focus on the detection and identification of a particular compound or class of compounds,
lack the ability to identify new or unknown compounds. Due to the inherent diversity of
biogenic samples, as observed in food analysis, and the chemical complexity of the sample
matrices, analysis often requires advanced sample preparation strategies [4]. For system-
atic monitoring of product quality, it is therefore desirable to develop analytical methods
capable of discovering unknown or non-targeted compounds from the complex sample
matrices. This approach, also referred to as NTS, requires comprehensive extraction and
analysis of compounds of interest. Analysis of the volatile organic compounds (VOCs) of
samples, also known as VOC profiling, allows for the detection of compounds in complex
sample matrices without the need for detailed a priori knowledge of the molecular compo-
sition. Due to its high sensitivity and resolving power on the one hand and its simplicity
and robustness on the other, ion mobility spectrometry (IMS) has gained popularity for the
analysis of VOCs [5]. Moreover, gas chromatography coupled to ion mobility spectroscopy
(GC-IMS) has been shown to be an easy-to-handle and yet highly effective tool for VOC
profiling [6]. As a result, non-targeted VOC profiling based on GC-IMS in combination
with machine learning has emerged as a promising method for sample monitoring.
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Since the 1970s, when IMS was first known as ‘plasma chromatography’, IMS has
developed into a highly sensitive technique for the analysis of VOCs at ultratrace concen-
tration levels, which accounts for additional information regarding the ion’s mobility [7–9].
Due to the robust and easy-to-handle instrumentation, a wide range of application fields
have been found for IMS today, such as food flavor analysis [5], process monitoring [10,11],
and quality control [12], as well as detection and quantification of warfare agents [13] and
explosives [14,15].

With IMS, analytes are first ionized in the ionization region of the instrument. The
most common ionization method is the atmospheric pressure chemical ionization [16] by
beta emitters, which frequently use nickel-63 (Ni-63) [11,15,17,18] or the less hazardous
beta-emitting tritium (H-3) [19] or alpha-emitting americium-241 (Am-241) [20,21]. Other
ionization methods are atmospheric pressure photo ionization (APPI) [22], which uses
ultraviolet light (UV) [23,24] or corona discharge (CD) atmospheric pressure chemical
ionization [17,25–27], where a high electric field between a needle and a metal plate
or discharge electrode is used. Yet another method is the laser desorption/ionization
technique (LDI), which employs a laser pulse as ion source [28].

According to the European Union directive, the exemption limit for the total activity
for tritium was set to 1 GBq [29]. Therefore, the usage of a low-radiation tritium ion
source with an activity of 300 MBq is not subject to authorization, hence leading to a broad
adoption of tritium ion sources in a number of commercially available systems on the
market [30–34]. Beta particles, which are emitted by the tritium source, initiate a gas-phase
reaction cascade of the drift gas (nitrogen or air), resulting in predominant proton-water
clusters H+[H2O]n, which are commonly referred to as ‘reactant ions’ [35]. The number of
water molecules (n) depends on the gas temperature and the moisture content of the gas
atmosphere [8]. Depending on the proton affinity, molecules entering the ionization region
react with the reactant ions to protonated monomers MH+[H2O]n−x, while decreasing the
intensity of the reactant ion peak (RIP). At higher analyte concentrations, proton-bound
dimers M2H+[H2O]m−x are formed by the attachment of additional analyte molecules.
When the concentration further increases, the formation of higher molecular cluster ions,
such as trimers or tetramers, is possible; however, due to their low stability and short
lifetime, higher molecular cluster ions are rarely observed [36]. In general, nonlinear
behaviors are observed for the ratio of the RIP and the distribution between the protonated
monomer and the proton-bound dimer [36,37]. The principles of a drift-time IMS including
a H-3 ionization source are shown in Figure 1.

Figure 1. Setup of a drift-time IMS with a tritium (H-3) ionization source, adopted from [38] with permission
(ID5138730886281).
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Subsequent to ionization, the analyte ions enter the drift region, where they are
accelerated towards the detector, typically a Faraday plate, and are separated by their drift
time (or mobility) in an electrical field at ambient pressure. The ions are slowed down by
the collision with counterflowing drift gas molecules in the collision cross-section (CCS).
Due to an equilibrium between the acceleration by an electric field and deceleration by the
collision with the drift gas molecules, the ions move with a constant velocity to the detector.
Depending on the characteristic mass, charge, and structure, the ions are separated in
the drift tube and reach the detector at different drift times [39]. For identification of the
analyte, the inverse of the measured drift time is normalized to the drift length and the
electric field resulting in the spectrum of ion mobility. The reduced ion mobility K0 (see
Equation (1)), which is independent of ambient conditions and experimental setup, is
obtained after further normalization to pressure and temperature.

K0 =
L

E·tD
· p
p0

·T0

T
(1)

With

K0 = reduced ion mobility in cm2V−1s−1

L = drift length in cm
E = electric field strength in Vcm−1

tD = drift time in s
p = pressure of the drift gas in hPa
p0 = ambient pressure: p0 = 1013.2 hPa
T = temperature of the drift gas in K
T0-ambient temperature: T0 = 273.2 K

Instead of measuring temperature and pressure, the normalization is often carried out
using the known mobility of the ions produced in the pure drift gas or by adding a reference
analyte [40]. The signal intensity is proportional to the concentration and enables the
quantification in ppbv (for some compounds even pptv) levels within a few milliseconds.

The state-of-the-art IMS technologies can be classified into time-dispersive, space-
dispersive, and trapping technologies [41]. Time-dispersive IMS separates ions as a function
of their mobility in a neutral gas, whereas space-dispersive IMS separates ions by the ratio
of low-field to high-field mobilities [42]. Examples of time-dispersive IMS are drift tube ion
mobility spectrometry (DTIMS) and travelling tube ion mobility spectrometry (TWIMS).
High-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential ion
mobility spectrometry (DIMS or DMS) are examples for space-dispersive techniques [43].
The third class is represented by trapped ion mobility spectrometry (TIMS), which contains
a trapping technology able to confine and release ions.

IMS alone has been applied for quantification [11,15,17,27] and classification [5] tasks
in controlled environments. However, due to the inherent diversity of biogenic samples, the
applications of IMS with direct sample introduction are often not sufficient, requiring prior
purification or separation. The commonly used purification methods for VOC profiling in
combination with IMS are solvent extraction [20,26,44] and solid-phase microextraction
(SPME) [13]. SPME devices are constructed of a silica fiber coated with a thin layer of a
suitable polymeric sorbent or immobilized liquid, used for the direct extraction of analytes
from gaseous and liquid media [45]. While SPME coupled to IMS has been successfully
used for quantification tasks, such as the detection and quantification of precursors and
degradation products of chemical warfare agents [13], SPME is commonly extended by
column separation techniques [18,46,47].

To avoid clustering in the ionization or drift region, IMS devices are commonly
coupled to column separation techniques, such as liquid chromatography (LC) or gas
chromatography (GC). Column separation coupled to drift-time IMS separates analytes into
two orthogonal features, first the retention time through chromatography and second, the
drift time or mobility through IMS, resulting in a two-dimensional (2D) highly resolved GC-
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IMS spectrum [6,38]. In LC analysis, any soluble compound can be separated, but sample
preparation is a critical step for the data quality [48]. A comprehensive extraction method
which enables the extraction of a wide range of compounds with minimized potentially
interfering coextractives is needed for NTS approaches, since unspecific compounds are
being targeted [49]. LC-MS in combination with NTS has been applied for the detection of
food contaminants and environmental hazards [50,51].

In GC analysis, the volatility of a sample is a prerequisite. Headspace (HS)-based tech-
niques allow for the analysis of untreated samples, avoiding the time-consuming sample
pretreatment steps [52]. The analysis of non-volatile samples may be achieved through the
derivatization with a functional group onto the molecule of interest. Although the modifi-
cation of the functional group enables the analysis of compounds that otherwise could not
be easily monitored by GC, NTS approaches usually do not incorporate derivatization, in
particular due to the high level of variance.

The advantages of GC-IMS in comparison to established techniques, such as mass
spectrometry, are its simple and inexpensive design primarily due to being operated at
atmospheric pressure and hence not requiring vacuum pumps [8]. Furthermore, the use
of radioactive ionization sources allows for portability, miniaturization, and mechanical
robustness and therefore is suitable for field and benchtop applications [52]. Due to
efficient ionization, in combination with its fast and sensitive detection, IMS is a universal
technique for the analysis of organic and inorganic molecules, atoms, or particles [38].
One potential challenge of IMS analysis is that spectra may contain interference due to
widespread ionization, which results in low selectivity. The addition of suitable dopant
substances, however, has been shown to overcome these limitations [53,54]. A nonlinear
concentration range was previously described for IMS, requiring the careful monitoring of
sample concentration to avoid sample saturation. Furthermore, the separation, which is
based on CCS, often provides limited information regarding specific qualities concerning
size and shape of analytes. However, the drawback of interference caused by spectral
complexity and nonlinearities can be overcome by using computer-based analysis tools [55].

The complexity of biological samples results from the presence of a variety of com-
pounds, which provide in their entirety a characteristic HS-GC-IMS spectrum, often referred
to as the VOC profile or ‘fingerprint’ [56,57]. HS-GC-IMS has been demonstrated to be
an effective technique for the evaluation of VOC profiles of biological samples due to its
simple system setup, robustness, and price [44,58–61]. The chemical fingerprinting of food
and beverages in combination with chemometric analysis is widely used for food authenti-
cation and ultimately to identify food adulteration and fraud [62]. Furthermore, the VOC
profile is influenced by production processes as well as storage conditions. Consequently,
process control and quality assurance, such as the control of food freshness or food safety,
are topics of interest for NTS using HS-GC-IMS [63,64] techniques.

2. Motivation for Non-Targeted Screening Using HS-GC-IMS

Labelling fraud, e.g., of organic certifications or geographic origin, is the most common
type of fraud in agricultural and food markets [65,66]. According to the European Commis-
sion, honey and olive oil are particularly affected by mislabeled botanical origin, as well as
dilution with inferior or less expensive products [2,67]. Moreover, food adulteration and
food fraud have led to cases of economic loss and may pose health risks [2]. The detection
of food fraud or adulteration often involves the identification of compounds of unknown
molecular composition. Since no identified chemical markers or sets of markers are com-
monly accessible for a target-based analysis, an analytical approach covering a multitude of
parameters in parallel paired with strong discrimination power is required. The currently
used methods to determine quality and authenticity, such as sensory analysis and physico-
chemical analysis [68], are time- and resource-consuming, while lacking sensitivity as well
as prediction accuracy, not at least due to univariate analysis. To overcome the limitations
of traditional, wet-chemistry-based assays, targeted and non-targeted approaches using
chromatographic methods [69,70], often in combination with mass spectrometry [71–73],
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as well as infrared (IR)-based spectroscopy [74,75], and proton nuclear magnetic resonance
(1H NMR) spectroscopy [76,77] have been discussed for various applications. However,
to obtain the required reproducibility needed for chemometric analysis, time-consuming
sample preparation, including precise adjustments of pH, water content or particle size,
have been reported in combination with the mentioned methods. Furthermore, the high
costs of ownership and maintenance, as well as the requirement for expert knowledge,
may limit applications. Finally, high-end instrumentation also requires suitable laboratory
infrastructures, which are usually not available at the point of care. Thus, robust, inexpen-
sive, and fast analytical methods, such as HS-GC-MS, are needed, which require little or no
sample preparation but deliver high selectivity.

Application examples for HS-GC-IMS with NTS:
A plethora of studies have shown the potential of HS-GC-IMS in combination with

NTS for monitoring food quality or confirmation of geographical or botanical origin,
despite the complexity of the samples. For example, HS-GC-IMS with NTS has been
widely applied for the classification of olive oil between high-priced type 1 extra-virgin
olive oil (EVOO), medium-priced type 2 virgin olive oil (VOO or OO), and non-edible
type 3 olive oil, also known as pomace olive oil (POO) or lampante (virgin) olive oil
(L(V)OO) [32,33,78,79]. Furthermore, HS-GC-IMS with NTS was successfully used for
reliable classification of geographical origins for both olive oil (EVOO) [34,80,81] and
wine [30]. Moreover, HS-GC-IMS with NTS was applied for the classification of honey
according to botanical origin [52,81,82], as well as for the detection and quantification of
honey adulterated with sugar cane or corn syrups [83,84]. Recently, HS-GC-IMS with NTS
has been applied to assess the freshness of food [85] and for the detection of mold formation
on milled rice [86], peanut kernels [87], and wheat kernels [88]. Further examples of recent
studies using HS-GC-IMS with NTS are provided in Table 1.
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Table 1. Recent studies of HS-GC-IMS with NTS.

Reference (Main
Author/Yeat) Aim of Reference Matrice

(Number of Samples)
IMS Type

(Ionization Source)

Separation (Length × Inner
Diameter (ID), Film Thickness

(ft))

Unsupervised and Supervised
Methods

Complementary
Analysis

Method and Number
of Compounds

Identified

Data-Split; (Cross-)
Validation

Arroyo-
Manzanares/2017

[89]

classification
between pig’s food

sources

dry-cured Iberian
ham (24)

FlavourSpec by GAS
(tritium, 6.5 keV)

FS-SE-54-CB stationary phase
(30 m × 0.32 mm ID, 0.25 µm ft;

94% methyl, 5% phenyl, 1%
vinyl silicone)

PCA
PCA-LDA (90%), kNN

(k = 3, 90%)

library search (LS)
5 80/20

Arroyo-
Manzanares/2019

[84]

detection of
adulteration (sugar
cane or corn syrup)

honey (198) FlavourSpec by GAS
(tritium, 6.5 keV)

HP-5MS UI (nonpolar)
(30 m × 0.25 mm ID, 0.25 µm ft)

OPLS-DA (97.4% prediction of
class, 93.75% prediction of

adulteration degree)
0 80/20

Brendel/2021
[90]

detection of botanical
origin citrus juice (47) OEM IMS by GAS

(tritium, 300 MBq)

ZB-5 ms column
(30 m × 0.25 mm, 0.25 µm ft; 5%

phenyl-methylpolysiloxane)

PCA
PCA-LDA (91.5%)

HS-GC-
MS/IMS

reference substances
(RS)

9

leave-one-out (LOO)
4- and 6-fold CV

Cavanna/2018
[85]

detection of food
freshness egg (132) FlavourSpec

FS-SE-54-CB-1 stationary phase
(15 m × 0.53 mm ID, 1µm ft; 94%

methyl, 5% phenyl, 1% vinyl
silicone)

PCA
OPLS-DA (97%)

RS, SPME-GC-MS
5 leave-one-out CV

Chen/2020
[30]

detection of
geographical origin

Chinese yellow wine
(122)

FlavourSpec by GAS
(tritium, 6.5 keV)

nonpolar column (30 m, 95%
methyl, 5% phenyl)

PCA
QDA (95.35%)

LS
12 70/30

del Contreras/2019
[33]

quality assess-
ment/classification olive oil (701) FlavourSpec by GAS

(tritium, 6.5 keV)

SE-54-CB (30 m × 0.32 mm,
0.25 µm ft; 94% methyl, 5%
phenyl, 1% vinyl silicone)

PCA
non-targeted (PCA-LDA, kNN

k = 3: 79.4%), targeted OPLS-DA:
74.3%)

LS, RS
20

80/20;
7-fold CV

Garrido-
Delgado/2011

[80]

quality assess-
ment/classification olive oil (49)

portable UV–IMS
instrument (UV

ionization source:
10.6 eV) and

FlavourSpec by GAS
(tritium, 6.5 keV)

MCC (nonpolar) OV-5 (20 cm)
PCA

UV-IMS: kNN (k = 3, 86.1%);
GC-IMS: kNN (k = 3, 100%)

0 71/29 and 64/26;
leave-one-out CV

Garrido-
Delgado/2012

[78]

quality assess-
ment/classification olive oil (98) FlavourSpec by GAS

(tritium, 6.5 keV)
MCC (nonpolar) OV-5 (20 cm,
1000 parallel glass capillaries)

PCA
Targeted: kNN (k = 3, 79%),

non-targeted: kNN (k = 3, 87%)

Organoleptic
analysis

LS, RS
10

bootstrap validation
(B = 100)

Garrido-
Delgado/2015

[32]

quality assess-
ment/classification olive oil (55) FlavourSpec by GAS

(tritium, 6.5 keV)

two different types of columns:
MCC (20 cm × 3 mm ID,

900 parallel glass capillaries:
40µm ID, 0.2µm ft) and CC
(30 m × 0.25 mm, 0.5µm ft)

PCA
MCC-IMS: kNN (k = 3, 79%);

CC-IMS: kNN (k = 3, 83%)

LS, RS
26 bootstrap validation

Gerhardt/2017
[34]

detection of
geographical origin olive oil (40) FlavourSpec by GAS

(tritium, 6.5 keV)

NB-225
(25 m × 0.32 mm × 0.25 µm ft;
25% phenyl, 25% cyanopropyl

methyl siloxane)

PCA
PCA-LDA (98%) and kNN (k = 5,

92%)

RS
4 10-fold CV

Gerhardt/2018
[52]

detection of botanical
origin honey (74) advanced IMS by GAS

(tritium, 300 MBq)

DB-225 (25 m × 0.32 mm,
0.25 µm ft; 25% phenyl, 25%

cyanopropyl methyl siloxane)

PCA
PCA−LDA (98.6%), kNN (k = 5,
86.1%), PLS-DA (PLS = 5, 97.0%)

1H NMR RS
18

87/13;
10-fold CV
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Table 1. Cont.

Reference (Main
Author/Yeat) Aim of Reference Matrice

(Number of Samples)
IMS Type

(Ionization Source)

Separation (Length × Inner
Diameter (ID), Film Thickness

(ft))

Unsupervised and Supervised
Methods

Complementary
Analysis

Method and Number
of Compounds

Identified

Data-Split; (Cross-)
Validation

Gerhardt/2019
[79]

quality assess-
ment/classification olive oil (94) FlavourSpec by GAS

(tritium, 6.5 keV)

DB-225
(25 m × 0.32 mm × 0.25 µm ft;
25% phenyl, 25% cyanopropyl

methyl siloxane)

PCA, HCA
PCA-LDA (10 PCs, 83.3%), kNN

(73.8%), SVM (88.1%)

Organoleptic
analysis

RS
25 10-fold CV

Gu/2020
[88]

detection of quality
changes during

storage

wheat kernels
infected with mold

(90)

FlavourSpec by GAS
(tritium, 6.5 keV)

MXT-WAX (nonpolar)
(30 m × 0.53 mm ID, 0.1 µm ft)

PCA, HCA
GA-SVM, Artificial samples:

(Classification: 100%),
(Quantification > 93.9%);

Natural samples: (Classification:
60–86.7%, Quantification:

72.6–88.9%)

LS
13 67/33

Gu/2020
[86]

detection of quality
changes during

storage

milled rice infected
with Aspergillus

species (108)

FlavourSpec by GAS
(tritium, 6.5 keV) SE-54-CB

PCA
kNN (k = 3, 94.44%), PLSR

(90.9%)

electric nose
(E-nose)

LS, partially RS
25

67/33;
10-fold CV

Gu/2021[87]
detection of quality

changes during
storage

peanut kernel
infected with

aflatoxigenic fungi
(180)

FlavourSpec Rtx-WAX (30 m × 0.32 mm ID,
0.25 µm ft, RT-12,424)

PCA
OPLS-DA (93.3%), low-level

data fusion (90%), mid-level data
fusion (96.7%)

fluorescence
analysis

LS
3

67/33;
7-fold CV, 200×
permutation test

Li/2019
[5]

classification
between aroma green tea (23)

real-time IMS:
self-made positive

photoionization
(PP-IMS) with KR lamp

- PCA
PLS-DA (95.6%)

sensory
evaluation 0 10-fold CV, 1000×

permutation test

Schwolow/2019
[81]

detection of botanical
and geographical

origin

honey and olive oil
(64 honey,

54 EVOOs)

advanced IMS by GAS
(tritium, 300 MBq)

DB-225 (25 m × 0.32 mm,
0.25 µm ft)

PCA
Honey: PCA-LDA (33%); Olive

oil: PCA-LDA (78%),
PCA-LDA + data fusion (100%)

FT-MIR previous studies
(18 honey, 7 olive oil)

87/13;
10-fold CV

Shuai/2014
[44]

detection of
adulteration (with

vegetable oils)
flaxseed oil (78)

IMS-KS-100 by Wuhan
Syscan Technology

(pulse glow discharge)
n-hexane extraction recursive support vector

machine (R-SVM) (93.1%) 0 10-fold CV

Vega-Marquez/2019
[91]

quality assess-
ment/classification olive oil (701) FlavourSpec by GAS

(tritium, 6.5 keV)

SE-54-CB (30 m × 0.32 mm,
0.25 µm ft; 94% methyl, 5%
phenyl, 1% vinyl silicone)

Deep learning (88.8%), SVM (83.1%),
kNN (84.5%), Tree (78.3%), Regressor

(85.5%), XGBoost (85.7%)

LS, RS
20 80/20

Wang/2019
[82]

detection of botanical
origin honey (40) FlavourSpec by GAS

(tritium, 6.5 keV)
FS–SE–54–CB-0.5

(15 m × 0.53 mm ID)
PCA

OPLS-DA (95%) (VIP > 1.5) HS-SPME-GC-MS8 200× permutation
test

Wang/2019
[83]

detection of botanical
origin honey (120) FlavourSpec by GAS

(tritium, 6.5 keV)
FS–SE–54–CB-0.5

(15 m × 0.53 mm ID)
PCA

PLS-DA (84%)
LS
25 CV-ANOVA

Yuan/2020
[92] metabolomic studies rat feces (30) FlavourSpec FS-SE-54-CB-1 (15 m × 0.53 mm

ID)
PCA

OPLS-DA (86.6)
LS
11

200× permutation
test

Zhu/2020
[31]

quality assess-
ment/classification wine (143) FlavourSpec

MXT-WAX (polar)
(30 m × 0.53 mm ID, 0.5 µm ft,

polyethylene glycol)

PCA
PCA-LDA (65.7%), PLS-DA

(58.7%), kNN (k = 5, 60.8%), SVM
(51.8%), XGBoot (81.8%), ANN

(89.5%)

sensory
evaluation

RS
>30 85/15; 10-fold CV



Molecules 2021, 26, 5457 8 of 23

3. NTS-Workflow

NTS aims to identify the compounds of unknown molecular composition. The work-
flow for NTS generally consists of sample preparation, instrumental analysis, and post-
acquisition data processing [93]. Since little or no a priori knowledge of the chemical
structures and behavior of compounds is required, NTS approaches benefit from gentile
sample preparation, robust instrumental analysis, and standardized data processing. The
workflow for NTS using GC-IMS is shown in Figure 2. The first step, data acquisition,
involves sample preparation and subsequent extraction and separation of VOCs. The
collected data are then preprocessed and analyzed in the data-processing step. Since no
pre-existing knowledge is used, the entire spectral fingerprint obtained by HS-GC-IMS
analysis is subject to data analysis and classification or quantification models being built
using machine learning tools. In the third step, model interpretation, key compounds
are identified, which are extracted through back projection of loadings. Complementary
analyses, such as sensory analysis of GC-MS measurements, provide further insight into
sample composition and can be used to improve model accuracy. The model coherency is
evaluated and finally applied for benchtop profiling.

Figure 2. Workflow for non-targeted screening using HS-GC-IMS.

3.1. Data Acquisition

In untargeted approaches, sample preparation strategies need to be suitable for a
variety of matrices and enable the extraction of a wide range of compounds [49]. In order
to minimize the extraction-related formation of artifacts, static headspace extraction (SHS)
is commonly used for the analysis of volatile compounds in samples of different origin [94].
The limited sensitivity and the bias related to the extraction of low-volatile compounds
are generally considered as the main limitations of SHS methods, which can be overcome
through dynamic headspace extraction (DHS) [95]. If the preconcentration of analytes
is needed for analysis, high-concentration-capacity HS techniques, such as SPME can be
used, where the selective isolation of compounds of interest from samples with minimal
matrix contamination is crucial [95–97]. However, SPME is less commonly applied to
IMS with NTS, possibly due to drawbacks which have been associated with commercially
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available extraction phases, such as the low recovery of polar compounds, insufficient
matrix-compatibility, and the reduced life-time and robustness of the coating against matrix
macromolecules [98].

VOC profiling based on IMS in combination with NTS has been shown to be an
effective tool for various classification tasks, such as the differentiation between various
green teas with chestnut-like flavor [5]. Using PLS-DA, the authors were able to obtain
an accuracy of 95.6% for the classification of tender, pure, and roasted green tea aromas.
However, due to the complexity of many biogenic samples, IMS with direct sample intro-
duction is often not sufficient for NTS approaches, requiring extraction and/or column
separation techniques. Shuai and coworkers analyzed adulterated flaxseed oils after n-
hexane extraction using a handheld IMS and subsequent data analysis. A recursive support
vector machine (R-SVM) led to a model with an accuracy of 93.1% for the identification of
adulterated flaxseed oil [44].

To address the complexity of biogenic samples, pre-IMS separation techniques are
commonly applied. To avoid the clustering and formation of heteromers in the ionization
or drift region, IMS devices are commonly coupled to GC. The spectra obtained by HS-
GC-IMS are 2D, with the GC retention time as the first dimension and the IMS drift time
as the second dimension. The complexity of biological samples results from a plethora
of compounds, which provide in their entirety a characteristic GC-IMS spectrum that is
often referred to as VOC profile or ‘fingerprint’ [56,57]. For GC separation in combination
with IMS and NTS, both the capillary column (CC) and multicapillary column (MCC) have
been coupled to IMS. Among others, nonpolar CCs, such as fused silica SE-54-CB (94%
methyl, 5% phenyl, 1% vinyl silicone) [32,33,86,89,92], as well as polar CCs, such as DB-225
(25% phenyl, 25% cyanopropyl methyl siloxane) [79,81], were used for HS-GC-IMS with
NTS. For MCCs, which are composed of a large number of parallel glass capillaries (~1000),
nonpolar OV-5 (5% diphenyl, 95% dimethylpolysiloxane) was used [78,99]. Compared to
the ordinary CC, MCCs allow the separation to be carried out at an elevated speed and
can be operated at increased carrier gas flows, which may pose an advantage for IMS
analysis [100]. However, Garrido-Delgado and coworkers obtained the better predictive
accuracy for the classification (kNN classifier with k = 3) between different qualities of olive
oil (EVOO, OO, and LVOO), when CC-IMS (83%) versus MCC-IMS (79%) was employed
for the separation of the VOCs [32].

The data acquisition is finalized with the evaluation of the suitability of the collected
data for factorial analysis. This sampling adequacy is commonly determined using the
Kaiser–Meyer–Olkin (KMO) test, which is a measure of the proportion of variance among
variables [101].

3.2. Data Processing and Model Building

The ion velocity and thus the signal position are highly dependent on temperature and
ambient pressure; therefore, the drift-time alignment is a crucial preprocessing step [36,102].
For baseline correction, drift times are often normalized to the RIP position, which is,
however, not sufficient for the determination of absolute mobilities [103]. Alternatively, a
reference peak/substance can be used for alignment, which is recommended when GC-IMS
measurements are performed with long separation columns. In a second preprocessing
step, multiple measurements are averaged, and the background noise is subtracted. Scaling
methods, such as unit variance (UnVa) scaling, Pareto (Par) scaling, and mean centering
(Ctr) scaling, can be alternatively used for data set normalization [5]. In UnVa scaling,
the variance of each variable is unified using the standard deviation, while in Par scaling,
the square root of the standard deviation is used for normalization, whereas Ctr scaling
emphasizes the analysis of data fluctuations and the large-fold change in the data [82].
For further noise reduction, smoothing algorithms, such as Savitzky-Golay or Gaussian
smoothing, are applied to the spectra [52]. Interfering peaks and nonrelevant areas can
be removed by the careful selection of relevant GC retention time and drift-time ranges.
Prior to data analysis, the 2D spectra (GC retention time × drift time) are unfolded into
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arrays, which are then concatenated to the final data set (samples × measurements). For
supervised data analyses, the data set is finally split into training and test sets, where the
training set is used for model building and the test set for model validation.

Nonlinear behavior has been described for the ratio of the RIP and the distribution
between the protonated monomer and the proton-bound dimer [36,37,104]. By increasing
the molecular concentration of the analyte, the monomer peak decreases, while the dimer
peak increases. These typical nonlinear monomer-dimer distributions in IMS are often
accompanied by tailing effects of the monomer or dimer peak [105], requiring careful
consideration for quantification. In univariate regression (UR), the peak area or intensity
of a single peak is correlated against concentration [46]. Due to the nonlinear behavior
between the monomer and dimer peak, linearity can only be approximated for narrow
concentration ranges when using the regression analysis based on single-peak analysis [36].
Occasionally, the sum of the volume of monomer and dimer is correlated against the
concentration [106]; however, in complex mixtures, quantification is further complicated
by overlapping peaks, competitive ionization situations between coeluting analytes and
the occurrence of multicomponent cluster ions (heterodimeric ions), which are composed
of coeluting analytes [37].

3.2.1. Exploratory Data Analysis and Machine Learning Techniques

Due to the complexity of food matrices, abstract terms such as ‘food quality’ and
‘authenticity’ are the sum of multiple characteristics, which implies that the correlation to
a single analyte or analytical technique is often not sufficient or even impossible; hence,
multivariate variate data analysis (MVA) techniques are required [81]. MVA approaches
can be divided into exploratory, classification, and quantitative regression methods. Ex-
ploratory methods, such as PCA or HCA, are unsupervised and typically used for pattern
recognition, whereas classification methods such as PCA-LDA, kNN, or PLS-DA are su-
pervised methods. In this context, PLS-DA is a special case of classification, as it basically
uses a regression approach with class boundaries instead of single values, as in quanti-
tative regressions. For sample quantification, the latter methods, such as PLS regression,
Kernel-PLSR, MCR-ALS, or ANN are commonly applied.

Principal component analysis (PCA) is a powerful technique for unsupervised dis-
covery of patterns in data, which is further used for dimension reduction [107]. The
information extracted from a data matrix is explained by principal components (PCs),
which are orthogonal (mathematically independent) to each other. Since PCA models are
predicted without labels or validation by test data, they are generally considered unsuper-
vised. Unsupervised statistical methods are exploratory methods that can be used to study
data structures and search for clusters of samples [108]. Hierarchical cluster analysis (HCA)
of PCA models in a tree-like diagram (dendrogram) is, e.g., used for the visualization of
multivariate association and sample similarities [109]. An extension of PCA for process-
ing three-dimensional (3D) data is provided by multiway principal component analysis
(MPCA) [110], which has been applied for the feature extraction of GC-IMS matrices,
without prior transformation of the 2D data [99]. Further alternatives to PCA and PLS are
models based on PARAFAC [111] or Tucker3 [112], which may also be used with 3D data.

Compared to unsupervised techniques, which provide predictions without labels or
target variables, supervised techniques aim to build models able to predict target variables.
In supervised learning, several data points or samples are described using predictor
variables or features and target variables. For classification tasks, the scores obtained by
the unsupervised exploratory analysis are combined with subsequent supervised pattern
recognition techniques to distinguish samples according to defined categories. Among
PCA-based qualitative methods are linear discriminant analysis (LDA) and k-nearest
neighbors (kNN). Whereas PCA-LDA maximizes the interclass variance, kNN assigns the
category most common among the k-nearest neighbors. The downside of using PCA-based
methods is that the correlation between dependent and independent variables are not
considered during PCA analysis, which can result in the loss of information included
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in higher PCs [107]. An alternative is provided by partial least squares (PLS), where
the scores are calculated by considering the relationship between the independent and
dependent variables.

Other supervised methods used in NTS with HS-GC-IMS are gradient boosting (e.g.,
XGBoost) [31], decision tree classification (Tree) [91], logistic regression (Regressor) [91],
orthogonal partial least-squares discriminant analysis (OPLS-DA), quadratic discriminant
analysis (QDA) [30], or soft independent modeling of class analogy (SIMCA) [82]. Fur-
thermore, nonlinear classifications are often performed using support vector machines
(SVMs). By using the kernel trick, which transforms the input data into high-dimensional
feature spaces, SVMs can perform nonlinear classifications, in addition to performing
linear classification [113]. This is of particular importance when no linear hyperplanes are
separating the respective classes.

3.2.2. Model Performance and Validation

The performance of a model is usually measured as ‘accuracy’, which is the fraction
of correctly classified samples. The classification accuracy determines the fraction of
correctly classified samples for a given sample set. The classification accuracy, however, is
susceptible to overfitting and thus should only be used as reference. To prevent overfitting,
the data set is split into training and test data. The ratio between training and test data,
which is commonly referred to as ‘train–test split’, is usually between 2:1 [88] and 4:1 [33],
and sometimes as low as 6:1 [31]. The test set is used to determine the prediction accuracy,
which is usually lower than the classification accuracy but more meaningful [88]. For
small and inhomogeneous data sets, a single split of the data into training and test set may
give misleading results [114]. An alternative model validation is therefore provided by
resample methods, such as cross validation (CV), bootstrapping, or permutation testing,
where multiple random subsets are generated. For the CV of samples, a subset of the data
is held out for use as a validation set, and a model is fit to the remaining data (training
set) and used to predict the validation set. The process of generating a subset of data,
model fitting, and evaluation is performed repeatedly, and an overall prediction accuracy
is determined by averaging the quality of the predictions across the validation sets. Leave-
one-out CV leaves out a single observation at a time, while k-fold CV splits the data into k
subsets, which are one by one held out as the validation set [107]. For NTS using HS-GC-
IMS, 10-fold CV is commonly performed [31,52], alongside with leave-one-out CV [80,85].
Bootstrapping is a resampling method that can be used as an alternative to CV to estimate
the prediction performance of a model with a low number of training samples. Due to
drawing with replacement, a bootstrapped data set contains the same number of cases as
the original data set, and it can contain multiple instances of the same original cases [114].
Another resampling method is permutation testing, where labels are switched on data
points when performing the test statistics. Both bootstrapping [32,78] and permutation
tests [82,92] have been applied with HS-GC-IMS and NTS.

The success rate of different chemometric models for classification depends on many
factors, such as botanical origin of the samples, number of samples or the selection of PCs,
PLS, and k values. Gerhardt and coworkers compared different chemometric methods
for the classification of the botanical origins of honey (acacia, canola, and honeydew)
using a resolution-optimized HS-GC-IMS. They found a 98.6% accuracy with PCA-LDA,
86.1% with kNN (k = 5), and 97.0% with PLS-DA after employing 10-fold CV [52]. Quality
assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation
conducted by Gerhardt and coworkers reported a 83.3% accuracy with PCA-LDA, 73.8%
with kNN (k = 5) and 88.1% with SVM models, after employing 10-fold CV [79].

Artificial neural networks (ANNs) are a powerful modeling approach, which is
vaguely inspired by the biological neural networks in the brain [115]. Due to their hid-
den layers, ANNs have the ability to capture complex interactions present in biological
samples. Furthermore, ANNs can be applied for pattern recognition, classification tasks,
and quantification problems, as well as data preprocessing. ANN has recently the gained
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attention for applications in food science and technology, while often being limited by the
requirement of having sufficiently large data sets [116,117]. Zhu and coworkers have shown
the superior prediction performance of ANN (89.5%) over PCA-LDA (65.7%), PLS-DA
(58.7%), kNN (k = 5, 60.8%) and SVM (51.8%), and XGBoost (81.8%), for the classification of
Sauvignon Blanc via SHS-GC-IMS [31]. Vega-Márquez and coworkers evaluated a deep
learning network and five different benchmark methods for the classification of olive oil
samples into EVOO, OO, and LVOO, based on HS-GC-IMS spectra obtained for 701 olive
oil sample from two different harvests [91]. Among the five benchtop models used for
comparison, XGBoost offers the best accuracy of 85.7%, compared to SVM (83.1%), kNN
(84.5%), Tree (78.3%), and Regressor (85.5%). However, even better results were achieved
with the deep learning approach, obtaining an accuracy of 88.8%, which underlines the
potential of ANNs.

3.2.3. Quantification Tasks

For quantification tasks, partial least squares regression (PLSR) has become the stan-
dard method used in chemometrics, including the fields of sensorial analysis in food
chemistry [107,110]. PLSR is used to describe the relationship between two data matrices, X
(experimental data) and Y (actual concentrations), which are decomposed into X = TPT + E
and Y = UQT + F, by finding the maximum covariance and linear relationship between the
score matrices T and U. P and Q represent the loading matrices and E and F the matrices
of residuals. After multiplying X with a nonlinear function, linear PLS can be applied
as described above. After the successful implementation of multivariate models for the
interpretation of the training data, the model performance is commonly tested using test
data. The model quality can be determined by different figures of merit, such as the deter-
mination coefficient (R2) and the relative percentage error of prediction (RE), as well as root
mean square error (RMSE), systematic error (Bias), or standard error of prediction (SEP).

One limitation to PLSR is the typically lower performance on nonlinear and het-
eroscedastic data, as is partially the case for IMS data. Several studies have analyzed
nonlinear IMS data, as shown by the quantification of histamine in tuna stomach [7] or
allergenic fragrance compounds, such as citral, in complex cosmetic products [38]. Non-
linear relationships between the matrices T and U can be described by kernel PLSR (also
known as nonlinear PLSR), where the data are transformed into higher-dimensional spaces
using the kernel trick [118].

An alternative to PLSR or kernel PLSR is provided by multivariate curve resolution
alternating least squares (MCR-ALS). MCR decomposes the initial data matrix D with n
sample spectra and m data points in the spectra to D = CST + E. The matrices C (n × l) and
S (l × m) represent the concentration and spectra profiles of D for l components, while
the matrix E (n × m) contains the residuals not explained by C and S [119]. MCR-ALS
may deconvolute overlaying spectra from coelution and reconstitute the pure spectra for
quantitation. A comparison of UR, PLSR, MCR-ALS, and Kernel-PLSR for the quantification
of fragrances using GC-IMS analysis was provided by Brendel and coworkers. For both, a
mixture of geraniol and citral as well as a mixture of the citral and cinnamal, Kernel-PLSR
demonstrated the superior ability for the quantification of the nonlinear relationships of
GC-IMS data since Kernel-PLSR was able to significantly reduce the RE of prediction and
increase R2 of calibration.

3.3. Model Interpretation

Once a robust and reliable model is built, whose predictive abilities are sufficient for
the chosen task, the model should be checked for plausibility. Therefore, the influencing
variables, also referred to as markers, are extracted, identified, and subsequently used for
interpreting and explaining the model. By using PCA for marker extraction, the loadings
obtained by multivariate analysis are projected backwards into the original data space and
are subsequently evaluated either manually or automatically. This allows one to identify
the signals with the main influence for separation in the respective principal components
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with relation to the original data (Figure 3). Another example is the use of PLS-DA, where
volcano plots and variable importance in projection (VIP) analysis have been performed
to determine the final markers for each discrimination task [56]. Compounds with a VIP
score > 1 are generally considered as suitable markers [120].

Web-based platforms, such as MetaboAnalyst (http://www.metaboanalyst.ca,
accessed on 1 July 2021) [121] and XCMS Online (https://xcmsonline.scripps.edu/, ac-
cessed on 1 July 2021) [122], are designed to handle comprehensive untargeted metabolomic
data. Compared to GC-MS data, which include m/z information, GC-IMS data are intrinsi-
cally limited to (normalized) drift times and retention times. While MetaboAnalyst has also
been used for the processing of GC-IMS data, including the preprocessing (normalization
and scaling) of data [82], VIP analysis [83], and entire chemometric analysis [123], the lack
of m/z information limits the use of these metabolomic data processing tools for compound
identification. However, the combination of retention indices and normalized drift times is
considered as a reliable alternative; as in particular, drift times are highly reproducible. By
comparing markers obtained from the GC-IMS data to databases, which are often provided
by IMS manufacturers, the substances of interest can be identified [124,125]. Furthermore,
a search of the literature and subsequent confirmation by reference substances can be used
for substance identification [126–128]. Since coelution and matrix effects can influence GC-
IMS data, a common technique is to spike a complex sample with the pure substance. To
increase the number of substances identified and to further increase the model’s accuracy,
complementary data, such as GC-MS [123], can be used as described in Section 3.4. This
procedure is optional, as reliable models for classification and quantification tasks can be
built solely from HS-GC-IMS data [44,80]. Typically, these MS detectors are unit-resolved
and, as such, again limited in their selectivity in comparison to high-resolution systems,
such as TOF or Orbitrap systems. However, a full spectral interpretation is not always
necessary in NTS approaches. Some studies solely detect markers without subsequent
identification of substances [43,80,84].

Figure 3. Data analysis and backwards projection of loadings for identification of key substances.

NTS is a powerful approach for complex classification and quantification tasks. How-
ever, next to model overfitting, the transferability of a model to new data poses a major chal-
lenge. A dramatic example is given by Contreras and coworkers who analyzed 701 olive

http://www.metaboanalyst.ca
https://xcmsonline.scripps.edu/
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oil samples from the years 2014–15 and from 2015–16 for the classification into EVOO,
OO, and LVOO, using HS-GC-IMS with NTS [33]. A model built with olive oil samples
from 2014–15 obtained a prediction percentage of 67.8%. A better prediction success was
achieved for a model built with olive oil samples from 2014–15 and 2015–16, obtaining
79.4% accuracy. However, when applying the NTS model built with samples from the
year 2014–15 to predict the years 2015–16, a prediction success of only 36.0% was achieved,
revealing the low transferability of the model. This is however not an effect solely to be
attributed to GC-IMS but rather is a general issue of profiling techniques so far and is
mainly driven by typically high analytical variance together with a high biological variance
of the samples.

To achieve good predictive abilities and transferability of a model to new data, large
sample sets containing independent and diverse samples are necessary; however, studies
are often limited by sample availability. To overcome this issue and to reveal influencing
factors, a comprehensive evaluation of the model should be performed. The identification
of influencing substances, for instance, may reveal the characteristic compounds or classes
of substances in which the classes differ. A subsequent comprehensive evaluation can
determine which factors may be caused by systematic errors and which factors allow
for true differentiation between classes. High predictive accuracies for classification and
quantification tasks can be achieved without substance identification, yet a comprehensive
evaluation of the model helps to detect strategic errors, such as a narrow sample distri-
bution, and thus should always be part of NTS approaches. Due to its robustness and
comparably low prices, HS-GC-IMS is suitable for benchtop profiling. In combination with
NTS approaches, HS-GC-IMS data can be used for the implementation of models, which
are suitable for classification and quantification task in various fields.

3.4. Complementary Data (Optional)

Due to the complexity of biological matrices, the substance identification with GC-
IMS data alone can be challenging, which is why stand-alone IMS are rarely used to
investigate the sample composition. Complementary techniques, such as GC-MS [129] or
1H NMR [130], are often used to identify decisive marker substances [131].

Next to marker identification, complementary data can be combined with GC-IMS
data to build a multimodal model. The process of integrating multiple data sources,
which is commonly known as ‘data fusion’, has the potential to increase model accuracy
and reliability, while reducing interferences and error rates [132]. The process of data
fusion is categorized as low-level, mid-level (or intermediate-level), and high-level data
fusion, depending on the fusion strategies used [133]. In low-level (or data-level) fusion
approaches, data from all sources are preprocessed, concatenated into a common data
matrix, and subsequently analyzed using classical multivariate methods, such as PCA
or PLS (see Section 3.2). Mid-level data fusion approaches, which are also referred to as
feature-level data fusion, are based on the extraction of relevant features from each data
source separately [87]. Several latent variables, such as the score values from PCA or PLS,
are selected for this feature-based data fusion, concatenated, and subsequently analyzed
using classical multivariate methods. The third fusion approach is high-level or decision-
level data fusion, where completely independent models are calculated from each data
set; this level is the most challenging due to the determination of the ideal parameters for
each separate multivariate model. Careful considerations of parameters, together with the
implementation of a voting or scoring scheme, which prioritizes results from different data
sources, can provide a combined model, which outperforms the individual models [134].

Schwolow and coworkers showed that the data fusion approach significantly increased
both the predictive power and the robustness of the resulting classification model for the
determination of geographical origin of olive oil [81]. The prediction accuracy obtained
for Fourier-transform infrared (FT-IR) data alone was 67% and for GC-IMS 78%, while
resulting a perfect score for a low-level data fusion approach using the complementary
chemical information provided by GC-IMS and FT-IR analysis. The extra effort needed for
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data fusion approaches, however, is not always rewarded. Gu and coworkers classified
fungal growth on peanut kernels into potentially aflatoxigenic fungi and non-aflatoxin
producing fungal species using HS-GS-IMS and fluorescence measurements [87]. The
predictive accuracy for HS-GC-IMS measurements alone was 93.3% with an OPLS-DA
model, while low-level data fusion reduced the accuracy to 90%. The predictive accuracy
of the OPLA-DA after mid-level data fusion using VIP > 1.3 further decreased to 86.7%.
Only a mid-level data fusion using 10 PCs increased the model accuracy to 96.7%.

Another approach to increase the discrimination power of a classification model is
the parallel analysis of IMS and MS, which has recently gained attention for classification
and quantification tasks [90,106,127]. Although IMS and MS cannot be seen as fully
complementary methods, in particular due to the identical volatile fraction being monitored
by both techniques [90], it was shown that the soft ionization and drift-time-based ion
separation on the one hand and a hard ionization and m/z-based separation on the other
hand improved substance identification in the case of coelution in hops analysis [127].
While complementary data in general can increase the interpretability and accuracy of a
model developed with HS-GC-IMS, they are optional for NTS via GC-IMS.

4. Comparison of NTS and Targeted Strategies

An alternative approach to NTS is targeted screening. While NTS of HS-GC-IMS
data uses no pre-existing knowledge and the entire spectral fingerprint is subject to data
analysis, for targeted analysis, specific markers are chosen prior to the data analysis. The
markers used for targeted screening can be either handpicked or mathematically deter-
mined [33,135]. One-way analysis of variance (ANOVA), using for example a Tukey’s
test, is often applied to identify volatile compounds which exhibit significant differences,
commonly quantified at a 5% significance level (p ≤ 0.05) [59]. Various other methods, such
as Gabor filters, local binary pattern, Haar, and histograms of oriented gradients (HOG),
have been proposed for feature extraction [136,137]. Chen and coworkers applied MPCA
and HOG for feature extraction and data reduction of MCC-IMS data, with subsequent
canonical discriminant analysis for the generation of nonlinear boundaries, for the suc-
cessful quantification of the adulteration degree of canola oil. A predictive accuracy of
more than 95.2% was reported for a PLS model, which was obtained using a train–test
split of 70–30 [99]. Using targeted approaches and applying PCA-kNN, the same authors
reported a successful classification of rapeseed oils according to their quality (grade 1–4)
and a successful determination of vegetable oil according to its botanical origin (sesame
oil, rapeseed oil, and camellia oil). For the classification of the rapeseed oil quality, the
colorized differences method was applied to CC-IMS data, resulting in 34 peaks of interest
and a predictive accuracy of 100% [138]. Furthermore, Otsu’s method and colorized dif-
ferences method was used for automatic peak detection, resulting in 88 peaks of interest
and a predictive accuracy of 98.3% for the classification of vegetable oil using MCC-IMS
data [139]. The advantage of preselecting markers with significant differences is the simul-
taneous reduction of noise in the data, which, however, includes the risk of overlooking
valuable information.

NTS approaches (spectral fingerprinting) have also been directly compared to targeted
approaches (extraction of specific markers) for the analysis of IMS data. Garrido-Delgado
and coworkers compared targeted and NTS approaches for the classification of olive oil
into EVOO, OO, and LVOO, using data obtained by MCC coupled to IMS [78]. A PCA-
LDA model was used for data reduction and data clustering, followed by kNN (k = 3) for
classification, obtaining a prediction percentage of 79% for the targeted strategy and 85%
for NTS strategy. For the classification of olive oil harvested in 2014–15, Contreras and
coworkers obtained a prediction percentage of 56.9% for the targeted strategy and 67.8%
for the NTS strategy [33]. An improved prediction success was achieved for models built
with olive oil samples from 2014–15 and 2015–16, obtaining 74.3% for the targeted strategy
and 79.4% for the NTS, hence suggesting superior abilities of the NTS approach versus the
selection of specific markers. By contrast, the authors also reported that a targeted model
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built with samples from the years 2014–15 (prediction success of 51.6%) was superior to
the NTS approach (prediction success of 36.0%) when applied to the years 2015–16. Both
models built with the data from the years 2014–15 show weak prediction abilities for the
prediction of samples from the following year, revealing some fundamental challenges
in data science: the predictive ability of a model is highly dependent on the number of
samples as well as on the sample diversity. Both approaches include the risk of overfitting
to a specific problem [33].

Arroyo-Manzanares and coworkers likewise obtained superior classification accuracy
using HS-GC-IMS for a model based on a targeted marker selection (100%) compared to a
model based on the whole spectral fingerprint (90%) for the distinction between dry-cured
Iberian ham from pigs fattened on acorns and pasture or on feed [89]. However, the
model based on marker selection was built using OPLS-DA, while kNN (k = 3) and PCA-
LDA were used for the model based on spectral fingerprints; hence, the differences in the
predictability of the models may result from the use of different mathematical tools and do
not provide inferences about targeted and non-targeted approaches. Gu and coworkers by
contrast obtained better classification results with the NTS versus a targeted approach for
distinguishing between fungal infections of wheat kernels, as well as for the quantification
of fungal colony counts [88]. In conclusion, NTS and targeted screening approaches are
both effective tools for data analysis, with different challenges and application areas.

5. Conclusions

HS-GC-IMS in combination with an NTS approach provides an effective tool for
classification and quantification tasks not at least due to low maintenance and easy handling
of the instruments [9]. In combination with HS-GC and machine learning, IMS has been
demonstrated to be an effective technique for various classification and quantification
tasks, such as for the determination of food authenticity as well as for the detection of
food adulteration and food fraud. Furthermore, HS-GC-IMS has been applied in the field
of process control, for example for the early detection of microbial contaminants or in
the field of food safety for the detection of pesticides. HS-GC-IMS is also found in the
field of quality assurance for the detection of food freshness or the detection of off-flavors.
Recently, HS-GC-IMS in combination with deep learning approaches has shown promising
results for further improvement of model accuracies. HS-GC-IMS is suitable for benchtop
profiling, due to its robustness and comparably low purchase and running costs. For
benchtop analysis, MDV-based methods for HS-GC-IMS devices can be implemented in
the laboratory and subsequently applied for food analysis in various fields. A common
approach for further market acceptance is the combination of IMS instrumentation with
HS-GC-MS, which alone has already been applied to a wide variety of applications.
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Glossary

Abbreviations Description
1H NMR proton nuclear magnetic resonance
2D two-dimensional
3D three-dimensional
Am-241 americium-241
ANN artificial neural networks
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ANOVA one-way analysis of variance
APPI atmospheric pressure photo ionization
Bias systematic error
CC capillary column
CCS collision cross section
CD corona discharge
Ctr mean centering
CV cross validation
D(I)MS differential ion mobility spectrometry
DHS dynamic headspace extraction
DTIMS drift-tube ion mobility spectrometry
E-nose electric nose
EVOO extra-virgin olive oil
FAIMS high-field asymmetric waveform ion mobility spectrometry
ft film thickness
FT-IR Fourier-transform infrared spectroscopy
GC gas chromatography
GC–IMS gas chromatography-ion mobility spectrometry
H+[H2O]n proton-water clusters with n number of water molecules
H-3 tritium
HCA hierarchical cluster analysis
HOG histograms of oriented gradients
HS headspace
ID inner diameter
IMS ion mobility spectrometry
K0 reduced ion mobility
KMO Kaiser–Meyer–Olkin
kNN k-nearest neighbors
L(V)OO lampante (virgin) olive oil
LC liquid chromatography
LDA linear discriminant analysis
LDI laser desorption/ionization technique
LOO leave-one-out
LS library search
M2H+ proton-bound dimers
MCC multicapillary column
MCR-ALS multivariate curve resolution alternating least squares
MH+ protonated monomers
MPCA multiway principal component analysis
MVA multivariate variate data analysis
Ni-63 nickel-63
NTS non-targeted screening
OPLS-DA orthogonal partial least-squares discriminant analysis
Par Pareto
PC(A) principal component (analysis)
PLS(R) partial least squares (regression)
POO pomace olive oil
(Q)DA (quadratic) discriminant analysis
R2 determination coefficient
RE relative error of prediction
Regressor logistic regression
RIP reactant ion peak
RMSE root mean square error
RS reference substances
(R)-SVM (recursive) support vector machine
SEP standard error of prediction
SHS static headspace extraction
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SIMCA soft independent modeling of class analogy
SPME solid-phase microextraction
TIMS trapped ion mobility spectrometry
Tree decision tree classification
TWIMS travelling tube ion mobility spectrometry
UnVa unit variance
UR univariate regression
UV ultraviolet light
VIP variable importance in projection
VOC volatile organic compound
(V)OO (virgin) olive oil
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