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Abstract: A bisthienylethene-dipyrimido[2,1-b][1,3]benzothiazole (BTE-2PBT) triad has been de-
signed and synthesized based on our recent discovery of PBTs as atypical propeller-shaped novel
AIEgens. The triad not only maintains the photochromic properties of BTE moiety in solution, film,
and solid state but also exhibits remarkable AIE properties. Moreover, the fluorescence of BTE-2PBT
PMMA film could be modulated with high contrast by alternate UV and visible light irradiation.
Photoerasing, rewriting, and non-destructive readout of fluorescent images on BTE-2PBT PMMA
film well demonstrate its potential application as optical memory media.

Keywords: AIE; photochromism; pyrimido[2,1-b][1,3]benzothiazole; diarylethene; photoswitch

1. Introduction

Photochromic diarylethenes have been acknowledged for their excellent photochemi-
cal reactivity, thermal stability, and fatigue resistance [1,2] and widely applied as photo-
responsive materials in a variety of photonic devices [3]. Generally, the open-ring isomers
of diarylethenes are weakly fluorescent depending on the nature of attached heteroaryl
rings, but the fluorescence is typically quenched due to the formation of a larger conjuga-
tion system upon photo-induced ring closure. Therefore, diarylethene alone is not an ideal
photo-switchable fluorophore. However, the huge absorption shift from 250–330 nm to
500–650 nm upon cyclization enables diarylethenes to function as photo-responsive energy
acceptors in fluorescence resonance energy transfer (FRET) pairs. The photo-addressable
fluorescence observed in diarylethene-fluorophore dyads [4,5] confirmed that the fluores-
cence modulation largely depends on the photoconversion ratio (PR) of diarylethene moiety.
These photo-switchable fluorophores have been applied to labelling of biomolecules [6] and
nanoparticles [7] to enable fluorescence switching with UV and visible light. However, most
of these fluorescent photoswitches inevitably suffer from aggregation-caused quenching
(ACQ), which greatly limits their applications as high-density optical materials [8].

The discovery of aggregation-induced emission (AIE) [9–11] has brought a new win-
dow to overcome the ACQ problem. It has been reported that the bisthienylethene-
diquinolinemalononitrile triad [12] and bisthienylethene-dicoumarin triad [13] exhib-
ited AIE properties. However, their photo-controlled modulation of solid-state fluo-
rescence was not well realized. Currently, only a limited number of dyads and triads,
which directly connect a bisthienylethene (BTE) with one or two AIEgens, such as trans-
cyanostilbene [14,15], tetraphenylethene [16–18], and bispyridine salt [19], have been
obtained as photo-switchable AIE materials [20,21].

Recently, our research group discovered pyrimido[2,1-b][1,3]benzothiazoles (PBTs)
as atypical propeller-shaped novel AIEgens with full-color tunability, excellent solid-state
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fluorescence quantum yields, and high crystallizability [22]. Herein, we report the design
and synthesis of a novel bisthienylethene-dipyrimido[2,1-b][1,3]benzothiazole (BTE-2PBT)
triad. The novel triad not only well maintains its photochromic properties in solution,
film, and solid state but also exhibits remarkable AIE properties. More importantly, the
fluorescence of BTE-2PBT triad could be reversibly modulated with high contrast in solid
state by UV and visible light irradiation, making BTE-2PBT triad a promising candidate
for the application as photo-erasible optical memory media.

2. Results and Discussion
2.1. Synthesis of BTE-2PBT Triad

As shown in Scheme 1, boronic acid-modified PBT compound (1) was synthesized
via the Hf(OTf)4-catalyzed three-component reaction (3CR) of 4-formylphenylboronic acid,
2-aminobenzothiazole, and ethyl acetoacetate under solvent-free conditions [23]. The
presence of boronic acid was well tolerated by the Hf(OTf)4-catalyzed 3CR, and 1 was
obtained in 83% yield over 6 h. The Suzuki coupling of 2.5 equiv of 1 with 1 equiv of
dibromobisthienylethene (2) in THF/H2O mixture (9:1, v/v) at 80 ◦C for 12 h afforded the
desired BTE-2PBT triad in 67% yield as a light greenish powder. The NMR and HRMS
spectra are provided in the Supplementary Materials.
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2.2. Photochromism of BTE-2PBT in Solution, Film, and Solid State

The absorption maxima of the open-ring form of the triad (BTE-2PBT-o) were ob-
served at 305 nm and 380 nm corresponding to the BTE and PBT moieties, respectively.
As shown in Figure 1a,c, irradiation of BTE-2PBT-o with UV light (254 nm) resulted in
emergence and augmentation of a new absorption band at 584 nm with a color change
from light yellow to blue due to the formation of closed-ring isomer (BTE-2PBT-c). The
blue color faded to light yellow upon irradiation with visible light (>510 nm), and the
absorption spectrum returned to the initial state of BTE-2PBT-o. The reversible color
change along with isosbestic points at 319 nm, 392 nm, and 409 nm well demonstrated the
bistable photochromism of the BTE-2PBT triad.

The key photochromic parameters including cyclization (Φo-c) and cycloreversion
(Φc-o) quantum yields and photoconversion ratios (PRs) of BTE-2PBT triad in the photosta-
tionary state (PSS) in hexane (Table 1) were determined according to a known method [24,25].
Compared to unmodified perfluorobisthienylethene (3), BTE-2PBT exhibits bathochromi-
cally shifted λab,o and λab,c due to the extension of π-conjugation. Meanwhile, attachment
of two PBT moieties also results in loweredcyclization and cycloreversion quantum yields.
The PR of BTE-2PBT in PSS determined by analytical HPLC is 73%. In addition, BTE-
2PBT could be reversibly switched between the two isomeric states without significant
degradation for at least 10 times upon alternate irradiation with UV and visible light.

The BTE-2PBT triad in PMMA film (Figure 1d) also exhibits similar photochromic
properties. The light yellow PMMA film of BTE-2PBT-o turned into blue upon irradiation
with UV. The blue BTE-2PBT-c film could be completely bleached to the original color
when exposed to visible light (>510 nm). The photoreaction parameters, such as absorption
maxima of BTE-2PBT-o (306 nm and 385 nm) and BTE-2PBT-c (602 nm) and isosbestic
points (327 nm and 421 nm), all slightly redshift in PMMA. As expected, the PMMA
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film of BTE-2PBT showed better fatigue resistance than its solution by insulating the
photochromic compound from external oxidizing agents. Moreover, amorphous BTE-
2PBT powder could also be reversibly switched between light green and dark green via
photo-induced cyclization and cycloreversion (Figure 1b). These results indicate that
the photochromic properties of BTE could be maintained when two PBT appendages
are installed.
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of BTE-2PBT in solid state; (c) Absorption change and fatigue resistance of BTE-2PBT in hexane (2.0 × 10−5 M) upon
photochromism; (d) Absorption change and fatigue resistance of BTE-2PBT in PMMA film (5 wt %) upon photochromism.

Table 1. Photochromic Parameters of BTE-2PBT and a Reference Bisthienylethene (3) a.

Compound λab,o
(ε = M−1·cm−1)

λab,c
(ε = M−1·cm−1) Φo-c (%) Φc-o (%) PR (%)

BTE-2PBT 305
(3.91 × 104)

584
(1.47 × 104) 9.4 0.6 73
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a Determined in hexane (2.0 × 10−5 M) at 25 ◦C.

2.3. Photophysical and AIE Properties of BTE-2PBT

The absorption and photoluminescence (PL) properties of BTE-2PBT in solution, solid
state, and film are summarized in Table 2. The absorption peak of BTE-2PBT in hexane
appearsat 388 nm and arises from π–π* transition. The absorption peak of film sample
shows up at 385 nm, whereas that of solid sample redshifts to 413 nm.

The data in Table 2 show that the triad is very dim in solution, but exhibits significant
fluorescence in solid state and film when excited by 365 nm UV. The fluorescence lifetimes
(τ) of BTE-2PBT in solid state and film show correlation with their fluorescence quantum
yields. Comparison with a reference PBT AIEgen (4) shows that the excitation and emission
wavelengths of PBT moieties in the triad are not affected by appending to BTE. However,
the fluorescence quantum yields drop notably, possibly due to the enlarged molecular size,
which may leave more space for intramolecular motion of the small ethyl ester rotor [22].
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Table 2. Photophysical Data of BTE-2PBT and a Reference PBT AIEgen (4) a.

Compound State λabs (nm)
(ε = M−1cm−1)

λem (nm)
(∆ν) ΦF (%) αAIE

(ΦF,solid/ΦF,soln) τ (ns)

BTE-2PBT
soln 388 (2.91 × 104) 477 (5560) 0.1 – <0.1

solid b 413 475(1219) 1.2 12 0.78
film 385 477(3307) 2.6 26 1.62
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The more detailed aggregation-induced emission properties of BTE-2PBT was in-
vestigated by gradually increasing the water fraction in its THF solution. As shown in
Figure 2, when water content was elevated to 70%, the solution of the triad began to exhibit
strong green fluorescence due to the formation of nanoaggregates. The emission reached its
maximum (11 fold) when f w was increased to 90%. Dynamic light scattering (DLS) method
determined that the particle size upon aggregation in 90% water/THF mixture distributed
between 100 nm and 500 nm with a maximum intensity at 239 nm. Further increase of
water content led to declined fluorescence emission due to precipitation of BTE-2PBT. It is
noteworthy that the maximum λem in 99% water only redshifts 10 nm compared to that in
absolute THF. The insensitivity to solvent polarities indicates that locally excited (LE) state
dominates the excitation of BTE-2PBT triad [22].
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water fractions (λex = 365 nm); (b) Plot of I/I0 value vs. water fraction; (c) Photographs of BTE-2PBT in different water
fractions taken under 365 nm UV; (d) Dynamic light scattering (DLS) of BTE-2PBT in 90% water/THF mixture.

2.4. Photo-Switchable AIE Properties and Application of BTE-2PBT

As BTE-2PBT triad maintains the reversible photochromic and AIE properties of
the parent BTE and PBT moieties, we explored the possibility to modulate its solid-state
fluorescence with photo-induced isomerizations. When the PMMA film containing 5 wt%
BTE-2PBT was irradiated with 254 nm UV, its light yellow color turned into blue due to
photochromism. Meanwhile, the green fluorescence of BTE-2PBT-o was almost completely
quenched upon photocyclization (Figure 3a). The measurement of fluorescence intensity of
BTE-2PBT PMMA film at “ON” and “OFF” states showed that 97.6% of open-ring state
fluorescence was quenched upon photo-induced ring closure. The calculated fluorescence
switching ratio is >40 (Figure 3b). The ultra high contrast could be ascribed to the combined
quenching effects of both intra- and intermolecular energy transfer in the solid phase.

The application of BTE-2PBT PMMA film as erasible optical memory media was
conducted by patterned UV illumination through photomasks (Figure 3c). The characters
“PBT” were first recorded on the film with high contrast by 254 nm UV irradiation. After
they were completely erased by >510 nm visible light, the second group of characters
“AIE”were written on the film. The fluorescent image was continuously exposed to 365 nm
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UV for 5 min without notable decrease in fluorescence contrast, indicating that fluorescence
readout of BTE-2PBT in PMMA film could be achieved in a non-destructive manner.
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Figure 3. Photo-switchable AIE properties and application of BTE-2PBT triad. (a) Photographs of
BTE-2PBT PMMA film illuminated with alternate 254 nm UV and >510 nm visible light taken under
white light or 365 nm UV; (b) PL spectra of BTE-2PBT PMMA film at PSS illuminated with alternate
254 nm UV and >510 nm visible light (λex = 365 nm); (c) Photoerasing, rewriting, and non-destructive
reading of fluorescent images on BTE-2PBT PMMA film.

3. Materials and Methods
3.1. General Methods
3.1.1. Synthesis of BTE-2PBT Triad

All chemical reagents and solvents were obtained from a commercial supplier (Leyan-
Shanghai Haohong Scientific Co. Ltd., Shanghai, China). All reactions were performed
in AR grade solvents and monitored by thin layer chromatography on plates coated with
0.25 mm silica gel 60 F254 (Qingdao Haiyang Chemicals, Qingdao, China). TLC plates
were visualized by UV irradiation (254 nm and 365 nm). Flash column chromatography
employed silica gel (particle size 32–63 µm, Qingdao Haiyang Chemicals, Qingdao, China).
NMR spectra were obtained with a Bruker AV-400 instrument (Bruker BioSpin, Faellanden,
Switzerland) with chemical shifts reported in parts per million (ppm, δ) and referenced
to CDCl3 or DMSO-d6. IR spectra were recorded on a Bruker Vertex-70 spectrometer.
High-resolution mass spectra were obtained with a Bruker Dalton micrOTOF-Q II spec-
trometer (Bruker Optics, Billerica, MA, USA), and reported as m/z. Melting points were
determined with a Thomas-Hoover melting point apparatus and uncorrected (Thomas
Scientific, Swedesboro, NJ, USA).

3.1.2. UV-Vis and Fluorescent Spectrometry

Absorption spectra of solution samples of BTE-2PBT (2 × 10−5 M) was recorded
on an Aglient 8453 spectrophotometer (Agilent Technologies, Santa Clara, CA, USA).
Absorption spectra of solid samples were recorded on a PerkinElmer Lambda 750 spec-
trophotometer (PerkinElmer, Waltham, MA, USA). Fluorescence spectra of BTE-2PBT
solution (5 × 10−5 M) and solid samples were recorded on a Hitachi F-4600 fluorescence
spectrophotometer (Hitachi, Yokohama, Kanagawa, Japan). Optical length of the quartz
cell was 10 mm. Fluorescence quantum yields of BTE-2PBT solution (5 × 10−5 M) and
solid samples were determined on a Hamamatsu absolute PL quantum yield spectrometer
C11347 (Hamamatsu Photonics, Hamamatsu City, Shizuoka Pref, Japan). Fluorescence life-
times were recorded on a Hamamatsu compact fluorescence lifetime spectrometer C11367
(Hamamatsu Photonics, Hamamatsu City, Shizuoka Pref, Japan).
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3.1.3. DLS Measurement

Particle size distribution was measured on a Nano Brook 90 Plus instrument (Brookhaven
Instruments, Holtsville, NY, USA) equipped with a diode laser as a light source (λ = 632.8 nm).
The scattered light from the sample solution was detected using a fixed angle (90◦).

3.1.4. Determination of Cyclization and Cycloreversion Quantum Yields

Φo-c and Φc-o values of BTE-2PBT in hexane [2× 10−5 M] were measured according to a
previously reported method with bis(2-methyl-1-benzothiophen-3-yl)hexafluorocyclopentene
as the reference compound. A WFH-203B black-box type UV analyzer (Chitang Electronics,
Shanghai, China) and an MVL-210M-visible light source (Mejiro Genossen, Akita, Japan)
were employed for photo-induced cyclization and cycloreversion, respectively.

3.1.5. Determination of BTE-2PBT’s PR at PSS

HPLC traces of BTE-2PBT-o and BTE-2PBT-c were recorded on an Agilent 1220 in-
strument equipped with a ZORBAX SIL analytical column (4.6 × 250 mm, 5 µm; Agilent
Technologies) (flow rate = 1.0 mL/min; 3.0% isopropanol in CH2Cl2 over 15 min; UV
detection at 320 nm (isosbestic point)).

3.1.6. Photoerasing, Rewriting, and Nondestructive Reading of Fluorescent Images on
BTE-2PBT PMMA Film

The PMMA film (MW = ca. 110,000) containing BTE-2PBT (5 wt %) was prepared
by spin coating on a 1 cm × 2 cm quatz glass slide. During the writing process, the
film was irradiated through a photomask under a 254 nmWFH-204B UV lamp (Qiwei
Instrument, Hangzhou, China) at a distance of 5 cm for 5 min. For erasing, the film was
directly subjected to an MVL-210M-visible light source (Mejiro Genossen, Akita, Japan) at
a distance of 5 cm for 3 min. Continuous non-destructive reading was performed under a
365 nm WFH-204B UV lamp (Qiwei Instrument, Hangzhou, China) at a distance of 5 cm
for 5 min.

3.2. Synthesis and Characterization of PBT Compound (1)

(4-(3-(Ethoxycarbonyl)-2-methyl-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-yl)phenyl)boronic
acid (1). To a mixture of (4-formylphenyl)boronic acid (180 mg, 1.2 mmol), ethyl acetoac-
etate (195 mg, 1.5 mmol), 2-aminobenzothiazole (150 mg, 1.0 mmol) was added Hf(OTf)4
(8 mg, 0.01 mmol). The reaction was stirred in a sealed tube at 80 ◦C for 6 h. Flash column
chromatography (DCM/MeOH = 20:1, v/v) afforded 1 as a yellow solid (327 mg, 83%); mp
241–242 ◦C. 1H-NMR (400 MHz, DMSO-d6): δ 8.00 (s, 2H), 7.74 (d, J = 7.8 Hz, 1 H), 7.66 (d,
J = 7.8 Hz, 2 H), 7.42-7.36 (m, 3H), 7.29 (dd, J1 = J2 = 7.5 Hz, 1H), 7.17 (dd, J1 = J2 = 7.5 Hz,
1H), 6.45 (s, 1H), 4.10-4.00 (m, 2H), 3.34 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H) ppm; 13C-NMR
(100 MHz, DMSO-d6): δ 165.4, 162.6, 153.9, 142.9, 137.4, 134.1 (×2), 126.7, 125.9 (×2), 123.9,
122.7 (×2), 112.2, 102.6, 59.4, 56.6, 23.1, 14.0 ppm; IR (KBr): vmax 3346, 2975, 1714, 1608,
1519, 1470, 1427, 1414, 1368, 1342, 1323, 1272, 1241, 1212, 1165, 1085, 1046, 1018, 743 cm−1;
HRMS (ESI+): m/z calcd for C20H20BN2O4S [M + H]+ 395.1231; found 395.1230.

3.3. Synthesis and Characterization of BTE-2PBT

Diethyl 4,4′-(((perfluorocyclopent-1-ene-1,2-diyl)bis(5-methylthiophene-4,2-diyl))bis(4,1-phenyl-
ene))bis(2-methyl-4H-benzo[4,5]thiazolo[3,2-a]pyrimidine-3-carboxylate) (BTE-2PBT). To a
solution of 1 (150 mg, 0.38 mmol) and dibromobisthienylethene 2 (80 mg, 0.15mmol) in
THF/H2O (9:1, v/v, 5 mL) was added tetrakis(triphenylphosphine)palladium (11 mg,
0.009mmol) and Na2CO3 (97 mg, 0.92 mmol). The reaction was stirred at 80 ◦C for 12 h
under nitrogen atmosphere. After the reaction was cooled to ambient temperature, THF
was removed under reduced pressure. The residual aqueous solution was extracted with
CH2Cl2 (20 mL) and washed with deionized H2O (10 mL × 2). The organic phase was
combined, dried over Na2SO4, and concentrated in vacuo. Flash column chromatography
on silica gel (CH2Cl2/MeOH = 30:1, v/v)afforded BTE-2PBT as a light greenish powder
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(108 mg, 67%); mp > 300 ◦C. 1H-NMR (400 MHz, CDCl3): δ 7.49-7.39 (m, 10H), 7.26-7.21
(m, 2H), 7.19 (s, 2H), 7.17-7.07 (m, 4H), 6.41 (s, 2H), 4.25-4.13 (m, 4H), 2.45 (s, 6H), 1.86
(s, 6H), 1.30 (t, J = 7.1 Hz, 6H) ppm; 13C-NMR (100 MHz, CDCl3): δ 166.9 (×2), 163.5
(×2), 155.2 (×2), 141.7 (×3), 141.2 (×2), 138.2 (×2), 136.2, 133.5 (×2), 132.3 (×2), 128.7 (×2),
128.0 (×4), 126.8 (×2), 126.0 (×5), 124.2 (×2), 124.0 (×2), 122.8 (×2), 122.4 (×2), 111.8 (×2),
103.0 (×2), 60.2 (×2), 57.5 (×2), 29.8 (×2), 23.9 (×2), 14.6 (×2), 14.5 (×2) ppm; 19F NMR
(470 MHz, CDCl3): δ −110.03 (s, 4F), −131.85 (s, 2F); IR (KBr): vmax 3442, 1700, 1674, 1597,
1508, 1371, 1331, 1272, 1241, 1199, 1113, 1093, 1076, 988, 742 cm−1; HRMS (ESI+): m/z calcd
for C55H43F6N4O4S4 [M + H]+ 1065.2066; found 1065.2063.

4. Conclusions

In summary, a photo-switchable AIE-active BTE-2PBT triad has been designed and
synthesized. The triad well combines the photochromic properties of BTE moiety and AIE
properties of PBT moieties. More importantly, the solid-state fluorescence of BTE-2PBT
could be reversibly switched by alternate UV and visible light irradiation with ultra-high
contrast. Repeated writing and erasing of fluorescent images on BTE-2PBT PMMA film
with non-destructive readout indicate that this novel triad has the potential to be applied
as a practical solid-state luminescent material.

Supplementary Materials: The following are available online, Figures S1 and S2: UV-Vis and fluores-
cence spectra of BTE-2PBT; Figure S3: HPLC traces of BTE-2PBT-o and BTE-2PBT-c; Figures S4–S8:
NMR spectra of 1 and BTE-2PBT; Figure S9: HRMS of BTE-2PBT.
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