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Abstract: Amyloidosis is a term referring to a group of various protein-misfolding diseases wherein
normally soluble proteins form aggregates as insoluble amyloid fibrils. How, or whether, amyloid
fibrils contribute to tissue damage in amyloidosis has been the topic of debate. In vitro studies have
demonstrated the appearance of small globular oligomeric species during the incubation of amyloid
beta peptide (Aβ). Nerve biopsy specimens from patients with systemic amyloidosis have suggested
that globular structures similar to Aβ oligomers were generated from amorphous electron-dense
materials and later developed into mature amyloid fibrils. Schwann cells adjacent to amyloid fibrils
become atrophic and degenerative, suggesting that the direct tissue damage induced by amyloid
fibrils plays an important role in systemic amyloidosis. In contrast, there is increasing evidence that
oligomers, rather than amyloid fibrils, are responsible for cell death in neurodegenerative diseases,
particularly Alzheimer’s disease. Disease-modifying therapies based on the pathophysiology of
amyloidosis have now become available. Aducanumab, a human monoclonal antibody against
the aggregated form of Aβ, was recently approved for Alzheimer’s disease, and other monoclonal
antibodies, including gantenerumab, solanezumab, and lecanemab, could also be up for approval.
As many other agents for amyloidosis will be developed in the future, studies to develop sensitive
clinical scales for identifying improvement and markers that can act as surrogates for clinical scales
should be conducted.

Keywords: AA amyloidosis; AL amyloidosis; Alzheimer’s disease; amyotrophic lateral sclerosis;
ATTR amyloidosis; dementia; Parkinson’s disease; pathology; prion; transthyretin

1. Introduction

Amyloidosis is a term referring to a group of toxic gain-of-function protein-misfolding
diseases wherein normally soluble proteins aggregate in extracellular spaces as insoluble
amyloid fibrils with a beta (β)-sheet structure [1,2]. More than 30 causative amyloidogenic
proteins have been reported, and some of them, such as the amyloid β precursor protein
(APP) in Alzheimer’s disease, prion protein in prion diseases, immunoglobulin light chain
in AL amyloidosis, transthyretin (TTR) in ATTR amyloidosis, and serum amyloid A in AA
amyloidosis, cause fatal outcomes [1,3–8]. The deposition of amyloid is localized to the
central nervous system in Alzheimer’s disease and most prion diseases [1,3,4], whereas
systemic deposition occurs in AL, ATTR, and AA amyloidoses [5,7–10]. How, or whether,
amyloid fibrils contribute to these diseases is a topic of debate. The extracellular deposits,
composed of amyloid fibrils (i.e., amyloid deposits), were initially regarded as the cause
of organ dysfunction resulting from amyloidosis [11,12]. For example, the restriction
of ventricular wall mobility due to massive amyloid deposition in the spaces between
cardiomyocytes results in heart failure [9,13]. The direct damage of neighboring tissues
by amyloid fibrils has also been suggested [11,12,14–18]. In contrast, more recent studies
have focused on non-fibrillar precursors of amyloidogenic proteins as the cause of tissue
degeneration [19–21]. In particular, protein oligomers generated during the process of
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amyloid fibril formation or released from amyloid fibril aggregates are now considered as
causes of cellular dysfunction and degeneration [22–25]. In support of this view, the severity
of cognitive decline in patients with Alzheimer’s disease does not correlate with amyloid
plaque formation, suggesting that pre-amyloid aggregates are the cause of disease [26,27].
From this standpoint, clarifying the significance of amyloidogenic protein oligomers is
important to understanding the pathophysiology and establishing therapeutic strategies
for amyloidosis.

In this review, we describe the pathophysiological aspects of amyloidosis, focusing on
the prefibrillar states of amyloidogenic proteins and their evolution to amyloid fibrils.

2. Initiation of Protein Aggregation

The misfolding of proteins is an important step in the process of amyloid fibril
formation [28]. In ATTR amyloidosis, TTR, which is mainly synthesized in the liver,
forms amyloid fibrils due to the dissociation of natively folded tetramers into misfolded
monomers [29,30]. In addition, proteolytic cleavage also promotes the misfolding and
aggregation of TTR [31,32]. In Alzheimer’s disease, the proteolytic cleavage of APP by
secretases results in the production of toxic amyloid β peptide (Aβ), which is prone to
aggregation [33]. Furthermore, increased production, decreased clearance, oxidative modi-
fication, and phosphorylation of causative proteins are factors that may trigger the process
of aggregation [2]. These factors are considered to play an important role in the initiation
of protein aggregation in most acquired amyloidoses.

The formation of amyloid fibrils is a dynamic process, with monomers and oligomers
being rapidly exchanged for each other depending on various factors that include pH,
temperature, and co-solvents [34]. According to studies of serial biopsy specimens obtained
from AL, ATTR, and AA amyloidosis patients, even mature amyloid fibril masses disappear
when successful disease-modifying therapies are provided [35–37]. Electron microscope
studies have demonstrated the appearance of dotty or globular structures 4 to 5 nm in
diameter and the subsequent formation of short protofibrils 30 to 100 nm in length during
an incubation of Aβ in vitro [38].

The pathological studies of ATTR amyloidosis have also suggested a similar process of
amyloid fibril formation via intermediates [7,17]. Observations of nerve biopsy specimens
obtained from patients with hereditary ATTR (ATTRv; v for variant) amyloidosis using
electron microscopy suggest that globular structures of similar diameter to Aβ intermedi-
ates were generated from amorphous electron-dense materials [7,17]. According to these
studies, the deposition of amorphous electron-dense materials was observed in extracellu-
lar spaces of the endoneurium, particularly around the microvessels and subperineurial
space [17]. These amorphous materials contain non-fibrillar TTR intermediates because
they are stained with anti-TTR antibodies but not with Congo red [9]. Clusters of globu-
lar structures were also often observed among these extracellular amorphous materials
(Figure 1) [17]. The deposition of TTR-positive but Congo red-negative non-fibrillar de-
posits was observed even in asymptomatic carriers with no amyloid deposits [39]. Similar
non-fibrillar TTR deposits have also been reported in transgenic mouse and rat models of
ATTRv amyloidosis [40,41]. As the disruption of the blood–nerve barrier of endoneurial
microvessels was reported, the TTR in the endoneurium was believed to be derived from
the bloodstream [16]. In vitro studies of TTR aggregation suggested that such globular
structures are oligomeric intermediates that have cytotoxic effects [42].
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Figure 1. Amorphous electron-dense materials and clusters of globular structures in the endoneurium. A cross section of 
the sural nerve biopsy specimen from a patient with hereditary transthyretin (ATTRv) amyloidosis. Numerous small 
globular structures with a diameter of several nanometers seem to be generated from amorphous extracellular elec-
tron-dense materials supposed to contain amyloidogenic transthyretin. A cluster of globular structures and amorphous 
electron-dense materials are indicated by arrowheads and asterisks, respectively. The circular structures, with diameters 
of around 50 nm, are collagen fibers. Uranyl acetate and lead citrate stain. Scale bar = 0.1 μm. 

3. Formation of Amyloid Fibrils from Intermediates 
Observations of nerve biopsy specimens from patients with ATTRv amyloidosis 

using electron microscopy demonstrated a putative chronological sequence of the pro-
cess of amyloid fibril formation and tissue damage [16,17]. The globular structures found 
in the extracellular electron-dense materials, which were described earlier, seemed to 
develop into mature amyloid fibrils because elongated fibrillar structures were fre-

Figure 1. Amorphous electron-dense materials and clusters of globular structures in the endoneurium. A cross section of the
sural nerve biopsy specimen from a patient with hereditary transthyretin (ATTRv) amyloidosis. Numerous small globular
structures with a diameter of several nanometers seem to be generated from amorphous extracellular electron-dense
materials supposed to contain amyloidogenic transthyretin. A cluster of globular structures and amorphous electron-dense
materials are indicated by arrowheads and asterisks, respectively. The circular structures, with diameters of around 50 nm,
are collagen fibers. Uranyl acetate and lead citrate stain. Scale bar = 0.1 µm.

3. Formation of Amyloid Fibrils from Intermediates

Observations of nerve biopsy specimens from patients with ATTRv amyloidosis using
electron microscopy demonstrated a putative chronological sequence of the process of
amyloid fibril formation and tissue damage [16,17]. The globular structures found in the
extracellular electron-dense materials, which were described earlier, seemed to develop
into mature amyloid fibrils because elongated fibrillar structures were frequently found in
the vicinity of these globular structures (Figure 2) [17]. During the process of amyloid fibril
maturation, amyloid fibrils affect the surrounding structures. For example, collagen fibers
seem to get involved in the aggregates of amyloid fibrils, and the basement and cytoplasmic
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membranes of cells in the endoneurium, including Schwann cells, vascular endothelial
cells, and pericytes, apposed by amyloid fibrils also become obscure and appear as if they
fuse with amyloid fibrils (Figure 3) [21,43]. Additionally, Schwann cells, particularly small
ones associated with small-diameter nerve fibers, become atrophic when they are adjacent
to amyloid fibril masses [16,17]. Finally, the contours of these cells sometimes completely
disappear, and only the cytoplasmic organelles of these cells remain among the aggregates
of amyloid fibrils [17].
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Figure 2. Amyloid fibrils in the endoneurium. A cross section of the sural nerve biopsy specimen from a patient with
hereditary transthyretin (ATTRv) amyloidosis. The globular structures shown in Figure 1 seemed to develop into mature
amyloid fibrils because elongated fibrillar structures are frequently found in the vicinity of such globular structures. The
circular structures with diameters of around 50 nm are collagen fibers. Collagen fibers surrounded by squares seem to get
involved in the aggregates of amyloid fibrils. Uranyl acetate and lead citrate stain. Scale bar = 0.1 µm.
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Figure 3. Atrophy and degeneration of Schwann cells apposed by amyloid fibrils. A cross section of a sural nerve biopsy
specimen from a patient with hereditary transthyretin (ATTRv) amyloidosis. Schwann cells, particularly small ones
associated with small-diameter nerve fibers, become atrophic when they are adjacent to amyloid fibril aggregates. Atrophy
of Schwan cells is conspicuous in the upper right, where a mass of amyloid fibrils aggregation is present. The basement and
cytoplasmic membranes apposed to amyloid fibrils become indistinct (arrows), while those in the lower left part, where
amyloid fibrils are not present, are preserved (arrowheads). Uranyl acetate and lead citrate stain. Scale bar = 2 µm.

Similar atrophy of Schwann cells apposed by amyloid fibrils has also been reported
in nerve biopsy specimens from patients with AL amyloidosis, which is another major
type of systemic amyloidosis [10,14,15,18,44]. The atrophy and degeneration of vascular
endothelial cells, pericytes, and neurites have also been found in brain biopsy specimens
from patients with Alzheimer’s disease [45]. These findings support the concept that
direct tissue damage induced by amyloid fibrils plays an important role in amyloidosis. In
fact, the amount of amyloid deposits seems to be correlated with the extent of neurode-
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generation in certain types of ATTRv amyloidosis, particularly the early-onset form of
ATTRv amyloidosis [9,46]. However, severe nerve fiber loss was observed in the late-onset
form of ATTRv amyloidosis despite a small amount of amyloid deposits, suggesting the
presence of other factors for tissue damage [9]. From this standpoint, researchers are now
paying attention to the toxicity of non-fibrillar oligomers in tissue damage associated with
amyloidosis.

4. The Role of Non-Fibrillar Oligomers in Tissue Damage

There is increasing evidence that non-fibrillar oligomers or protofibrils, rather than
large fibrils, are responsible for cell death in common neurodegenerative diseases of
the central nervous system, including Alzheimer’s disease, Parkinson’s disease, amy-
otrophic lateral sclerosis, Huntington’s disease, and spinocerebellar ataxia [20,23,47]. Some
researchers have even hypothesized that the formation of mature amyloid fibrils is a pro-
tective process in these diseases [20]. For example, the soluble intermediates of Aβ in the
brain correlated with the marker of disease severity in patients with Alzheimer’s disease;
this was not true with insoluble Aβ [48]. Supporting these findings, human Aβ oligomers,
but not amyloid fibrils, were found to have a synaptotoxic effect in vivo [19]. In patients
with dementia resulting from APP E693Delta mutation, which confers the property of
enhanced oligomerization but no fibrillization, a very low amyloid signal was observed
on positron emission tomography [26]. Additionally, transgenic mice expressing the same
APP mutation showed memory impairment and pathological findings similar to patients
with Alzheimer’s disease despite the absence of amyloid plaques [27].

The toxicity of oligomers has also been suggested in systemic amyloidosis, including
AL, ATTR, and AA amyloidoses [21,25,42,49]. However, direct stress by amyloid fibrils also
seems to participate in the mechanisms of tissue damage in these amyloidoses. As described
earlier, the atrophy and degeneration of tissues seem to occur in the peripheral nervous
system along with the formation of amyloid fibrils [17]. Although mechanical stress
generated during the maturation of amyloid fibrils may affect neighboring tissues [10,17],
biochemical stress may also participate in the mechanisms of tissue damage. As the
turnover of amyloid fibril components occurs steadily [23,36], soluble oligomers may be
constantly present in the vicinity of amyloid fibrils.

There are numerous reports on the mechanisms of tissue damage by non-fibrillar
oligomers. Oligomers may directly affect cytoplasmic membranes by increasing membrane
conductance and calcium influx, triggering the atrophy and degeneration of neighbor-
ing cells [22,24]. Normal cellular prion protein expressed on cell surface mediates the
toxic effects as a receptor of Aβ oligomers, suggesting that it plays an important role in
Aβ-oligomers-induced neurodegeneration [50,51]. Aβ oligomers also act on receptors
crucial for neurotransmission, such as glutamate receptors and nicotinic acetylcholine re-
ceptors [52–54]. Furthermore, accumulating evidence suggests that intracellular oligomers
of misfolded proteins are also toxic to cells via interaction with mitochondria and nucleus
in various neurodegenerative diseases [55–58].

5. Therapeutic Insights

With the progress in understanding the mechanisms of amyloid fibril formation and
tissue damage, several disease-modifying therapies based on the pathophysiology of amy-
loidosis have become available. These include agents to reduce or prevent the production
of causative proteins such as chemotherapeutic agents against plasma cell dyscrasia for AL
amyloidosis, short interfering RNA and antisense oligonucleotides to knockdown TTR for
ATTR amyloidosis, and monoclonal antibodies against proinflammatory cytokines for AA
amyloidosis [7,10,59,60]. Small molecules that stabilize TTR tetramers have also become
available for ATTR amyloidosis [7,60]. These disease-modifying therapies significantly
improved the prognosis of AL, ATTR, and AA amyloidoses. In particular, clinical trials
of gene silencing agents such as patisiran (a short interfering RNA) and inotersen (an
antisense oligonucleotide) for patients with ATTRv amyloidosis demonstrated excellent
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efficacy in terms of clinical scores and quality of life [61–64]. The safety profile of patisiran
was acceptable [62], whereas glomerulonephritis and thrombocytopenia were reported as
severe adverse events of inotersen [63], necessitating close monitoring of renal function
and platelet count. To improve the safety profile of inotersen, a ligand-conjugated anti-
sense oligonucleotide designed to facilitate receptor-mediated uptake by hepatocytes was
designed [65,66].

In June 2021, aducanumab, a human monoclonal antibody against the aggregated
form of Aβ, was approved by the US Food and Drug Administration for use in treating
patients with Alzheimer’s disease [67]. Following intravenous infusion, this antibody
can cross the blood–brain barrier and selectively bind to Aβ aggregates [68]. From the
discussion regarding the toxicity of oligomers in Alzheimer’s disease, aducanumab can
remove not only insoluble amyloid fibrils but also soluble oligomers. However, two phase 3
trials conducted for aducanumab were halted because the interim analyses did not indicate
remarkable success of these trials as determined from the cognitive functions [69]. The
drug was approved using the accelerated approval pathway based on the reduction of
the level of amyloid plaques in the brain, which was not the primary endpoint of these
clinical trials. However, reduction in the cognitive decline from the viewpoint of the
amyloid hypothesis might have been expected [67]. Monoclonal antibodies against the
components of amyloid deposits are also under development for the treatment of various
types of systemic amyloidosis [10]. For Alzheimer’s disease, other monoclonal antibodies,
including gantenerumab [70], solanezumab [71], and lecanemab [72], could also be up for
approval.

6. Summary and Conclusions

Amyloidosis refers to a group of various protein-misfolding diseases wherein normally
soluble proteins aggregate as insoluble amyloid fibrils [2]. How, or whether, amyloid fibrils
contribute to tissue damage in amyloidosis has been a topic of debate. Direct stress to neigh-
boring tissues imposed by amyloid fibrils themselves has classically been suggested [15–18],
whereas recent studies have focused on the non-fibrillar precursors of amyloidogenic pro-
teins, particularly soluble oligomers, as the cause of tissue damage [24,25].

Electron microscope studies have demonstrated the appearance of globular structures
4 to 5 nm in diameter and the subsequent formation of short protofibrils 30 to 100 nm
in length during the incubation of Aβ in vitro [38]. Observations of nerve biopsy speci-
mens from patients with ATTRv amyloidosis have suggested that globular structures of
similar diameter to Aβ intermediates were generated from amorphous electron-dense
materials containing TTR [9,17]. In vitro studies of TTR aggregation have suggested that
such globular structures are oligomeric intermediates possessing cytotoxic effects [42].
Nonetheless, direct stress by amyloid fibrils themselves also seems to participate in the
mechanisms of tissue damage in amyloidosis, particularly systemic amyloidosis [16,17].
However, soluble oligomers generated as a result of the turnover of amyloid fibril compo-
nents may be constantly present in the vicinity of amyloid fibrils [36], triggering the tissue
damage [22,24,25].

Disease-modifying therapies based on the pathophysiology of amyloidosis, which
include chemotherapeutic agents against plasma cell dyscrasia for AL amyloidosis, gene
silencing agents to knockdown TTR for ATTR amyloidosis, and monoclonal antibodies
against proinflammatory cytokines for AA amyloidosis, have now become
available [7,10,59,60]. Recently, a human monoclonal antibody against the aggregated
form of Aβ, aducanumab, was approved by the US Food and Drug Administration for
Alzheimer’s disease [67]. Although phase 3 trials for aducanumab were halted, the drug
was approved using the accelerated approval pathway based on the reduction of the level
of amyloid plaques [67]. As many other agents based on the pathophysiology of amy-
loidosis will be developed in the future, studies to develop sensitive clinical scales for
identifying improvement and markers that can act as surrogates for clinical scales should
be conducted.
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