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Abstract: Identification of the presence of pathogenic oomycetes in infected plant material proved
possible using an electronic nose, giving hope for a tool to assist nurseries and quarantine ser-
vices. Previously, species of Phytophthora plurivora and Pythium intermedium have been successfully
distinguished in germinated acorns of English oak Quercus robur L. Chemical compound analyses per-
formed by HS-SPME/GC-MS (Headspace Solid-Phase Microextraction/Gas Chromatography–Mass
Spectrometry) revealed the presence of volatile antifungal molecules produced by oak seedlings be-
longing to terpenes and alkanes. Compounds characteristic only of Phytophthora plurivora or Pythium
intermedium were also found. Methylcarveol occurred when germinated acorns were infected with
Pythium, while neophytadiene (isomer 2 and 3) occurred only when infected with Phytophthora. More-
over, isopentanol was found in acorns infected with Phytophthora, while in control, isopentyl vinyl
ether was not observed anywhere else. Among the numerous volatile compounds, isopentanol only
occurred in acorns infected with Phytophthora and methylcarveol in acorns infected with Pythium.

Keywords: odor classification; VOC; volatile organic compounds; fungi and biosecurity

1. Introduction

With the increase in international trade of plants and plant source materials, such as
seeds, new threat are arising from the accidental introduction of insects or pathogens into
new environments. Their spread can be responsible for massive damage to local ecosystems.
Issues with the health of forest tree species occur already at a very early stage of their
establishment in nurseries. Significant reductions in seedling quantity and associated
economic losses are caused by damping-off diseases caused by soil-borne fungi as well
as oomycetes such as Phytophthora and Pythium. Even surviving asymptomatic plants
that do not exhibit visible external disease symptoms may still carry pathogenic inoculum
such as chlamydospores between root systems in the soil. Diagnostic tests conducted
in many European countries ahve revealed that infestation of seedlings is high, in some
cases reaching 80 per cent [1]. Since most fungicides are not able to control oomycetes,
species identification is crucial for the development of adequate control, mainly due to the
emergence of fungicide-tolerant isolates of oomycetes in horticulture and agriculture [2–4].
In addition, identifying potential hosts and the particular location of their occurrence
in a nursery allows managers to avoid potential infection of plants by appropriate crop
rotation. For example, they can grow acorns from oaks in locations where Phytophthora
alni has been found, as it does not cause them serious harm, and conversely grow alder
seeds where Phytophthora quercina has been found. Unfortunately, pathogenic oomycetes
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are often transferred to other environments (e.g., riparian areas) with plating along rivers
of asymptomatic seedlings. Therefore, scientists and plant health inspectors need new,
efficient tools like electronic noses (e-noses) to act early and efficiently.

The simplest method of detecting oomycetes in soil is to lay out bait plants. The
procedure involves infecting pieces of leaves (e.g., oak or beach leaves), allowing the
pathogens to grow, and then applying them in selective media such as PARP. (PARP is
a specific medium with antibiotics, thanks to which the fungi do not grow because they
are sensitive, but Phytophthora is resistant to it [5].) It is usually a lengthy process. Such
an approach requires several days or weeks to obtain pure cultures that can be used to
identify pathogenic oomycetes by classical (microscopic) or molecular (DNA sequencing)
methods. One of the complications of baiting is the need to use different host leaves, and
that isolation temperatures may be different for different organisms.

It has been reported [6] that trained dogs can detect Phytophthora species by sniffing.
It would be helpful to follow this idea and use an artificial device for a similar task. This is
an ambitious goal and our first experiments, reported in reference [7], were designed and
performed in vitro under controlled laboratory conditions. We prepared sample growth
on a traditional medium. We succeeded in showing that the e-nose we designed can be
helpful to discriminate between two different but closely related oomycetes. According to
our experience, such an achievement was not self-evident since distinguishing between
Phytophthora and Pythium samples often leads to false-positive results even in molecular
tests, e.g., ELISA (enzyme-linked immunosorbent assay). Furthermore, it is complicated
when both microorganisms are present in the same environment, e.g., in soil.

In the second part of the experiment reported in this paper, we prepared samples
more similar to natural conditions, as the oomecytes were cultured on germinated acorns.
In this case, we expected the volatile odour components associated with the samples to
differ from the standard growth medium. In addition to potential odour molecules emitted
by pathogen metabolism, odours from oak seedlings and secondary metabolites emitted
by the infested plant are also present.

Many analytical techniques can be used for the detection and analysis of odours. Gas
chromatography with mass spectrometry is considered the gold standard of classical chem-
ical analytical techniques and is used successfully under laboratory conditions. However,
the high cost of expensive equipment and the hiring of skilled personnel means that this
method is not widely used in forestry, agriculture or horticulture. Therefore, there is a need
for innovative designs of less expensive instruments capable of detecting organism species
by detecting volatile organic compounds (VOCs). In addition, these instruments should
be suitable for on-site monitoring in a relatively short measurement time. Technological
developments have led to the proliferation of e-noses as rapid and non-invasive diagnostic
tools. Since the introduction of the e-nose concept [8–10], various methods of measurement
and data collection have been developed.

A summary of the potential applications, limitations, challenges and proposed im-
provements of e-noses in focusing on bacterial, fungal and viral infections is described
in reviews [11–15]. Much of the previous research on fungal odours recognition [16] has
focused on their properties concerning food and flavour. Recently, reports have been
published on studies on Penicillium expansum spoilage of apples [17], Aspergillus species
discrimination [18] and analysis of VOCs of different fungal species. Studies of VOCs of
Phytophthora cactorum species were reported by Wang et al. [19] and Greenshields et al. [20]
in a case of infected strawberries. An electronic nose was used to detect fungal infection
of wood [21,22]. There are other reports of studies on the detection of fungal infection in
different cereals [23–28]. Applications of an electronic nose for detection of fungi in tree
roots are also reported [29]. Sahgal et al. [30] presented results on the discrimination of
dermatophyte species and strains. Lampson et al. reported the development of a wearable
electronic nose for pest and plant damage detection [31].

We want to emphasize the motivation of the presented research. Oaks are among
the forest-forming species with which much hope is associated in Poland. However,
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their area is only about 7% of the entire country and it is still increasing, especially the
sessile oak Quercus robur L. First, foresters are trying to convert pine monocultures and
increase the proportion of other tree species in poor habitats such as fresh forests. Second,
climate scientists predict that coniferous species will retreat to northern Europe, where
the climate is more suitable for them, and deciduous species, including oaks, will take
their place. Oaks bear fruit irregularly every few years, so it is challenging to provide
enough seedlings each year to meet the needs of 430 forest districts. In nurseries, acorn
and seedling diseases affect dieback in the first period, so germinated acorns were used for
the experiment. The pathogen selected in this case was the most common species in Polish
forest nurseries, Phytophthora plurivora. It is morphologically similar to other oomycetes of
the genus Pythium, some of which, like Pythium nunn, are antagonists of pathogenic species
such as Pythium ultimum. However, damage to plants by Pythium is usually less severe
and economically viable, whereas species of the genus Phytophthora can destroy entire
plantations. For this reason, it is essential for the nurseryman to know which organism he
is dealing with and to make a rational decision as to whether to protect the plants or rely
on the natural resistance processes of the oaks. The electronic nose can be of great help
here, as it is a low-labour device that makes sharp distinctions.

2. Materials and Methods
2.1. Samples Preparation

The isolates of Phytophthora plurivora and Pythium intermedium used in the colonisation
test were obtained from the oomycete culture collection of the Forest Research Institute
(IBL). All isolates were taken from the rhizosphire of declining oaks showing distinct
disease symptoms. They were all identified morphologically, with molecular confirmation
of the morphological findings.

Non-stratified seeds of Quercus robur were used for the different pathogenicity tests.
Acorns were incubated in sterilised moist sand at 25 °C under the light. One month later,
acorns were removed from the soil, washed under running water and surface sterilised with
70 % ethanol. The species used in the assay Phytophthora plurivora and Pythium intermedium
were transferred to V8A media prepared with 800 mL/L distilled water, 200 mL/L V8
juice (Tymbark, Poland), 18 g/L agar-agar (BTL, Poland) and 3 g/L CaCO3. Inoculum
of both species was obtained from the growth margins of 3–4 day-old colonies incubated
at 22–25 °C in the dark [32]. Agar plugs containing mycelium (approximately 1 cm2 in
size) were placed in sterilised, 200 mm glass Petri dishes with sterile filter paper. Tips
of Quercus robur acorns with a radicle length of 5–7 cm were placed on agar plugs with
mycelium in Petri dishes. Seedlings in individual Petri dishes were used for each variant.
The control group also consisted of four seedlings and was placed on the sterile agar plugs.
Filter paper in the dishes was moistened with 5 mL of sterile distilled water and the dishes
were incubated under daylight at approximately 20–22 °C. The dishes were monitored
every 8 h until the first seedlings collapsed and the first necroses were observed. When
necrosis was observed on all the individual roots, the acorns were transferred from the
Petri dish to a jar and left there for the entire duration of the measurements. From this
point on, measurements of volatile odorants were made. According to Koch’s postulates,
re-isolation of the pathogens from the roots was performed. The applied procedure ensured
no undesirable contamination of the sample with other organisms during inoculation. To
reisolate Phytophthora plurivora and Pythium intermedium from the falling tissues, small
necrotic parts of the seedlings (0.1–0.2 mm in size) were cut with a sterile razor blade and
plated on selective media (V8A-PARPNH) prepared according to Jung et al. [33]. Tissue
fragments from the control group were also plated on V8A-PARPNH media.

Photography of examples of measured samples, in which necrosis in infected samples
is remarkable and visually differentiated from the healthy organisms, is presented in
Figure 1. For this photography, we selected only one example of acorn from each category.
The main aim was to demonstrate the variability of the samples and the relatively small
size of the necrosis.
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Figure 1. Examples of measured samples of three considered categories: Healthy acorn (Control),
acorn infected by Phytophthora, acorn infected by Pythium. Tissue necrosis can be distinguished from
healthy regions in infected samples.

2.2. Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry
(HS-SPME/GC-MS) Analysis

Volatile metabolites of acorns were analysed by HS-SPME/GC-MS method. In pre-
liminary studies of VOCs emitted from oak acorns (control), the comparison of divinyl-
benzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS), CAR/PDMS and PDMS
sorption fibres (Supelco, Bellefonte, PA, USA) was performed. The best effectiveness of
the extraction–desorption cycle was obtained by DVB/CAR/PDMS fibre. Therefore this
type of SPME fibre was used in further research. Analyses were performed according to a
previously developed methodology [34–37], as described below.

Acorns were placed into a 60 mL vial and heated for 60 min at 40 °C. The membrane
of the screw cap was pierced with the needle containing the SPME fibre and the fibre was
exposed to a headspace gas phase for 30 min at 40 °C. Immediately after exposure, the
SMPE fibre was placed in an injection port of the GC-MS instrument for 10 min to desorb
the volatiles from the SPME fibre thermally. The injector was operated at a temperature
of 250 °C in splitless mode. GC-MS analyses were performed using an Agilent 7890A gas
chromatograph with an Agilent 5975C mass spectrometer (Agilent Technologies Inc., Santa
Clara, CA, USA). Chromatographic separation was performed using a capillary column
HP-5MS (30 m × 0.25 mm × 0.25 µm) at a 1 mL/min helium flow rate in constant flow
mode. The initial temperature of the column was 35 °C and was increased to 250 °C at a rate
of 5 °C/min. The transfer line temperature was 300 °C. The acquisition parameters of the
mass spectrometer were as follows: The source temperature of 230 °C and the quadrupole
temperature of 150 °C. The electron impact mass spectra were obtained at ionisation energy
of 70 eV. The detection was performed in full scan mode for an of 29–600 atomic mass units.

After chromatographic separation, all peaks from the chromatogram were integra-
tioned and the percentage content of components in the total ion current (% of TIC) was
calculated. Both the mass spectrometric data and the calculated retention indices were used
to identify the components. Mass spectrometric identification was performed using NIST
(2020) and Wiley (2020) mass spectra libraries. The retention indices of the compounds
were determined considering the retention times of the C5–C40 n-alkanes. The experi-
mental retention indices (RIexp.) were compared with the literature values of retention
indices (RIlit.).

2.3. Electronic Nose
2.3.1. Device Construction

The low-cost electronic nose device, constructed at Warsaw University of Technology,
consists of six metal oxide sensors manufactured by Figaro Inc. (Osaka, Japan): TGS 2600
(air contaminants), TGS 2602 (VOCs, ammonia and H2S), TGS 2603 (amine and sulfur types
of odor: Trimethylamine, methyl mercaptan, etc.), TGS 2610 (LP gas), TGS 2611 (methane),
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TGS 2620 (Organic solvent vapors). The resistance of the sensors depends on the conditions
of the gas to which the sensors are exposed. However, the sensors are not strictly selective
and they also respond to other gases with different magnitude and different time response
characteristics. When measuring with the electronic nose, the response curves are recorded
when the conditions suddenly change from clean air to the odorous air under consideration
and back to clean air. An example of such time-dependent characteristics of the sensor’s
response during one measuring cycle is presented in Figure 2.

In the electronic nose device, the sensors are mounted in a round metal probe of the
diameter of 10 cm, which fits the jars containing the measured samples, as is presented in
Figure 3. According to the measurement procedure, the probe can be moved manually and
placed in clear air conditions or close to the measured odour source.

Figure 2. Example of the sensors’ responses (conductance) during one measurement cycle of a sample
of healthy acorns. On the x-axis, the number of individual reads of the sensor resistance is used. The
sensor data are collected every 1.2 s. The sensors responses are standardised by the baseline value
obtained as the average of the first 100 reads of sensors values when sensors were exposed to the
clear air conditions.

The sensors respond to the gas by conductance changes due to oxygen exchange
between the material surface and the measured gas. We implemented a voltage divider
circuit for each sensor to measure the sensor’s response and the voltage is measured on
the serially connected resistor. This measurement circuit topology has been chosen do
its simplicity and also as the sensors producer recommendation. However, it should be
noticed that other types of measurement circuits can be implemented for the MOS-type
electronic noses [38]. The voltage probe took about 20 ms for each sensor. This was repeated
50 times and averaged to reduce the electrical noise at the hardware level. The reading
of the voltages from the whole sensors array took about 1.22 s. The MCP3208 12-bit AD
converter has been used for the digitisation of the signals. Output data were stored online
on the laptop in the text file. All operations of the control of the devices and collection of
data were performed on the laptop. Moreover, the power supply to the electronic nose
has been provided by the laptop. A detailed description of the device was given in the
previous paper [7].
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Figure 3. Electronic nose device with measured samples of healthy and infected acorns in jars.

2.3.2. Samples Measurements

The measurement procedure is similar to the one used in our previous research
reported in reference [7]. Our experiments performed with the electronic nose device
were performed in a laminar flow cabin (Telstar, Bio II Advance) at a temperature of
21 °C with the air supply turned on. That allowed us to keep controlled conditions of
constant temperature and humidity during the whole experiment. The MOS gas sensors’
sensitivity depends significantly on these parameters, while we are concerned with finding
the differences in sensor response to the odours emitted by the studied samples. Keeping
constant humidity allows us to treat sensors’ response to it as a background signal, similar
in all cases. Application of the electronic nose for measurements in the field would require
a more advanced setup of temperature and humidity control, such as stabilisation of
the device temperature and drying measured gas by silica gel. That would significantly
increase the complexity and cost of the electronic nose device. Another solution that could
be considered is compensation mechanisms on the hardware level, requiring detailed
knowledge of sensor response characteristics or on the software level, which would require
a much more extensive training dataset than we collected during our experiments.

Figure 3 shows the measurement setup with samples of acorns in jars. For the measure-
ments, we used 4 samples of acorns for each category. The measurements were repeated
31 times for each category, so in total 93 measurements were performed.

In the first phase of each measurement, the sensors were exposed to clean air and
the baseline responses of the sensors were recorded. The jar containing an acorn sample
was then opened and the electronic nose sensors were held against the closure of the jar
for 122 s to record the response curve of the sensors. The sensors were then removed and
placed in clean air, which allowed recovery and relaxation to baseline.

In Figure 2 we can observe the response of the example sensors for a measurement
cycle of a sample of healthy acorns. As can be seen, during the first 100 readings (122 s),
the sensors are in clear air, which is considered baseline. When placed near the sample
containing the measured odour source, we can observe an abrupt change in conductance
until the 200th reading (122 s). Then again, the electronic nasal probe movement to clear
air conditions causes an abrupt change in response characteristics during sensor cleaning
and relaxation to baseline conditions. This cleaning/relaxation time was chosen to be 610 s
(500 readings of the response values), allowing for complete sensor cleaning and recovery.
The sensors are statically exposed (without airflow) to the clean air or measured odour
conditions, except for brief moments of manual movements.

Several series of measurements were made in one day. The possibility of detecting
patterns due to undesirable trends in the measurement setup or external environmental
conditions is considered. For that reason order of the measured samples was randomised
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with a random number generator using an Excel spreadsheet. On six experimental days
from 7 to 15 April 2021, 93 measurements were made on different samples. In Figure 4 we
show an example of a measurement day, where different colours distinguish the different
categories of measured samples.

Figure 4. Example of all sensors responses collected during one day of the measurements, versus
time of the measurement. The sensors’ responses are standardised by the baseline value obtained
as the average of sensors values when exposed to the clear air conditions at the beginning of each
measurement cycle.

2.3.3. Data Analysis Techniques

We used two well-established statistical analysis techniques to analyse the data ob-
tained from the gas sensors exposed to the odours emitted by the measured samples. First,
we performed the Principal Component Analysis (PCA) to visualise the obtained data,
which helps gain intuitive insight into the data distribution and similarity between studied
cases. Secondarily, the primary statistical analysis consisted of building machine learning
classification models to estimate the applied measurement techniques’ ability to distinguish
between the considered cases of samples.

A detailed description of the modelling techniques used is presented in previous
works [7,39], however for the reader’s convenience, we would like to provide here an
abbreviated description of the performed analysis.

The data analysis presented in this paper was performed using computer codes
developed in the Python 3.7 language with the scikit-learn module.

Data Visualisation Using Principal Component Analysis

Principal Component Analysis is one of the commonly used statistical methods of
factor analysis, allowing to transform the data space to new space represented by factors
for which we assume their importance in dataset variability. For example, a dataset of
observations defined by N variables represents a cloud of points in a N-dimensional space.
The goal is to find the coordinate system, so the first coordinate represents the direction
in which the variance of the data points is maximal, then the second coordinate, which
is perpendicular to the first one, capturing the maximum of the remaining variance of
the dataset. This can be intuitively interpreted as the rotation of the coordinate system.
The coordinate axes transformed in this way are loads of the generated factors (principal
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components), in which the initial factors explain the most variability of the dataset. PCA
is often used to reduce the dimensionality of the dataset by discarding the less critical
components. The PCA may be based on either a correlation matrix or a covariance matrix
constructed from the input dataset. It can be shown that the principal components are
eigenvectors of the correlation/covariance matrix of the dataset observations values. The
algorithm of both cases is identical, but the obtained results are different. When the
covariance matrix is used, the input variables with the highest variance have the most
significant impact on the outcome, which may be desirable if the variables represent
comparable quantities. On the other hand, the correlation matrix corresponds to the initial
normalisation of the input set to have the same variance.

Machine Learning Classification Modelling

In the case of the data of electronic nose measurements, we have sensors response
curves for six sensors as presented in Figure 2. However, to the analysis, we do not use
the raw data collected by the sensors but more complex modelling features representing
various characteristics describing the shape of these curves. It will be described in more
detail in the subsequent section. Just as one example, we can notice that we can mention
the area under the curve and maximum/minimum values of the response curves. As one
can notice, they are represented in different measurement units and their numerical values
cannot be directly compared. For such reason, we used normalised values to account for
each feature on the same footing.

Our studies used the PCA method only for visualisation purposes, allowing us to
gain intuition into the distribution of data in the studied case. As input for this data
transformation, we used features describing the shapes of the sensor response curves used
for the classification modelling. The most relevant features selected by the classification
model were used.

The data collected by the electronic nose can be used to discriminate between the
samples under study, which is a classical classification task for which machine learning
models are commonly used [40,41]. A well-established methodology was used.

• In the first step, the raw data of the collected sensor responses are transformed into
the modelling features describing the shapes of the response curves.

• To estimate the classification models performance, we performed the six-fold cross-
validation (CV) procedure. For this task, we applied group splitting, assuring that
all data collected during one day of the measurements were put to one of these
subsets. Such an approach is commonly observed to correlate measuring conditions
due to external measurement conditions such as sensor drift. Moreover, since we are
interested in estimating the performance of the classification model for measurements
performed in the future, this approach is the most suitable to give reliable estimates.
This number of repetitions in the CV loop was determined because our measurements
were performed during six days. Thus, the maximal number of splits could ensure
the separation of the training and testing subsets by the day.

• The machine learning classification model was applied and the most important fea-
tures were selected using the recursive forward selection approach [39] when we first
select the best performing model based on a single feature and then add to the model
subsequent features based on the performance improvement.

It is essential to explain the approach to extracting the modelling features used to
build the classification models. As we present in Figure 2, the sensors conductance values,
measured as a function of time, as a response to the moving of the sensors from clear air
to the measured odour conditions and again to the pure air form characteristic curves.
Therefore, it is common to use as modelling features variables describing their shapes [42]
instead of just raw sensors data. In our studies, we used several types of such features [7,39]

• The basic characteristics of the response curve include minimum, maximum value,
average (which is equivalent to the integral/area under the curve), standard deviation,
skewness and kurtosis.
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• The exponential moving average (emaα) of the response curve and their maximum/
minimum values for several smoothing parameters α are extracted as modelling
features [43,44].

• Extreme values of the response curve derivative [45,46] as well as other statistics
calculated from the derivative curve such as average, standard deviation, skewness,
kurtosis. These features are calculated separately for two parts of the sensor response
curve, the adsorption phase, when sensors respond to the measured odour conditions,
and the desorption phase when they relax after moving them to the clean air. Moreover,
the derivative of the curve is calculated after smoothing by the exponential moving
average method.

• Characteristic times, such as the time to reach 10%, 25%, 50%, 90% of the sensor
response range and time to reach maximum/minimum of the curve derivative,

• Parameters of sensor response curve fitting by third-order polynomial function, sepa-
rately for the adsorption and the desorption part [45,46].

We tested different techniques such as Logistic Regression, Support Vector Machine
(SVM) and Decision Trees as a machine learning algorithm for classification. As our
preliminary tests revealed, the first of the mentioned techniques usually provided the best
models from the point of accuracy; however, the difference between them was very close.
Our choice was to use the Logistic Regression method for the final calculations.

To evaluate the model performance, we use the most common statistical measures:
Accuracy, precision, recall, defined in terms of the entries of the confusion matrix.

accuracy =
tp + tn

tp + tn + f p + f n
, (1)

precision =
tp

tp + f p
, (2)

recall =
tp

tp + f n
, (3)

where the components of the confusion matrix are defined in Table 1.

Table 1. The confusion matrix elements used to define metrix of classification models performance.

Actual

Positive Negative

Predicted
Positive tp (true positive) f p (false positive)

Negative f n (false negative) tn (true negative)

3. Results and Discussion

As explained in the previous section, several types of data analysis were performed.
The first part of the research identifies the chemical compounds found in the odour
emitted by the studied samples of healthy and infected acorns, performed by the Gas
Chromatography-Mass Spectrometry method. In the second part of the described research,
the data collected by the electronic nose measurements were used for building classifica-
tion models. The results of this procedure in terms of the most important variables were
visualized after transformation by the PCA method. However, the main results of the
classification are the model performance statistics such as accuracy, precision and recall.

3.1. VOCs Identified in Emission from Acorns with Use HS-SPME/GC-MS Method

The results of HS -SPME/GC-MS analysis of the three acorn samples were grouped
(i) according to chemical compound groups (Table in Appendix A) and (ii) and the VOCs
(Table 2) differentiating the studied samples.

Compounds characteristic only of Pythium intermedium or Phytophthora plurivora were
found. Methylcarveol, with relative content of 1.43 %TIC, occurred when acorns were
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infested with Pythium, while isomer 2 and 3 of neophytadiene, with the content of 0.28
and 0.53 %TIC respectively, occurred when acorns were infested with Phytophthora. All
these chemical compounds belong to the group of terpenes. Isopentanol (0.65 %TIC)
occurred when acorns were infested with Phytophthora (Table 2). The remaining compounds
were characteristic of both control and treatments, implying that they were characteristic
of acorns.

Table 2. The VOCs differentiating the measured samples of acorns infected by the Phytophthora and Pythium oomycetes,
detected by the Gas Chromatography-Mass Spectrometry method. Meaning of the table columns is provided in Appendix A
Table A2.

Compound CAS m/z M+ tret. RIexp. RIlit. TIC
(min) (%)

Phytophthora

Neophytadiene isomer 2 - 68, 82, 95, 43, 57 278 31.723 1864 1864 0.28

Neophytadiene isomer 3 - 68, 82, 95, 43, 57 278 32.087 1882 1882 0.53

Isopentanol 123-51-3 55, 41, 42, 70, 43 88 3.534 723 726 0.65

Pythium

Methylcarveol 85710-64-1 43, 41, 109, 83, 55 166 12.683 1091 n/a 1.43

The detailed results of the Gas Chromatography-Mass Spectrometry measurements
are presented in Appendix A.

3.2. Principal Components Analysis of the Electronic Nose Data

As a first result of the analysis of the data collected by the electronic nose in Figure 5,
we present the PCA transformation of the studied dataset when the features selected by
the classification algorithm were used as input. The two first principal components are
visualized and as we can notice, they contain about 80% of the data variability.

3.3. Classification Model Using Electronic Nose Data

As shown in Figure 5, there is considerable overlap in the data from measurements on
healthy acorns and acorns infected with Pythium. Likely, the seedlings were not infected
to the extent that secondary metabolites were produced that could be detected by e-
nose. This feature was also confirmed by our further analysis, where we created machine
learning models of the models. Probably because of this, we were not able to train a
model that could distinguish between healthy acorns and samples infected with Pythium.
However, this figure also shows the difference between samples infected with two oomycete
species of the genus Pythium and Phytophthora. We trained several classification models
and found that it was indeed difficult to distinguish between the tested samples. The
performance of the models in terms of accuracy is fragile, giving at most an improvement
of an additional five percentage points compared to random selection. However, this
result should not discourage us as we are more interested in the binary classification case
where we want to distinguish between two cases of infected samples. The information that
samples are infected is available by examining the samples, as tissue necrosis can be clearly
distinguished from healthy regions.
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Figure 5. Distribution of measured samples based on principal component analysis transformation
of modelling features extracted from sensor response curves. The percentage of variability accounted
for by the principal components is indicated in the axis labels. The types of samples measured are
represented with different colours and symbols. (a) The three categories of measured samples are
plotted. (b) Only the samples infected with oomycetes are shown to illustrate the difference.

In Table 3, we present the logistic regression classification model performance results
for distinguishing between two considered sample types of acorns infected with Phytoph-
thora and Pythium. As we have noted in previous studies [7], the models built on the data
collected from a single sensor can perform better than the models in which the data from all
sensors are used. This observation is confirmed in the present studies. The best results can
be obtained when the modelling features are extracted from the responses of the TGS 2603
sensor, which is designed for odour and air contaminant detection with applications in air
purifiers, ventilation control, deodorization control and air quality monitors. Such a sensor
is expected to respond to metabolites emitted from oomycetes or secondary metabolites
emitted from infected acorns. The same or similar molecules are responsible for unpleasant
odours and should be detected.



Molecules 2021, 26, 5272 12 of 20

Table 3. Performance of classification models with logistic regression trained with features extracted
from responses of all sensors and only the single sensor TGS 2603. Cross-validation in groups
determined by the day of measurements. Binary target classification of sample categories of acorns
infected with Phytophthora and Pythium.

All Sensors One Sensor

accuracy 58% 64%
precision of Phytophthora 56% 60%

precision of Pythium 59% 64%
recall of Phytophthora 60% 64%

recall of Pythium 55% 68%

It may be interesting to see what modelling features were selected as the predictors
for the best-performing classification models. As we already mentioned, we compared
the results of modelling when data extracted from all sensors are available for model
building with the case when only data from one sensor were used. We also performed
several tests using subsets of features allowing selection, for example, only features from
the adsorption phase versus features from the adsorption and desorption phase. Moreover,
when features were selected from both conductance and resistance curves versus cases
of features extraction from only conductance or only resistance, were included. As we
have described above, we applied the CV procedure and created multiple classification
models. Thus, for each of them, different features were selected. However, we observed
that they are similar and the most frequently were the features describing the shape of
the derivative calculated from the adsorption part of the response curve. That was the
extreme value of the derivative and time to reach this extreme skewness, kurtosis and
standard deviation. Moreover, the value reached at the end of the adsorption phase was
often selected by the models.

3.4. Discussion

In recent years, the role of volatile organic compounds as a cost-effective pest control
method has gained importance, reducing the use of chemicals. The search for a cheap and
practical device, which we hope is the e-nose, is part of this trend and will be a helpful tool used
in Integrated Plant Management’s strategy embodied in the directive European Commission.
According to this idea, all physical and biological methods should take precedence over
chemical methods. VOCs from microorganisms are also chemical compounds, but the risk
of contaminating the soil by them like inorganic chemical pesticides is very low. Therefore,
they can be used primarily in nurseries to induce genes responsible for plant defence and
mechanisms to prevent infection/disease by pathogens [47]. Moreover, synergism of many
VOCs has been found to increase the spectrum of action on pathogens and VOCs promote
plant growth [48–50]. Studies by Schulz-Bohm et al. [51] and Tilocca et al. [52] identified
many VOCs that exhibit antimicrobial activity and increase plant biomass.

The chemical constituents that form volatile antifungal molecules include alcohols,
aldehydes, ketones, alkanes, alkenes, amines and benzene, all of which were found in
our analysis. The compound 2-ethylhexanal (C8H16O), octan-2-one and octan-3-one are
among the ketones found in volatile organic compounds [53] and have the potential for
use against microorganisms and fungi [54]. While fatty acids are less effective than the
listed compounds and chemical fungicides, their antimicrobial activity has also been re-
ported [55]. Volatile organic compounds have been shown to induce responses against
infections and systemic immunity [34,36,56,57]. Compounds such as 6-amyl-a-pyrrole,
1-octen-3-ol, methyl methylbenzoate and m-cresol induce systemic tolerance to pathogens
by disrupting salicylic and jasmonic acid signalling pathways [58,59]. Consequently, there
is limited information on plant genes that act on VOCs released by pathogens [58,59].
Previous studies suggested that volatilization of limonene, 3-methylbutanal and undecane
significantly affects plant diameter and chlorophyll content [16], as do 3-methylbutan-1-ol,
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2-methylbutanol, limonene, camphor, β-cedrene and α-bergamotene, which are desig-
nated natural volatile compounds [60]. Low concentrations of 2-ethylhexanal promote
Arabidopsis growth, whereas high concentrations impair plant growth [61–63].

Using the GC-MS method, we could not identify all the chemical compounds listed
above known for their activity against microorganisms, but this was not the aim of this
work. We mainly wanted to find those that are characteristic of infestation by the two
pathogens studied in order to be able to detect them in the samples tested in vitro and
then in the nurseries in vivo. The latter will be the subject of our further research. In this
article, we also try to draw attention to the practical aspect of our research. The most
important practical distinction between organisms of the genus Pythium and Phytophthora
(which we have succeeded in making) is that the nursery forester does not need to take any
action when there is an infestation of Pythium because there is little risk of the seedlings
dying. The situation is quite different when species of the genus Phytophthora are found,
in which case the action must be taken immediately because there is a risk of significant
economic loss. There are always many Pythium species in the soil and the seeds come into
contact with them, but if the germinating seeds are “sick” because they are infected with
introduced Phytophthora species (in Latin “plant killers”), the situation requires immediate
protection of the seedlings with chemicals. For now, we are pleased to report that we
can distinguish between the two oomycetes Pythium and Phytophthora in vitro based on
the signals detected by the gas sensors. An encouraging result for further research is the
ability shown in Figure 5 to distinguish samples of healthy acorns from acorns infected
with the pathogen Phytophthora plurivora. We also believe that an important result of our
experimental work is the finding that it is more challenging to detect samples infected with
Pythium compared to Phytophthora. Healthy and “diseased” acorns inoculated with Pythium
are likely to excrete similar volatile compounds, supporting the thesis that Pythium is not
a problem because germinating acorns are not infected and consequently do not die. It
would be a significant achievement to develop a ready-made tool used by nursery foresters
or other plant protection services. The results presented in this publication confirm that we
are on the right track and we would like to share them with the scientific community and
forest managers.

4. Summary and Conclusions

Research in vitro has revealed possibilities for identifying pathogenic oomycetes in
infected plant material thanks to an electronic nose, thus taking a significant step towards
becoming a valuable tool to assist nurseries and quarantine services. Previously, species
of Phytophthora plurivora—one of the most common pathogens in nurseries—and Pythium
intermedium (less pathogenic) were successfully distinguished in germinated acorns of
English oak Quercus robur L., an important forest tree species in Poland. The analyses
of chemical compounds performed by HS-SPME/GC-MS revealed volatile molecules
produced by oak seedlings, mainly belonging to terpenes and alkanes. Compounds
characteristic only of Pythium or Phytophthora were also found. Methylcarveol occurred
when germinated acorns were infected with Pythium, while neophytadiene (isomer 2 and 3)
occurred only when infected with Phytophthora. Moreover, isopentanol was found in acorns
infected with Phytophthora, while in the control isopentyl vinyl ether was not observed
anywhere else.

We want to emphasize that this is the next stage of work (after testing in vitro on pure
cultures of pathogens) and these results look encouraging, although the actual application
is still a long way off. We are currently improving the device and testing it under in vivo
conditions on healthy and infected germinating acorns in jars. Oaks bear fruit every few
years, so it is necessary to store them for continuity of forest restoration work. During
the winter, acorns harvested and stacked on the wood floor (in sheds) are infested with
pathogens despite periodic shuffling. Sampling acorns on this occasion and evaluating
them for the presence of oomycetes allows their early detection, saving nurseries from
losses. Similarly, acorns sown in spring (or autumn) can be tested for particularly dangerous
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pathogens of the genus Phytophthora. From this point of view, it is essential to distinguish
between a strong pathogen such as Phytophthora plurivora and a weak one such as Pythium
intermedium. This helps the grower to decide whether to use fungicides or not.

The desired goal of the undergoing research will be in vivo testing of e-nose in
forest nurseries. The sustainability and diversity of future forests depend on the quality
of propagation material, so it should be free of harmful organisms. It is the final stage
where unwanted alien (invasive) organisms can be eliminated. Once they have invaded
plantations and stands, eradication is too costly, if feasible at all. E-noses help select healthy
nursery stock free of pathogens, especially when plants are symptomless due to pesticide
use. When planted under favourable environmental conditions (riparian or floodplain),
dormant pathogens begin their activity and cause disease.

There is an essential difference between the GC-MS and electronic nose approaches
that should be noted. The first one is an analytical technique that allows identifying the
individual chemical components of the measured sample. It also allows measuring the
concentration of these components. On the other hand, the electronic nose and machine
learning software are based on pattern recognition of the measured signals and do not
provide any information about the chemical composition. It uses a training set of obser-
vations to learn patterns which can be later used to discriminate between the categories
using measurements of new measurement data. These data can also be used to indicate
deviations from already recognised patterns.
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Appendix A. Results of the Gas Chromatography-Mass Spectrometry Measurements

Table A1. The chemical components identified by the Gas Chromatography-Mass Spectrometry measurements. By the blue color are highlighted the components specific to the considered
category of samples. The meaning of columns is defined in Table A2.

Healthy Phytophthora Pythium

Compound CAS m/z M+ tret. RIexp. RIlit. Area TIC Area TIC Area TIC
(min) ×106 (%) ×106 (%) ×106 (%)

Alkanes 601.6 71.67 608.3 68.12 623.4 71.63
including:

n-Butane 106-97-8 43, 41, 58, 42, 44 58 1.706 400 400 a 20.7 2.47 30.2 3.39 34.8 4.00

2.3.5-Trimethylhexane 1069-53-0 43, 41, 85, 84, 57 128 5.003 808 810 b 2.4 0.29 2.5 0.29 2.2 0.26

2.4-Dimethylheptane 2213-23-2 43, 41, 85, 57, 71 128 5.163 815 818 b 59.0 7.03 34.3 3.84 52.9 6.09

4-Methyloctane 2216-34-4 43, 41, 85, 71, 84 128 6.163 858 n/a 5.3 0.64 5.5 0.62 4.1 0.48

n-Decane 124-18-5 57, 43, 71, 85, 41 142 9.984 1000 1000 a 21.4 2.55 13.2 1.48 22.7 2.61

2.6-Dimethylnonane 17302-28-2 43, 57, 71, 41, 85 156 10.425 1019 1022 b 10.7 1.28 6.8 0.77 7.8 0.90

5-Methyldecane 13151-35-4 43, 57, 71, 41, 85 156 11.156 1054 1057 b 15.6 1.87 15.2 1.71 11.0 1.27

4-Methyldecane 2847-72-5 41, 71, 57, 41, 70 156 11.431 1056 1059 b 15.6 1.87 15.8 1.78 5.2 0.61

Alkane C12H26 - 43, 57, 71, 41, 85. . . 155, 170 170 11.671 1057 - 89.4 10.66 87.5 9.81 74.4 8.55

Alkane C12H26 - 43, 57, 71, 41, 85. . . 155, 170 170 11.829 1063 - 18.6 2.22 20.8 2.33 15.4 1.78

n-Undecane 1120-21-4 57, 43, 71, 85, 41 156 12.990 1100 1100 a 28.1 3.35 28.4 3.19 30.6 3.52

n-Dodecane 112-40-3 57, 43, 71, 85, 41 170 15.969 1200 1200 a 15.4 1.84 16.3 1.83 14.5 1.68

Alkane C14H30 - 43, 57, 71, 41, 85, . . . , 183, 198 198 16.207 1214 - 15.8 1.89 19.0 2.13 17.4 2.01

Alkane C14H30 - 43, 57, 71, 41, 85, . . . , 183, 198 198 17.065 1245 - 15.3 1.83 18.2 2.04 17.8 2.05

Alkane C14H30 - 43, 57, 71, 41, 85, . . . , 183, 198 198 17.214 1250 - 16.2 1.93 18.2 2.04 17.1 1.98

Alkane C14H30 - 43, 57, 71, 41, 85, . . . , 183, 198 198 17.369 1256 - 23.4 2.79 20.8 2.34 28.8 3.32

Alkane C14H30 - 43, 57, 71, 41, 85, . . . , 183, 198 198 17.611 1265 - 26.1 3.12 31.4 3.52 37.6 4.32

2.6.11-Trimethyldodecane 31295-56-4 43, 57, 71, 41, 85 212 17.890 1275 1275 b 9.3 1.11 10.9 1.22 6.3 0.73

Alkane C15H32 - 43, 57, 71, 41, 85, . . . , 197, 212 212 18.287 1289 - 18.6 2.22 22.5 2.52 20.9 2.41

Alkane C15H32 - 43, 57, 71, 41, 85, . . . , 197, 212 212 18.439 1295 - 22.9 2.74 24.3 2.73 25.7 2.95

n-Tridecane 629-50-5 57, 43, 71, 85, 41 186 18.645 1300 1300 a 13.9 1.66 16.8 1.88 15.8 1.82
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Table A1. Cont.

Healthy Phytophthora Pythium

Compound CAS m/z M+ tret. RIexp. RIlit. Area TIC Area TIC Area TIC
(min) ×106 (%) ×106 (%) ×106 (%)

Alkane C15H32 - 43, 57, 71, 41, 85, . . . , 197, 212 212 19.293 1327 - 36.6 4.36 35.5 3.98 46.0 5.29

n-Tetradecane 629-59-4 57, 43, 71, 85, 41 198 21.201 1400 1400 a 3.7 0.45 3.2 0.37 4.4 0.51

Alkane C16H34 - 43, 57, 71, 41, 85, . . . , 211, 226 226 21.778 1423 - 12.4 1.49 12.8 1.43 10.4 1.20

Alkane C16H34 - 43, 57, 71, 41, 85, . . . , 211, 226 226 22.761 1462 - 7.0 0.85 9.3 1.04 9.8 1.13

Alkane C16H34 - 43, 57, 71, 41, 85, . . . , 211, 226 226 22.920 1469 - 7.5 0.90 7.6 0.86 7.5 0.87

Alkane C16H34 - 43, 57, 71, 41, 85, . . . , 211, 226 226 23.462 1491 - 7.5 0.90 10.9 1.23 10.7 1.24

n-Pentadecane 629-62-9 57, 43, 71, 85, 41 212 23.694 1500 1500 a 42.8 5.11 52.8 5.91 45.5 5.23

Alkane C17H36 - 43, 57, 71, 41, 85, . . . , 225, 240 240 24.681 1542 - 12.4 1.49 12.8 1.44 16.6 1.91

Alkane C19H40 - 43, 57, 71, 41, 85, . . . , 253, 268 268 28.515 1711 - 6.5 0.78 3.5 0.40 8.0 0.93
Terpenes 169.2 20.16 219.7 24.60 177.8 20.43

including:

1,2-Dimethyl-5-prop-1-
en-2-ylcyclohex-2-en-1-ol
(methylcarveol)

85710-64-1 43, 41, 109, 83, 55 166 12.683 1091 n/a - - - - 12.4 1.43

2,6,10-Trimethyldodecane (far-
nesane)

3891-98-3 43, 57, 71, 41, 85 212 18.068 1281 1282 a 121.6 14.49 144.2 16.15 125.3 14.40

6,8α-Dimethyl-3-propan-
2-yl-2,4,5,8-tetrahydro-1H-
azulene (daucene)

16661-00-0 161, 121, 162, 91, 93 204 20.774 1383 1380 a 5.2 0.63 24.6 2.76 6.2 0.72

(1S,8αR)-4,7-Dimethyl-1-
propan-2-yl-1,2,3,5,6,8α-
hexahydronaphthalene
(δ-cadinene)

483-76-1 161, 204, 119, 105, 134 204 24.251 1524 1522 c 4.3 0.51 2.4 0.28 2.3 0.27

(3αS,8αS)-6,8α-Dimethyl-3-
propan-2-ylidene-1,2,3α,4,5,8-
hexahydroazulene (dauca-
4(11),8-diene)

395070-76-5 136, 121, 41, 204, 91 204 24.500 1532 1530 c 6.9 0.82 7.4 0.83 4.2 0.49

Sesquiterpenoid C15H26O - 59, 149, 107, 91, 93. . . 222 222 25.924 1594 - 9.9 1.18 6.2 0.70 5.4 0.63
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Table A1. Cont.

Healthy Phytophthora Pythium

Compound CAS m/z M+ tret. RIexp. RIlit. Area TIC Area TIC Area TIC
(min) ×106 (%) ×106 (%) ×106 (%)

2-[(2R,4αR,8αS)-4α-Methyl-8-
methylidene-1,2,3,4,5,6,7,8α-
octahydronaphthalen-2-
yl]propan-2-ol (β-eudesmol)

473-15-4 59, 149, 41, 109, 43 222 27.324 1651 1649 c 4.9 0.59 3.8 0.44 3.2 0.38

2-[(2R,4αR,8αR)-4α,8-
Dimethyl-2,3,4,5,6,8α-
hexahydro-1H-naphthalen-2-
yl]propan-2-ol (α-eudesmol)

473-16-5 59, 149, 161, 204, 189 222 27.388 1654 1652 c 12.6 1.51 15.3 1.72 14.3 1.65

7,11,15-Trimethyl-3-
methylidenehexadec-1-ene
(neophytadiene), isomer1̃

504-96-1 68, 82, 95, 43, 57 278 31.219 1839 1840 d 3.5 0.42 8.2 0.93 4.0 0.47

Neophytadiene, isomer2̃ - 68, 82, 95, 43, 57 278 31.723 1864 1864 d - - 2.5 0.28 - -

Neophytadiene, isomer3̃ - 68, 82, 95, 43, 57 278 32.087 1882 1882 d - - 4.7 0.53 - -

Other compounds 14.1 1.68 14.6 1.64 9.0 1.04
including:

3-Methylbutan-1-ol (isopen-
tanol)

123-51-3 55, 41, 42, 70, 43 88 3.534 723 726 b - - 5.8 0.65 - -

1-Ethenoxy-3-methylbutane
(isopentyl vinyl ether)

39782-38-2 43, 70, 55, 41, 71 114 4.052 754 n/a 4.9 0.59 - - - -

2,4-Dimethylhept-1-ene 19549-87-2 43, 70, 55, 41, 39 126 5.620 840 842 b 4.9 0.59 3.9 0.44 3.7 0.43

2,2-Dimethylbutan-1-ol 1185-33-7 43, 71, 41, 29, 70 102 5.783 842 n/a 4.1 0.49 4.8 0.55 5.2 0.60

Undefined compounds 54.4 6.49 50.2 5.63 60.0 6.90
including:

NN - 133, 151, 135, 134, 77 - 7.256 904 - 36.9 4.40 22.1 2.48 35.0 4.03

NN - 43, 69, 111, 55, 75 - 20.291 1365 - 17.5 2.09 28.1 3.15 25.0 2.88
a—standards. b—NIST (2020). c—Adams (2007). d—Tkachev (2008). n/a—non available.
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Table A2. Description of the columns in tables presenting the Gas Chromatography-Mass Spectrome-
try results.

Compound Group and Name of the Identified Compounds

CAS CAS Registry Number.
m/z Mass-to-charge ratio (fragmentation ion).
M+ Molecular ion.
tret. Retention time.
RIexp. Experimental value of the Retention Index.
RIlit. Literature value of the Retention Index.
TIC Percentage of the Total Ion Current.

References
1. Jung, T.; Orlikowski, L.; Henricot, B.; Abad-Campos, P.; Aday, A.G.; Aguín Casal, O.; Bakonyi, J.; Cacciola, S.O.; Cech, T.;

Chavarriaga, D.; et al. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural
ecosystems at high risk of Phytophthora diseases. For. Pathol. 2016, 46, 134–163. [CrossRef]

2. Gisi, U.; Sierotzki, H. Oomycete fungicides: Phenylamides, quinone outside inhibitors, and carboxylic acid amides. In Fungicide
Resistance in Plant Pathogens; Ishii, H., Hollomon, D., Eds.; Springer: Tokyo, Japan, 2015; pp. 145–174. [CrossRef]

3. Griffith, J.M.; Davis, A.J.; Grant, B.R. Target sites of fungicides to control oomycetes. In Target Sites of Fungicide Action;
Köller, W., Ed.; CRC Press: Boca Raton, FL, USA, 1992; pp. 69–100.

4. Ziogas, B.N.; Markoglou, A.N.; Theodosiou, D.I.; Anagnostou, A.; Boutopoulou, S. A high multi-drug resistance to chemically
unrelated oomycete fungicides in Phytophthora infestans. Eur. J. Plant Pathol. 2006, 115, 283–292. [CrossRef]

5. Ferguson, A.J.; Jeffers, S.N. Detecting Multiple Species of Phytophthora in Container Mixes from Ornamental Crop Nurseries.
Plant Dis. 1999, 83, 1129–1136. [CrossRef]

6. Swiecki, T.; Quinn, M.; Sims, L.; Bernhardt, E.; Oliver, L.; Popenuck, T.; Garbelotto, M. Three new Phytophthora detection
methods, including training dogs to sniff out the pathogen, prove reliable. Calif. Agric. 2018, 72, 217–225. [CrossRef]

7. Borowik, P.; Adamowicz, L.; Tarakowski, R.; Wacławik, P.; Oszako, T.; Ślusarski, S.; Tkaczyk, M. Application of a Low-Cost
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26. Gancarz, M.; Wawrzyniak, J.; Gawrysiak-Witulska, M.; Wiącek, D.; Nawrocka, A.; Tadla, M.; Rusined, R. Application of electronic
nose with MOS sensors to prediction of rapeseed quality. Measurement 2017, 103, 227–234. [CrossRef]

27. Srivastava, S.; Mishra, G.; Mishra, H.N. Probabilistic artificial neural network and E-nose based classification of Rhyzopertha
dominica infestation in stored rice grains. Chemom. Intell. Lab. Syst. 2019, 186, 12–22. [CrossRef]

28. Gu, S.; Wang, J.; Wang, Y. Early discrimination and growth tracking of Aspergillus spp. contamination in rice kernels using
electronic nose. Food Chem. 2019, 292, 325–335. [CrossRef] [PubMed]

29. Baietto, M.; Pozzi, L.; Wilson, A.D.; Bassi, D. Evaluation of a portable MOS electronic nose to detect root rots in shade tree species.
Comput. Electron. Agric. 2013, 96, 117–125. [CrossRef]

30. Sahgal, N.; Magan, N. Fungal volatile fingerprints: Discrimination between dermatophyte species and strains by means of an
electronic nose. Sens. Actuators B Chem. 2008, 131, 117–120. [CrossRef]

31. Lampson, B.D.; Khalilian, A.; Greene, J.K.; Han, Y.J.; Degenhardt, D.C. Development of a Portable Electronic Nose for Detection
of Cotton Damaged by Nezara viridula (Hemiptera: Pentatomidae). J. Insects 2014, 2014, 1–8. [CrossRef]
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