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Abstract: Water pollution by various toxic substances remains a serious environmental problem,
especially the occurrence of organic micropollutants including endocrine disruptors, pharmaceutical
pollutants and naphthol pollutants. Adsorption process has been an effective method for pollutant
removal in wastewater treatment. However, the thermal regeneration process for the most widely
used activated carbon is costly and energy-consuming. Therefore, there has been an increasing need
to develop alternative low-cost and effective adsorption materials for pollutant removal. Herein,
β-cyclodextrin (β-CD), a cheap and versatile material, was modified with methacrylate groups by
reacting with methacryloyl chloride, giving an average degree of substitution of 3 per β-CD molecule.
β-CD-methacrylate, which could function as a crosslinker, was then copolymerized with acrylamide
monomer via free-radical copolymerization to form β-CD-polyacrylamide (β-CD-PAAm) hydrogel.
Interestingly, in the structure of the β-CD-PAAm hydrogel, β-CD is not only a functional unit
binding pollutant molecules through inclusion complexation, but also a structural unit crosslinking
PAAm leading to the formation of the hydrogel 3D networks. Morphological studies showed that
β-CD-PAAm gel had larger pore size than the control PAAm gel, which was synthesized using
conventional crosslinker instead of β-CD-methacrylate. This was consistent with the higher swelling
ratio of β-CD-PAAm gel than that of PAAm gel (29.4 vs. 12.7). In the kinetic adsorption studies,
phenolphthalein, a model dye, and bisphenol A, propranolol hydrochloride, and 2-naphthol were
used as model pollutants from different classes. The adsorption data for β-CD-PAAm gel fitted well
into the pseudo-second-order model. In addition, the thermodynamic studies revealed that β-CD-
PAAm gel was able to effectively adsorb the different dye and pollutants at various concentrations,
while the control PAAm gel had very low adsorption, confirming that the pollutant removal was
due to the inclusion complexation between β-CD units and pollutant molecules. The adsorption
isotherms of the different dye and pollutants by the β-CD-PAAm gel fitted well into the Langmuir
model. Furthermore, the β-CD-PAAm gel could be easily recycled by soaking in methanol and reused
without compromising its performance for five consecutive adsorption/desorption cycles. Therefore,
the β-CD-PAAm gel, which combines the advantage of an easy-to-handle hydrogel platform and
the effectiveness of adsorption by β-CD units, could be a promising pollutant removal system for
wastewater treatment applications.

Keywords: β-cyclodextrin; inclusion complex; polyacrylamide; hydrogel; organic micropollutant
removal
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1. Introduction

Water pollution by various toxic substances including heavy metals, dye molecules
and aromatic compounds remains a serious environmental problem [1]. Among the differ-
ent pollutants, the occurrence of organic micropollutants, which include anthropogenic
pollutants from pharmaceuticals, pesticides, personal care products, steroids and industrial
chemicals, has become a worldwide environmental problem [2]. One example of endocrine
disrupting compounds is bisphenol A (BPA), a component of plastics from industrial origin
and found present in surface water [3]. Pharmaceutical pollutants include propranolol
(PR), a β-blocker used to regulate blood pressure in hypertension treatment, and it was
found in sewage treatment plant effluents as well as in streams and rivers [4]. 2-Naphthol
(2-NO), a model naphthol pollutant, was also present in the environment from the chemical,
pesticides, paper and painting manufactory, and it is also known to be toxic and harmful to
humans and environment [5]. To address these issues, there has been an increasing effort
to develop technologies to remove these pollutants in wastewater treatment [6,7].

In addition to the conventional primary and secondary treatment processes employed
by wastewater treatment plants, advanced treatments for micropollutant removal have
been developed, such as adsorption by activated carbon, ozonation and advanced oxida-
tion processes, and membrane processes [2]. Among these, adsorption process, which is
effective in removing specific micropollutants, has low production of toxic by-products
and is relatively less expensive than membrane processes and advanced oxidation pro-
cesses [8,9]. However, the main disadvantage is the costly and energy-consuming thermal
regeneration process for activated carbons, which are the most widely used adsorbents
for pollutants removal [10]. Regenerating activated carbons requires heating to very high
temperatures, ~800–850 ◦C, and does not fully restore the performance [11,12]. There-
fore, research into development of different regeneration processes, such as chemical
regenerations, or alternative low-cost adsorbents has been undertaken [8–10,12,13].

β-Cyclodextrin (β-CD), which is a cyclic oligosaccharide consisting of α-1,4-linked
7 D(+)-glucose units, has been extensively studied for its ability to form supramolecular
inclusion complexes with a variety of molecules that could fit into the hydrophobic cavity
of β-CD [14–21]. Due to this unique property, there have been increasing interests and
investigations to analyze the complexations between β-CD and various organic pollutant
molecules, including BPA, PR·HCl and 2-NO [22–25]. In addition, different dye molecules,
such as phenolphthalein (Php), have also been used as models to study and gain insights
for the inclusion complexes formed by β-CD and the dye molecules [26,27]. To extend its
applications to pollutant removal in wastewater treatment, the β-CD component has to
be in the form of insoluble adsorbent materials. With abundant hydroxyl groups, β-CD
could be easily modified or crosslinked into insoluble polymers, using crosslinkers such
as epichlorohydrin or tetrafluoroterephthalonitrile, developing into various β-CD-based
polymer adsorbents [1,28–35]. Alsbaiee et al. prepared a porous polymer of β-CD with high
surface area by using a rigid aromatic crosslinker [28]. A recent study investigated a β-CD-
based polymer using both epichlorohydrin and tetrafluoroterephthalonitrile as crosslinkers
to develop a multifunctional adsorbent system [36]. β-CD-conjugated nanocomposites
have also been investigated. One example is graphene oxide-β-CD nanocomposite for BPA
removal [37]. A β-CD-functionalized silica composite was also developed for the removal
of steroid residues from water [38]. However, despite the high adsorption efficiency for
the pollutants, these insoluble adsorbent materials generally need to be filtered during
handling, which might be a concern during applications.

Hydrogel is a three-dimensional network that consists of crosslinked hydrophilic
polymers and can retain large amount of water, leading to swelling of the macromolecular
structure in aqueous solutions. It has a wide range of applications across different fields
including biological, medical and environmental areas [39,40]. β-CD-containing hydrogels
have also been developed for pollutant adsorption and removal applications [41–43].
Polyacrylamide (PAAm)-based polymers are widely used as a flocculant in water and
wastewater treatment, a soil conditioner in agricultural applications, or a viscosity enhancer
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and friction reducer for enhanced oil recovery and high volume hydraulic fracturing [44].
PAAm could also be crosslinked to form hydrogels with very low toxicity, good stability
and ability to swell in water, making them suitable for broad applications in biology,
medicine and agriculture [45,46]. Therefore, PAAm hydrogel is an excellent candidate as a
platform for incorporating β-CD units for pollutant removal.

In this work, to combine the advantage of a PAAm hydrogel for easy handling and the
effective pollutant adsorption ability of β-CD, a robust pollutant removal system has been
developed. In the structure of the β-CD-PAAm hydrogel, β-CD is not only a functional
unit binding pollutant molecules through inclusion complexation, but also a structural
unit crosslinking PAAm leading to the formation of the hydrogel 3D networks. β-CD was
firstly modified with multiple methacrylate groups using methacryloyl chloride. Then,
β-CD with multiple methacrylate groups was used as a crosslinker and copolymerized
with acrylamide monomer via free-radical polymerization to form β-CD-polyacrylamide
(β-CD-PAAm) hydrogel. The morphologies and swelling properties of β-CD-PAAm gel
were analyzed and compared with PAAm gel without β-CD component as a control. The
effectiveness of β-CD-PAAm gel in pollutant removal was demonstrated and evaluated in
the kinetic and thermodynamic adsorption studies using various model dye and pollutants.
The regeneration properties and performance of β-CD-PAAm gel was also investigated.

2. Experimental Section
2.1. Materials

β-Cyclodextrin (β-CD, ≥98%) was obtained from Tokyo Chemical Industry and dried
under vacuum at 100 ◦C for one day before usage. Methacryloyl chloride (MA, >90.0%) was
purchased from Tokyo Chemical Industry. Triethylamine (TEA, ≥99%) was purchased from
Merck. Acrylamide (AAm, ≥99%), N,N’-methylenebisacrylamide (MBA, 99%), N,N,N’,N’-
tetramethylethylenediamine (TEMED, ≥99%), and ammonium persulfate (APS, 98%) were
obtained from Sigma-Aldrich. Phenolphthalein (Php, ACS reagent), bisphenol A (BPA,
≥99%), propranolol hydrochloride (PR·HCl, ≥99%), and 2-napthol (2-NO, 99%) were
purchased from Sigma-Aldrich. All solvents were purchased from VWR.

2.2. Synthesis of β-Cyclodextrin-Methacrylate (β-CD-MA)

The modification of β-CD with methacrylate groups using methacryloyl chloride was
adapted from the reported protocol [47–49]. Generally, dried β-CD (3.9 g, 3.4 mmol) was
dissolved in 30 mL of degassed anhydrous N,N-dimethylformamide (DMF), followed by
the addition of anhydrous TEA (3.4 mL, 24.4 mmol). The reaction mixture was cooled
down to 0 ◦C while stirring in an ice bath. Methacryloyl chloride (2.0 mL, 20.5 mmol)
in 1.5 mL of anhydrous DMF was added dropwise into the mixture while stirring. The
mixture was allowed to slowly increase to room temperature. After stirring for 4 h,
triethylamine hydrochloride was filtered, and the clear mixture solution was precipitated
in 300 mL of acetone. The precipitate collected by centrifugation was redissolved in 5 mL
of DMF and precipitated in 50 mL of acetone. The solid product was further purified
by column chromatography using a solvent mixture of 1-propanol-water-ammonium
hydroxide-toluene (6:3:1:1) as eluent. The solvent was then evaporated under vacuum
to obtain the pure solid product, denoted as β-CD-MA. Yield: 2.4 g, 52%. FTIR (KBr):
ν = 1717 (ν(C=O)), 1638 cm−1 (ν(C=C)); 1H NMR (600 MHz, DMSO-d6): δ 1.84 (m, methyl
protons of methacrylate group); 3.20–4.60 (m, H-2–H-6 and OH-6 of β-CD); 4.83 (b, H-1
of β-CD); 5.50–6.10 (m, vinyl protons of methacrylate group, overlapped with OH-2 and
OH-3 of β-CD).

2.3. Synthesis of β-Cyclodextrin-Polyacrylamide (β-CD-PAAm) Gel

β-CD-PAAm gel was synthesized by copolymerizing AAm monomers and β-CD-MA
via free-radical polymerization initiated by a redox pair of APS and TEMED. The protocol
was optimized from the reported literature [50]. β-CD-MA, which had three methacrylate
groups on one β-CD, could act as crosslinkers in the gel formation. Therefore, no additional
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crosslinkers were added. In a typical example, β-CD-MA (3.24 g, 2.42 mmol) and AAm
(11.25 g, 158.3 mmol) were dissolved in a mixture of DMSO and water (1:1) to prepare
100 mL of solution in a volumetric flask. Then, 2 mL of the prepared solution was mixed
with 50 µL of 10% (w/v) APS and 10 µL of TEMED, and vortexed for a few seconds.
The prepolymer solution (400 µL) was dispensed into each well of a 24-well cell culture
plate and allowed to polymerize for 30 min. After that, the 24-well plates containing
the synthesized hydrogels were submerged into deionized (DI) water. The unreacted
monomers were removed from the hydrogels by soaking in DI water for 5 days. During
purification in DI water, the disk-shape hydrogels came out of the wells and became fully
swollen. The purified hydrogels were then lyophilized to obtain the dry hydrogel product.
Yield: 42.0 mg per piece of hydrogel disk, 72.5%.

2.4. Synthesis of Polyacrylamide (PAAm) Gel

PAAm gel with MBA as the crosslinkers instead of β-CD-MA was synthesized as a
control gel, following the same procedures for producing β-CD-PAAm gel. As MBA has
two double bonds per molecule while β-CD-MA has three, the amount of double bonds
was kept the same for the synthesis of β-CD-PAAm gel and PAAm gel. In brief, MBA
(0.563 g, 3.65 mmol) and AAm (11.25 g, 158.3 mmol) were dissolved in a mixture of DMSO
and water (1:1) to prepare 100 mL of solution in a volumetric flask. Then, 2 mL of the
prepared solution were mixed with 50 µL of 10% (w/v) APS and 10 µL of TEMED, and
vortexed for a few seconds. The prepolymer solution (400 µL) was dispensed into each well
of a 24-well cell culture plate and allowed to polymerize for 30 min. After that, the 24-well
plates containing the synthesized hydrogels were submerged into DI water. The unreacted
monomers were removed from the hydrogels by soaking in DI water for 5 days. During
purification in DI water, the disk-shape hydrogels came out of the wells and became fully
swollen. The purified hydrogels were then lyophilized to obtain the dry hydrogel product.
Yield: 43.1 mg per piece of hydrogel disk, 91.2%.

2.5. Characterizations
1H nuclear magnetic resonance (NMR) spectra were recorded on a Varian VNMRS

600 MHz NMR spectrometer at room temperature. Chemical shifts were referenced to the
solvent peak (δ = 2.50 ppm for DMSO-d6).

Fourier transform infrared (FTIR) spectra of samples in potassium bromide (KBr) were
measured on a Shimadzu IRPrestige-21 spectrometer in the region of 4000–500 cm−1.

UV-Vis measurement was performed with a TECAN Infinite M200 PRO microplate
reader. Absorbance of 150 µL of the sample solution was measured at 552 nm, 276 nm,
290 nm and 273 nm for Php, BPA, PR·HCl and 2-NO, respectively.

Scanning electron microscopy (SEM) images of PAAm gel, β-CD-PAAm gel, and
β-CD-PAAm gel after adsorption of BPA were taken with a Hitachi FlexSEM 1000 scanning
electron microscope at 5 kV. The surface and cross-sectional morphologies of lyophilized
hydrogels were studied. The lyophilized hydrogels were cut with a scalpel to obtain the
cross-sections.

X-ray photoelectron spectroscopy (XPS) spectra were recorded with a Kratos Axis
Ultra DLD X-ray photoelectron spectrophotometer equipped with an Al Kα X-ray source
(1486.69 eV).

2.6. Swelling Studies

The fully swollen β-CD-PAAm gel and PAAm gel (5 replicates each) were removed
from DI water, blot-dried to remove excess water and weighed. The hydrogels were then
lyophilized. The dried gels were weighed again. The swelling ratio of each hydrogel was
calculated using the following Equation (1):

Swelling ratio =
Ws − Wd

Wd
(1)
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where Ws (mg) and Wd (mg) are the weight of the swollen and dried hydrogels, respectively.

2.7. Kinetic Studies of Pollutant Removal

Kinetic studies of pollutant removal by β-CD-PAAm gel and PAAm gel were con-
ducted for Php, BPA, PR·HCl and 2-NO at room temperature (25 ◦C). Php was dissolved
in sodium bicarbonate buffer (0.1 M, pH 10.5) and the other pollutants were dissolved in
DI water. Dried β-CD-PAAm gel or PAAm gel was immersed in 10 mL of 0.1 mM solution
of each pollutant in a 20 mL glass vial and stirred. At each predetermined time point,
150 µL of the solution were taken and its absorbance was measured with a microplate
reader (Infinite M200 PRO, TECAN). A series of pollutant solutions with varying concen-
trations were prepared to produce a calibration curve by measuring the absorbance at
552 nm, 276 nm, 290 nm and 273 nm for Php, BPA, PR·HCl and 2-NO, respectively. The
residual concentration of the pollutant solution at each time point was determined using
the calibration curve. The amount of pollutant uptake and percentage removal of pollutant
was calculated.

The kinetics data for pollutant adsorption was fitted into pseudo-second-order model
with the following expression (2):

t
qt

=
1

k2q2
e
+

t
qe

(2)

where qt and qe are the adsorption capacity (mg of pollutant per g of hydrogel) at
time t (min) and at equilibrium, respectively, and k2 is the second-order rate constant
(g mg−1 min−1).

2.8. Thermodynamic Studies of Pollutant Removal

Thermodynamic studies of pollutant removal by β-CD-PAAm gel and PAAm gel
were carried out for Php, BPA, PR·HCl and 2-NO at room temperature (25 ◦C). A series of
pollutant solutions with varying concentrations were prepared for Php (0.025–0.5 mM), BPA
(0.05–1.0 mM), PR·HCl (0.035–1.0 mM) and 2-NO (0.035–1.0 mM). Dried β-CD-PAAm gel or
PAAm gel was immersed in 10 mL of each pollutant solution with different concentrations
in a 20 mL glass vial and stirred. After reaching equilibrium, 150 µL of the solution were
taken and its absorbance was measured with a microplate reader (Infinite M200 PRO,
TECAN). The residual concentration of the pollutant solution was determined using the
calibration curve.

The adsorption data was fitted into the Langmuir isotherm model, as expressed in the
following Equation (3):

1
qe

=
1

qmax,e
+

1
qmax,eKCe

(3)

where qe is the adsorption capacity (mg of pollutant per g of hydrogel) at equilibrium, qmax,e
is the maximum adsorption capacity at equilibrium, Ce (mmol L−1) is the residual concen-
tration of pollutant at equilibrium, and K is the adsorption equilibrium constant (M−1).

2.9. Hydrogel Recycling Studies

β-CD-PAAm gel was immersed in 10 mL of 0.1 mM BPA solution in a 20 mL glass
vial and stirred at room temperature (25 ◦C). After reaching equilibrium, the percentage
removal of BPA was estimated. β-CD-PAAm gel was then regenerated by immersing in
10 mL of methanol and stirring overnight. After removing the methanol solution, the
regenerated β-CD-PAAm gel was dried under vacuum and ready for use for the next cycle.
The adsorption/desorption process was conducted five times.
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3. Results and Discussion
3.1. Synthesis of β-Cyclodextrin-Methacrylate

β-CD-MA was synthesized according to the protocol described in Figure 1A, which
was adapted from the reported literature [47,48]. β-CD was modified with methacrylate
groups using methacryloyl chloride. The successful conjugation of methacrylate groups
to β-CD was confirmed by 1H NMR measured in DMSO-d6, as shown in Figure S1. The
signals from both β-CD and the methacrylate groups have been observed for β-CD-MA in
Figure S1B, such as signals for H-7 of methacrylate group around 1.84 ppm and H-8 and H-
9 of methacrylate group overlapping with OH-2 and OH-3 of β-CD around 5.50–6.10 ppm.
As compared with pure β-CD, the peaks for β-CD-MA were broadened. This might be
due to the restriction of the molecular motions by the modifications. According to the
literature and our previous study [38,51], the primary hydroxyl groups of β-CD at the
6-position are more nucleophilic than the secondary hydroxyl groups and more subjected
to the modifications. Therefore, the methacrylate groups are more likely to be bonded
to β-CD’s 6-positioned hydroxyl groups. By comparing the integrations of the signals
for methyl protons of methacrylate groups (CH2=C(CH3)-, around 1.84 ppm) to those
for the 1-positioned protons of β-CD around 4.83 ppm, the degree of substitution was
estimated to be 3. As the β-CD was modified with multiple methacrylate groups, it could
function as crosslinkers in the subsequent hydrogel formation without the addition of other
conventional crosslinkers such as MBA crosslinker.
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Figure 1. (A) Synthesis scheme for β-cyclodextrin methacrylate (β-CD-MA) and β-CD-polyacry
lamide (β-CD-PAAm) hydrogel, and micropollutant removal via inclusion complexation between
β-CD in the hydrogel and micropollutant molecules. (B) Synthesis scheme for polyacrylamide
(PAAm) hydrogel using N,N’-methylenebisacrylamide as crosslinker. (C) Chemical structures of
model dye and pollutants tested.
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FTIR measurement was also carried out to further confirm the conjugation of methacry-
late groups onto β-CD. Figure S2 shows the FTIR spectra of pure β-CD and β-CD-MA.
Compared to pure β-CD, the β-CD-MA showed an appearance of a new peak at around
1717 cm−1 due to the C=O stretching of the ester bond, and an increase of the peak at
around 1638 cm−1, which is characteristic of C=C stretching [52]. These confirmed the
successful conjugation of methacrylate groups onto β-CD.

3.2. Synthesis and Characterizations of Hydrogels

β-CD-MA was incorporated into PAAm hydrogel by copolymerizing with AAm
monomers and crosslinking PAAm polymers to form β-CD-PAAm hydrogel (Figure 1A).
PAAm gel crosslinked with MBA was also synthesized in the absence of β-CD-MA as a
control (Figure 1B). After purification in DI water, the purified PAAm gel and β-CD-PAAm
gel became fully swollen to different extents (Figure 2A). Both disk-shape hydrogels were
then lyophilized for further analysis (Figure 2B).
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To confirm the incorporation of β-CD component into the hydrogel, the surface chem-
ical composition of the PAAm gel and β-CD-PAAm gel was analysed by XPS (Figure 3).
Figure 3A,D shows the high-resolution XPS spectra of C 1s peaks for PAAm gel and β-
CD-PAAm gel, respectively. The peak for C 1s of PAAm gel can be deconvoluted into
three peaks at 285.0, 285.7 and 288.2 eV, which can be assigned to C-H/C-C, C-N and
N-C=O, respectively [53]. On the other hand, the peak for C 1s of β-CD-PAAm gel can be
deconvoluted into four peaks at 285.0, 286.4, 288.1 and 289.0 eV, corresponding to C-H/C-C,
C-O, N-C=O and O-C=O, respectively [54]. In addition, the O 1s spectrum of PAAm gel
shows only one C=O peak at 531.5 eV in Figure 3B, whereas the O 1s peak of β-CD-PAAm
gel can be deconvoluted into C=O peak at 531.3 eV and C-O peak at 532.6 eV (Figure 3E).
These data strongly supported the presence of β-CD component in the β-CD-PAAm gel.
For both PAAm gel and β-CD-PAAm gel, there is only one N 1s peak at 399.8 eV, which
can be assigned to N-C=O (Figure 3C,F).
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The XPS survey spectra of these two hydrogels are shown in Figure S3. The atomic
concentrations (%) of the elements C, O and N for the hydrogels are shown in Table 1. The
atomic ratios of N/C and N/O for PAAm gel are 0.261 and 1.004, respectively. However,
the N/C and N/O ratios for β-CD-PAAm gel are 0.211 and 0.617, respectively. The increase
of atomic concentration of O and decrease of atomic concentration of N confirmed the
incorporation of the β-CD component into the β-CD-PAAm gel.

Table 1. Surface chemical composition of PAAm gel and β-CD-PAAm gel by XPS.

Sample Atomic Concentration (%)

C O N

PAAm gel 65.72 17.11 17.17
β-CD-PAAm gel 64.42 22.01 13.57

The morphologies of PAAm gel and β-CD-PAAm gel were studied by SEM. Figure 4
shows the surface morphologies and cross-sectional morphologies of the two lyophilized
hydrogels. The lyophilized hydrogels were cut with a scalpel to obtain the cross-sections.
It can be observed that the β-CD-PAAm gel has larger pores than the PAAm gel. The larger
pore size of β-CD-PAAm gel may contribute to its higher swelling ratio as compared to
PAAm gel.
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After hydrogel synthesis, the hydrogels were purified by soaking in DI water for
5 days. During the purification process, the hydrogels became fully swollen to different
extents. The weight of the swollen hydrogels and the lyophilized hydrogels were taken
and compared. Table 2 summarizes the weight of the swollen and dried hydrogels and the
swelling ratios. It was observed that β-CD-PAAm gel’s swelling ratio is 2.3 times of that
of PAAm gel, presumably attributed to the larger pore size of β-CD-PAAm gel. This may
facilitate the diffusion of the pollutants into the hydrogels and the subsequent inclusion
complexation with β-CD units.

Table 2. Swelling analysis of PAAm gel and β-CD-PAAm gel a.

Sample
Weight (mg)

Swelling Ratio
Swollen (Ws) Dry (Wd)

PAAm gel 590.1 ± 22.3 43.1 ± 1.0 12.7 ± 0.6
β-CD-PAAm gel 1272.3 ± 45.4 42.0 ± 2.6 29.4 ± 2.4

a After synthesis and purifications, each piece of the disk-shape hydrogels fully swollen in DI water was weighed
to get Ws, and then lyophilized and weighed again to get Wd. Swelling ratio was calculated from Ws and Wd.
Data represent mean ± S.D. (n = 5).

3.3. Kinetic Studies of Pollutant Removal

The pollutant removal properties of β-CD-PAAm gel were evaluated in kinetic studies
using 10 mL of 0.1 mM of a model dye, Php, and three model pollutants, BPA, PR·HCl
and 2-NO. PAAm gel was also tested as a control. Php, a known pH indicator, gives a
pink color in basic solutions and changes to colorless lactonoid dianion when complexing
with β-CD [55]. BPA, a component of plastics, is an endocrine disruptor [3]. PR represents
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a pollutant from pharmaceuticals as a β-blocker in hypertension treatment [4]. 2-NO is
a model naphthol pollutant [5]. The concentrations of these model dye and pollutants
were monitored by measuring the absorbance at 552 nm, 276 nm, 290 nm and 273 nm,
respectively.

Figure 5 shows the change of concentrations of each pollutant with time upon contact
with the dried hydrogels. The cumulative percentage removal was also calculated. The
dried β-CD-PAAm gel started to swell and adsorb pollutants when added to 10 mL of
pollutant solutions. The adsorption reached equilibrium after about 8 h. The β-CD-PAAm
gel took longer time to reach equilibrium than the reported studies [28,29], probably
because the β-CD-PAAm gel had a higher swelling ratio and the pollutant solution needed
to diffuse in to complex with the β-CD units. It was also observed that the equilibrium
pollutant uptake was the highest for BPA (88%), followed by Php (87%). The uptake was
lower for 2-NO (60%) and PR·HCl (54%). This might be because the association constant
between β-CD and BPA is similar to that between β-CD and Php, and both are higher than
those between β-CD and 2-NO, and between β-CD and PR·HCl [22–27].

In comparison, PAAm gel without β-CD units could not adsorb the dye or the pollu-
tants even after a long time. This further confirms that the pollutant removal was due to
the inclusion complexation between the β-CD units inside the β-CD-PAAm gel and the
dye or pollutant molecules.

The kinetics data for β-CD-PAAm gel fitted well into the pseudo-second-order model
with all the correlation coefficient R2 around 0.9997–0.9999 (Figure 6). The rate constant
k2 and the qe values are summarized in Table 3. The calculated qe values are in good
consistency with the experimental values. These calculated values for BPA adsorption
were smaller than the reported values [28,29]. This might be because those systems are
non-hydrogel-based and the major component was β-CD. In addition, qe was calculated
as mg of pollutant adsorbed per g of hydrogel. If qe was calculated as mg of pollutant
adsorbed per g of β-CD component (feed ratio: 9.4 mg of β-CD unit per 42 mg of hydrogel),
the qe value would be increased to 21.72 mg/g, which is comparable to the reported studies,
in which the major component of the adsorbent was β-CD [28,29].

Table 3. Rate of pollutant removal by β-CD-PAAm gels.

Pollutant MW k2 (g/mg min) Correlation Coefficient R2 qe,cal (mg/g) qe,exp (mg/g)

Php 318.32 0.0051 0.9999 6.21 6.07
BPA 228.29 0.0096 0.9999 4.86 4.78

PR·HCl 295.80 0.0266 0.9999 3.84 3.83
2-NO 144.17 0.0203 0.9997 2.32 2.29

It should be noted that the ester groups in β-CD-PAAm gel hydrolyzed in the basic
solution of Php (pH 10.5) after stirring for a long time. However, the β-CD units could
still complex with Php, causing the color change. The decrease of absorbance at 552 nm
indicates that the amount of free or uncomplexed Php has decreased in the solution. This
is because Php gives a pink color in basic solutions and changes to colorless lactonoid
dianion when complexing with β-CD. Therefore, the data are still useful for understanding
the adsorption behavior of β-CD units.
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Figure 5. Graphs showing changes of pollutant concentrations (left) and percentage removal of
pollutant (right) over time for (A) Php, (B) BPA, (C) PR·HCl and (D) 2-NO solutions upon contact
with β-CD-PAAm gels and PAAm gels. Data represent mean ± S.D. (n = 3).
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the corresponding enlarged scale of the linear fittings for the first 200 min.

3.4. Thermodynamic Studies of Pollutant Removal

The adsorption behavior was further analyzed by using different concentrations of
the dye and pollutant solutions for β-CD-PAAm gel and PAAm gel. The hydrogels were
immersed in the solutions until equilibrium was reached. The amount of uptake and
percentage removal was plotted against the initial concentrations of pollutants, as shown
in Figure 7. The amount of uptake for each pollutant increased with increasing initial
pollutant concentrations by the β-CD-PAAm gel. On the other hand, the adsorption of the
pollutants remained low for PAAm gel at various initial concentrations, due to the absence
of β-CD units.

The adsorption isotherms of the different dye and pollutants by the β-CD-PAAm
gel fitted well into the Langmuir model with all the correlation coefficient R2 ≥ 0.9559
(Figure 8). This indicates the homogeneous distribution of the β-CD units inside the
hydrogels, as compared to the other β-CD-based hydrogel system [41]. This might be due
to the different preparation methods of the hydrogels. The β-CD-PAAm gel was formed
from polymerization and crosslinking from a homogeneous solution. The β-CD units
were likely to be distributed evenly inside this network. In addition, the large pore size
and the high water content (up to 97%) of β-CD-PAAm gel may make the β-CD units
more accessible to the pollutants. The pollutant molecules may diffuse easily into the
gel, fit into the hydrophobic β-CD cores and form 1:1 inclusion complexes. According
to literatures and various studies regarding the β-CD-based adsorbents [28,38], this type
of adsorption by our system should fit into the pseudo-second-order kinetic model and
Langmuir isotherm model the best, which was well supported by our good fittings.
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Figure 7. Graphs showing amount of pollutant uptake (left) and the percentage removal of pollutant
(right) as a function of initial pollutant concentration for (A) Php, (B) BPA, (C) PR·HCl and (D) 2-NO
by β-CD-PAAm gels and PAAm gels. Data represent mean ± S.D. (n = 3).

After reaching equilibrium, β-CD-PAAm gel which was immersed in 10 mL of 1.0 mM
BPA was removed from the solution, lyophilized, and then imaged by SEM to study its
surface and cross-sectional morphologies (Figure S4). It was observed that, after adsorption,
the β-CD-PAAm gel remained porous, similar to that before adsorption. The large pores
may ensure that the β-CD units are easily accessible to the pollutants.

Table 4 summarizes the calculated equilibrium constant K and the qmax,e values.
The values for BPA adsorption are consistent with the reported values for a β-CD-based
hydrogel system [42]. It was observed that the qmax,e value was higher for Php and BPA,
and was the lowest for PR·HCl. This might be because the association constants between
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β-CD and Php (3.94 × 104 M−1 [26] or 2.80 × 104 M−1 [27]) and between β-CD and BPA
(3.50 × 104 M−1 [22]) are higher, and those between β-CD and PR·HCl (239 M−1 [23] or
195 M−1 [24]) and between β-CD and 2-NO (699 M−1 [25]) are lower. However, qmax,e
value for 2-NO was higher than expected, probably because, for the Ce tested, the qe value
was still increasing and has not reached a plateau. Therefore, the predicted qmax,e was
higher than expected.
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Figure 8. The qe values as a function of pollutant equilibrium concentration (Ce) (left) and the
corresponding fittings to the Langmuir isotherm model (right) for (A) Php, (B) BPA, (C) PR·HCl and
(D) 2-NO. Data represent mean ± S.D. (n = 3).
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Table 4. Adsorption equilibrium constant for each pollutant by β-CD-PAAm gels.

Pollutant K (M−1) Correlation Coefficient R2 qmax,e (mg/g)

Php 22,000 0.9946 34.97
BPA 19,882 0.9559 29.59

PR·HCl 34,824 0.9673 8.45
2-NO 811 0.9965 55.56

3.5. Hydrogel Recycling Studies

Another advantage of β-CD-PAAm gel for pollutant removal is that it can be easily
regenerated and reused several times without compromising its performance. To evaluate
its recycling properties, the adsorption/desorption cycle was conducted five consecutive
times for β-CD-PAAm gel using 0.1 mM BPA solutions. After each adsorption, β-CD-PAAm
gel was easily regenerated by soaking in methanol at room temperature for desorption of
BPA, before the hydrogel was used again in the next cycle. In Figure 9, it can be observed
that the percentage removal of BPA remained almost the same for the five cycles performed,
similar to the reported study [28], making the β-CD-PAAm gel more economical and
attractive in its applications as an effective and recyclable pollutant removal material.
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4. Conclusions

β-CD was successfully modified with methacrylate groups by reacting with methacry-
loyl chloride directly. β-CD-MA with an average substitution degree of 3 methacrylate
groups per β-CD was then incorporated into a PAAm hydrogel by copolymerizing with
acrylamide monomers via free-radical copolymerization, forming β-CD-PAAm hydrogel.
As β-CD-MA with multiple methacrylate groups could act as crosslinkers, no additional
crosslinkers, such as MBA crosslinkers, were needed for the gel formation. SEM images
revealed that β-CD-PAAm gel had larger pore size than the control PAAm gel, which was
synthesized using MBA crosslinkers in the absence of β-CD-MA. The swelling ratio of
β-CD-PAAm gel (29.4 g of water/g of hydrogel) was also found to be higher than that
of PAAm gel (12.7 g of water/g of hydrogel). Subsequently, the adsorption behaviors
of the β-CD-PAAm gel were evaluated using Php as a model dye and BPA, PR·HCl and
2-NO as model pollutants from different classes. In the kinetic adsorption studies, the
data for β-CD-PAAm gel fitted well into the pseudo-second-order model for all dye and
pollutants, while PAAm gel did not show much adsorption due to the absence of β-CD
units. In addition, the β-CD-PAAm gel demonstrated effective adsorption of the different
dye and pollutants at various concentrations in the thermodynamic studies. The very
low adsorption by PAAm gel further confirmed that the pollutant removal was mainly
due to the inclusion complexation ability of β-CD units. The adsorption isotherms by the
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β-CD-PAAm gel fitted well into the Langmuir model for the different dye and pollutants.
Moreover, it was shown that the β-CD-PAAm gel could be easily regenerated by soaking
in methanol and reused without losing its adsorption ability for five consecutive adsorp-
tion/desorption cycles. Therefore, the easy-to-handle β-CD-PAAm hydrogel platform with
effective adsorption properties towards various dye and pollutants shows great potential
as a promising pollutant removal system for wastewater treatment applications.

Supplementary Materials: The following are available online. Figures S1–S4: Characterizations of
β-CD-MA using 1H NMR and FTIR. XPS survey spectra of PAAm gel and β-CD-PAAm gel. SEM
images of β-CD-PAAm gel after adsorption of BPA.
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